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Preface to the Second Edition

We have very much appreciated the overwhelmingly positive response to this
book by professors and students alike at universities across the USA and abroad.
The goals and approach of this Second Edition thus remain as originally
presented: to motivate the need for continuum biomechanics across diverse
areas of study, to present a consistent introductory approach to the biomechan-
ics of solids and fluids and their interactions, and to illustrate this general
approach via numerous Examples and Exercises. This Second Edition has
allowed us, however, to add new “Observations” that highlight further impli-
cations of mechanics within biology and medicine, to add a new Appendix, to
update the references, to include additional Exercises, and to correct some
typographical errors. Perhaps most importantly, this Second Edition has
allowed us to add at the end of each chapter a “Chapter Summary” to help
emphasize general points of importance as well as to reinforce the consistency
of the big picture ideas across chapters.

It was just over a decade ago that we wrote this book with great excitement
and we are very pleased to report that research and training in biomechanics
continues to be universally recognized as both exciting and vitally important.
Traditional areas of research within biomechanics continue to contribute to
basic science as well as translational research and development whereas new
areas continue to emerge with great promise. For example, the US National
Committee on Biomechanics (USNCB) recently sponsored three Frontiers
Meetings that highlighted special opportunities for biomechanics in areas
ranging from developmental biology to the fight against cancer and infections.
Since the first printing of this book, the National Science Foundation has added
another funding program entitled, Biomechanics and Mechanobiology, and a
Federal Interagency Modeling and Analysis Group (IMAG), led by Grace Peng,
Ph.D., has been established to emphasize across many funding agencies the
importance of multiscale mathematical modeling in biology and medicine,
which prominently includes biomechanics. Hence, in areas new and old alike,
we continue to see the importance of the fundamentals of biomechanics in the
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formulation and solution of diverse biological and medical problems of
importance. We thus continue to encourage the reader to focus on learning
the fundamentals well and, of course, to enjoy the journey.

Jay D. Humphrey
New Haven, CT, USA



Preface to the First Edition

Biomechanics aims to explain the mechanics of life and living. From molecules to
organisms, everything must obey the laws of mechanics.
—Y.C. Fung (1990)

It is purported that Leonardo da Vinci once said, “by means of this [mechanics],
all animated bodies that have movement perform all their actions.” Although
this assertion is obviously overstated, it serves to remind us that scientists have
long thought that mechanics plays an extremely important role in governing
biological as well as physical actions. Indeed, perhaps one of the most exciting
recent discoveries in cell biology is that of mechanotransduction. It is now
known that many cell types express different genes (i.e., perform different
functions) in response to even small changes in their mechanical environment.
Because cells are the fundamental structural and functional units of all living
things, the importance of mechanics in biology and medicine is thereby far
reaching! One goal of this book is to serve as an introduction to a few of the
many, many applications of biomechanics—one of the cornerstones of biomed-
ical engineering. Before proceeding, however, a few words on the scope and
philosophy of approach.

There are five general areas of mechanics: discrete, continuum, statistical,
quantum, and relativistic. Each is important, but this text focuses on biome-
chanics from a continuum perspective, which we will see embraces many
aspects of biomedical engineering at various length and time scales.

Introductory textbooks on mechanics sometimes give the wrong impression
that the subject is primarily a collection of solutions to individual problems—
nothing could be further from the truth. As a branch of classical physics,
continuum mechanics is a deductive science founded upon a few basic postu-
lates and concepts through which all problems must be formulated and then
solved. Mechanics should be recognized, therefore, as a consistent, focused
approach to the solution of classes of problems rather than as a collection of
special results. Another goal of this textbook is to introduce the student to
biosolid and biofluid mechanics such that it is the underlying, consistent
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approach that is learned and reinforced throughout. Indeed, the ultimate goal
here is to enable the reader to formulate and solve real-life problems, many of
which have yet to be identified. In other words, the primary goal of a student
should not be to learn how to solve the specific problems (illustrative examples
and exercises) in this text; we, as a community, already know their solution.
Textbook problems should be used simply as a means to practice the underlying
approach of mechanics, to gain confidence in formulating and solving prob-
lems, and to develop intuition.

Although this philosophy of learning the fundamentals is as old as mechanics
itself, it has at no time in our history been more important. With continued
advances in computer technology and engineering software, the biomechanicist
will have increasingly remarkable experimental, computational, and design
tools at his/her disposal to address the incredibly complex real-life problems
of biomechanics. The only way to ensure that these tools are used well, rather
than misused, is to understand the underlying general approach as well as the
specific assumptions (with associated limitations) within a given formulation.
For example, a finite element program should not be treated as a black box
capable of finding any solution of interest; rather, it should be used cautiously as
a tool only by one who understands how the program actually works. Toward
this end, note one caveat. It has been appropriately said that undergraduates
should be told the truth, nothing but the truth, but not the whole truth. Why not
the whole truth? From a purist perspective, we do not know the whole truth,
scientific knowledge being relative to current advances. From a practical per-
spective, however, continuum biomechanics has tremendous breadth and depth
and it is impossible in an introductory course to scratch the surface of the whole
truth. Therefore the interested student is strongly encouraged to pursue inter-
mediate and advanced study in biomechanics, which will successively reveal
more and more of the beauty and, indeed, the power of biomechanics. Biome-
chanics is a lifelong pursuit, one with many rewards.

Whereas graduate courses on biomechanics are often best taught using a
problem-based paradigm, we suggest that an introductory course on biome-
chanics should be taught using a traditional discipline-based paradigm; that is,
graduate courses are often best taught by focusing on a particular tissue, organ,
or system, or, alternatively, on a specific disease or treatment modality, and then
by bringing to bear all tools (experimental, computational, theoretical, biolog-
ical) that aid in the solution of that class of problems. An introduction to
biomechanics should be different, however. To see the overall approach used
in mechanics, it is best to introduce all of the general tools (e.g., concept of
stress, strain, and equilibrium) and then to illustrate their use via multiple
similar problems that build in complexity but continually reinforce the same
approach. Hence, this book is divided according to approach (e.g., via chapters
on beam theory and Navier—Stokes solutions), not according to areas of
research such as cardiovascular, musculoskeletal, pulmonary, or cell
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mechanics. Therefore, we employ illustrative problems from various fields of
study, often within single chapters.

As a first course in biomechanics, the primary prerequisites are the sequence
of courses on calculus for engineers (including vectors, which are reviewed in
Chap. 7) and some basic biology (reviewed in Chap. 1); many students will
likely have had a course in engineering statics (briefly reviewed in Chap. 1),
which will help but it is not necessary. Although a course on differential
equations would also be helpful (briefly reviewed in Chap. 8), related methods
needed herein will be reviewed at the appropriate time. Given the availability of
personal computers and useful software packages, the student will be asked to
obtain numerical solutions to many exercises.

I would like to close with a quote from the 1998 Bioengineering Consortium
(BECON) Report of the National Institutes of Health:

The success of reductionist and molecular approaches in modern medical science
has led to an explosion of information, but progress in integrating information has
lagged ... Mathematical models provide a rational approach for integrating this
ocean of data, as well as providing deep insight into biological processes.

Biomechanics provides us with a means to model mathematically many
biological behaviors and processes; thus biomechanics will continue to play a
central role in both basic and applied research. The key, therefore, is to learn
well the basic approaches.

Jay D. Humphrey
College Station, TX, USA


http://dx.doi.org/10.1007/978-1-4939-2623-7_8
http://dx.doi.org/10.1007/978-1-4939-2623-7_1
http://dx.doi.org/10.1007/978-1-4939-2623-7_1
http://dx.doi.org/10.1007/978-1-4939-2623-7_7




Comments from a Student to a Student

Although one tends to teach the way he or she was taught, this textbook is
designed to be different. For example, rather than introduce biomechanics
through a sequence of increasingly more involved and detailed problems,
with each illustrating new foundational concepts, we choose to introduce the
basic concepts first and then to illustrate and reinforce the use of these concepts
through the consideration of increasing more complex problems. In addition,
rather than have two professors coauthor the book from their two perspectives,
we chose to have a professor and student coauthor the book from their two
perspectives—teacher and learner. Ms. O’Rourke completed a sequence of
three biomechanics courses at Texas A&M University (BMEN 302 Biosolid
Mechanics, BMEN 421 Biofluid Mechanics, and BMEN 689 Cardiovascular
Mechanics) offered by Professor Humphrey. The goal of this joint effort,
therefore, is to present the material in a way that a professor feels is most
beneficial and yet in a way that a student feels is most easily assimilated. Here,
therefore, consider comments from a student to a student.

When taking my first course from Professor Humphrey “Biosolid Mechan-
ics,” he explained mechanics in such a way that made sense to me. He intro-
duced the idea of a continuum and that classes of problems that fall within the
realm of continuum mechanics, whether it be solid or fluid mechanics, are
governed by the same fundamental relations. The backbone of mechanics was
revealed and the basic/fundamental equations were derived from a single
perspective. This introductory text introduces these basic concepts, which are
essential to all problems in biomechanics. It presents a unified approach that
helps the student to understand and learn the basic concepts and allows one to
build upon these concepts to formulate and solve problems of increasing
difficulty.

The concepts introduced in Part II of this text are reinforced in Part III, as we
apply the same governing equations to different classes of problems, again
deriving necessary equations as we move along. As a student, I found the course
in “Biofluid Mechanics” to be easier than “Biosolid Mechanics” partly because
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X1iv Comments from a Student to a Student

I had already learned the general approach to formulating and solving problems.
In these ways, I feel that this book reflects the positive aspects from my learning
experiences at Texas A&M.

All in all, as a student, I appreciated having a unified problem-solving process
presented to me and reinforced throughout each course as well as knowing from
where the basic/fundamental equations were derived. I also appreciated refer-
ence to real-life problems for motivation, and derivations that skipped very few
steps. This book reflects these ideas, upon which one can build.

Sherry L. O’Rourke
College Station, TX, USA
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Summary of Observations

In each chapter, we attempt (1) to motivate further the need for biomechanics
via the identification of illustrative biological and clinical problems, (2) to
provide a consistent approach to the formulation and solution of diverse
biomechanical problems that is easily remembered, and (3) to illustrate such
needs and approaches via numerous Examples and Exercises. In addition, we
intersperse throughout Chaps. 2—11 various “Observations” to encourage the
reader to pause and think about further topics within mechanics and biology that
are not addressed in detail but are nevertheless important to biomechanics.
Indeed, we hope that the reader develops a habit of pausing at other times to
consider additional areas where biomechanics can and should be applied or
other aspects of the mechanics that can and should be developed or extended to
address better the diversity of problems that arise in biology and medicine.
Toward this end, note the following Observations:
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Introduction

1.1 Point of Departure

Biology is the study of living things; mechanics is the study of motions and the
applied loads that cause them. Biomechanics can be defined, therefore, as the
study of the motions experienced by living things in response to applied loads.
Herein, however, we consider that biomechanics is the development, extension,
and application of mechanics for the purposes of understanding better the
influence of applied loads on the structure, properties, and function of living
things and the structures with which they interact. Thus, the domain of bio-
mechanics is very broad. It includes, among many other things, studying the
effects of wind loads or gravity on the growth of plants, the mechanical
properties of foodstuffs, the flight of birds, the drag-reducing properties of the
skin of dolphins, and human athletic performance. Additionally, biomechanics
addresses many issues of health as well as disease, injury, and their treatment
in both humans and animals. This shall be our primary motivation herein; thus,
it is easy to see that biomechanics is fundamental to the rapidly growing field
of biomedical engineering.

It is not possible to identify a true “father of biomechanics,” but many point
to either Leonardo da Vinci (1452-1519) or Galileo Galilei (1564—-1642).
Among many other things, da Vinci was interested in a means by which man
could fly, and to this end, he studied the mechanics of the flight of birds.
Mankind’s attempt to base the design of engineering systems on nature’s way
of doing something (e.g., the honeycomb structure within a beehive or a bat’s
radar system) is called bionics, which remains a very important area within
biomechanics. In contrast to da Vinci, Galileo was interested in the intrinsic
strength of bones and, in particular, its relation to the structural design of bones.
Based on a preliminary analysis, he suggested that bones are hollow, for this
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improves the strength-to-weight ratio. Clearly, then, biomechanics focuses on
both design and analysis, each of which is fundamental to engineering.

Jumping forward to the late nineteenth century, Wilhelm Roux put forth the
idea of a “quantitative self-regulating mechanism” that results in functional
adaptation by tissues, organs, and organisms, an idea that was consistent with
the concept of a stress-mediated organization of the microstructure of bone that
was put forth by Julius Wolff in 1884. Briefly, Wolff suggested that the fine
structure within bones (i.e., oriented trabeculae) is governed by lines of tension
that result from the applied loads. Although his analysis was not correct, the
basic idea was extremely important. For more on “Wolff’s law of bone
remodeling,” see Chap. 4 as well as Roesler (1987). Indeed, we will return
many times to this observation that mechanical loads control tissue structure
and function, which has given rise to the very important area of research called
mechanobiology.

Many other savants were interested in biomechanical applications.
They include R. Hooke (1635-1703), L. Euler (1707-1783), T. Young (1773—
1829), J.L.M. Poiseuille (1799-1869), and H. von Helmholtz (1821-1894).
Despite the caliber of scientists who have sought answers in biomechanics
over the centuries, our field did not truly come into its own until the mid-
1960s. Although historians will likely argue over the reasons for this, it is
suggested here that five nearly concurrent developments provided both
increased motivation and increased capabilities in biomechanics. Recall that
the 1960s was the decade of mankind’s pursuit of the Moon. When faced with
the question, “How will man respond to the altered loads associated with space
travel, including a reduced gravitational load on the Moon?,” clinical medicine
could not provide the answers, for it is based largely on observations. There was
a need, therefore, for a predictive science, one focusing on how the body
responds to mechanical loads. In addition, note that much of biomechanics
deals with the response of soft tissues (i.e., tissues other than bones and teeth). It
has long been known that soft tissues exhibit complex nonlinear behaviors that
could not be described by the classical mechanics of continua developed in the
eighteenth and nineteenth centuries. Rather, biomechanics had to await the
post-World War II renaissance in continuum mechanics (~1948-1965) through
which the nonlinear theories achieved a more complete and rational foundation.
During this same period, 1950s—1960s, technological developments gave rise to
the digital computer. Computers are essential in biomechanics for solving many
important but complex boundary and initial value problems, for controlling
complicated experiments, and for performing nonlinear analyses of the data.
Paralleling the development of computers was the advancing of powerful
numerical methods of analysis, including the finite element method, which
was introduced in 1956 and has become a standard tool in the biomechanicist’s
arsenal for attacking basic and applied problems. Finally, it is not coincidental
that biomechanics emerged at the time that modern biology was born, which
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was due in large part to the identification in the 1950s of the basic structure of
proteins (by L. Pauling) and DNA (by J. Watson and F. Crick). In summary
then, the 1950s and 1960s provided important new motivations as well as
theoretical, experimental, and technological advances that allowed the emer-
gence of biomechanics. This is, of course, only a synopsis of some of the
essential historical developments. The interested reader is encouraged to inves-
tigate further the history of our field.

Although biomechanics encompasses a broad range of topics, the purposes of
this book are twofold: first, to introduce fundamental concepts and results from
solid and fluid mechanics that can be applied to many different problems of
importance in biology and medicine and, second, to illustrate some of the many
possible applications by focusing on the mechanics of human health, disease,
and injury. Hence, to motivate our study further, let us briefly review some of
the many cases wherein biomechanics can and must contribute to the advance-
ment of health care. Once we have sufficient motivation, we shall then briefly
review results from Cell and Matrix Biology, results on which we shall build in
Chaps. 2-11.

1.2 Health Care Applications

There are many obvious examples wherein biomechanics plays a central role in
the delivery of health care, roles that literally span all levels from the molecule
to the person. Beginning with the latter, a simple example of an important
biomechanical contribution is the design of efficient wheel-chairs. By efficient,
of course, we mean having sufficient strength with minimal weight, but also
ease of maneuverability, ease of transport in a car or van, flexibility in the
positioning of the patient, and even affordability. One does not realize the
importance of what may seem to be such a simple device until a family member
is incapacitated and in need. Selection of materials, design, experimentation,
and stress analysis each play important roles in the engineering of an efficient
wheelchair. Another common example at the level of the whole person is the
design of transportation systems that improve occupant safety. Again, one only
needs to see the devastation wrought on a family when someone is injured
severely in a vehicular accident to appreciate the need for biomechanical
solutions to improve safety in transportation.

Intracranial saccular aneurysms are balloonlike dilatations of the arterial wall
that tend to form in or near bifurcations in the circle of Willis (Fig. 1.1), the
primary network of arteries that supply blood to the brain. Although the natural
history of saccular aneurysms is not well understood, it is generally accepted
that mechanical factors play important roles. Hemodynamic forces may con-
tribute to the initial local weakening of the wall, intramural forces that balance
the distending blood pressure may contribute to the enlargement of the lesion
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Ficure 1.1 Schema of the circle of Willis, the primary network of arteries that supplies
blood to the brain. Note the intracranial saccular aneurysm, which is a focal dilatation of
the arterial wall on the left middle cerebral artery (with the circle viewed from the base
of the brain). Such lesions tend to be thin-walled and susceptible to rupture. From
Humphrey and Canham (2000), with permission from Kluwer Academic Publishers.

from a small bulge to a sac over 25 mm in diameter (note: the parent artery is
often less than 4 mm in diameter), and it is thought that rupture occurs when the
intramural forces exceed the strength of the wall. Ruptured saccular aneurysms
are the primary cause of spontaneous subarachnoid hemorrhage (i.e., bleeding
within the brain due to nontraumatic cause) and thus are responsible for
significant morbidity and mortality. Understanding the biomechanics of aneu-
rysms at the tissue level is thus potentially very important in neurosurgery.
On yet another scale, it was discovered around 1974 that endothelial cells,
which line all blood vessels, are very sensitive and responsive to the forces
imparted on them by the flowing blood. In particular, these cells express
different genes, and thus produce different molecules, depending on the
magnitude and direction of the blood-flow-induced forces (Fig. 1.2). Many
different situations alter the flow of blood and thus the forces felt by the
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Ficure 1.2 Schema of the monolayer of endothelial cells that lines the inner surface
of a blood vessel, with a free-body diagram showing various mechanical loads that act
on a single cell: flow-induced shear forces; radial forces due to the blood pressure;
circumferential forces due to cell-cell contacts and the distension due to the pressure;
and axial forces due to cell-cell contacts and the prestretch that appears to arise
during development. Also shown are classes of molecules that are produced by endo-
thelial cells in response to changes in these mechanical loads. MMPs denotes matrix
metalloproteinases—molecules that degrade extracellular matrix.

endothelium: exercise or the lack thereof, diseases such as atherosclerosis and
aneurysms, a microgravity environment on the space shuttle, the implantation
of medical devices including artificial arteries or left ventricular assist devices,
and even the surgical creation of arterio-venous fistulas for kidney dialysis.
To understand and ultimately to control endothelial function, we must under-
stand the associated biomechanics and mechanobiology—how the fluid-
induced forces deform a cell, how the cell senses these forces, and how the
transduction of these forces controls gene expression. It is thought, for example,
that loads applied to the surface of a cell are transmitted to the proteins within
the cell through membrane-bound protein receptors. Hence, from the wheel-
chair to individual proteins in the cell membrane, and everywhere in between,
biomechanics has a vital role to play in analysis and design that seeks to
improve health care.

Figure 1.3 is a rendition of the drawing of a man by da Vinci that emphasizes
interesting symmetries of the body. Shown, too, are some of the many examples
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Ficure 1.3 A schema of da Vinci’s man showing a few of the many different
aspects of human physiology, pathophysiology, and injury that can be addressed using
biomechanics.

wherein mechanics plays a key role: from understanding why abdominal aortic
aneurysms rupture, to identifying the failure strength of the anterior cruciate
ligament (ACL) in an elite athlete, which must be protected during training and
competition; from designing an artificial heart valve that must open and close
over 30 million times per year, to understanding why artificial hip implants
loosen over time and cause pain; from understanding what pressure must be
applied to an angioplasty balloon to open a diseased artery, to understanding
how deep and how many incisions should be made to modify the curvature of
the cornea to correct for visual problems; from understanding the role of
stresses in biological growth for the purpose of engineering tissue replacements,
to designing a mechanical ventilator for those in respiratory distress; from
using computer-aided modeling to guide robotic-assisted surgery, to designing
needles that induce less damage to the arterial or venous wall; from designing
an orthotic device for supporting an injured limb, to specifying a rehabilitation
schedule that promotes tissue healing. In these and many, many other cases,
biomechanics plays vital roles in the research laboratory, biomedical device
industry, and hospital on a daily basis.
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1.3 What Is Continuum Mechanics?

The functioning of the body and, likewise, the success of many clinical
interventions depend on chemical, electrical, mechanical, and thermal processes.
Nevertheless, we shall focus herein solely on the mechanics. Recall, therefore,
that classical physics is typically thought to consist of a number of related areas of
study: acoustics, electromagnetics, mechanics, optics, and thermodynamics.
Thus, most of classical physics is concerned with the behavior of matter on a
“natural” scale of observation or experience. Although its foundations and appli-
cations continue to be vibrant areas of research, the fundamental ideas upon
which classical physics rests (due to Gibbs, Huygens, Maxwell, Newton, and
others) were identified prior to the twentieth century. In contrast, modern physics
is concerned primarily with phenomena at “extreme” scales of observation and
thus includes atomic (or nuclear) physics, low-temperature physics, quantum
mechanics, and relativity. Clearly, biomedical engineering is supported by, and
relies on, both classical and modern physics. Without the latter, important
diagnostic tools such as CAT (computerized axial tomography) scans and MRI
(magnetic resonance imaging) would not be possible. In this introductory text,
however, we shall rely solely upon classical mechanics.

Classical mechanics is typically thought to offer two basic approaches:
continuum mechanics and statistical mechanics. Consider, for example, a sim-
ple glass of water at room temperature. On the natural scale of observation, we
see and can think of the water as a continuous medium. In reality, however, we
know that water is a collection of discrete, interacting molecules composed of
hydrogen and oxygen atoms, and we know that there are gaps between the H,O
molecules and even gaps between the electrons and nucleus of each of the
atoms. In statistical mechanics, we attempt to describe the (statistical) mean
behavior of the individual molecules so as to understand gross behaviors on a
natural scale of observation. In continuum mechanics, we also consider a
volume-averaged mean behavior, but one that is independent of any consider-
ation of the individual molecules. Perhaps a good example that illustrates when
the continuum and statistical approaches are each useful is the analysis of drag
on the Saturn V rocket that carried the Apollo spacecraft into space. When the
rocket took off, the drag due to the frictional interaction between the surface of
the rocket and the molecules of the air could be studied within a continuum
context because there were so many closely spaced molecules that a gross,
volume-averaged description of their properties was meaningful. In the upper
atmosphere, however, the molecules of the air may be far enough apart that one
should consider statistically their individual behaviors. In other words, the
continuum assumption (or hypothesis) tends to be reasonable when 5/A <K 1,
where ¢ is a characteristic length scale of the microstructure and 4 is a charac-
teristic length scale of the physical problem of interest. For the rocket, 6 may be
the distance between the individual molecules of the air and 4 the diameter of
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the rocket. In this case, the ratio of d/4 is much less than 1 near the ground but
perhaps on the order of 1 in the upper atmosphere. With regard to biomechanics,
consider the following. If one is interested, for example, in the forces felt by
cells (on average) within the wall of a large artery due to the distending blood
pressure, the characteristic length scales would be micrometers (um) for the
microstructure (e.g., size of the cell and diameters of the fibers in the extracel-
lular matrix) and millimeters (mm) for the physical problem (wall thickness).
Thus, 6/4 ~ pm/mm ~ 0.001 which is much less than 1 and the continuum
assumption would be expected to be reasonable. Similarly, if one is interested
in the velocity of blood at the centerline of a large artery, the characteristic
length scales would again be micrometers for the microstructure (diameter of a
red blood cell) and millimeters for the physical problem (luminal diameter), and
again 6/4 < 1. The situation would be very different in a capillary, however,
wherein 6/4 ~ 1 because the diameter of the red blood cell and capillary are both
about 5-8 pm. We shall see throughout this text that the continuum assumption
tends to be very useful in a wide variety of problems of design and analysis
in biomechanics; hence, it is adopted throughout. Nevertheless, we are well
advised to remember the following: “Whether the continuum approach is
justified, in any particular case, is a matter, not for the philosophy or method-
ology of science, but for experimental test” (Truesdell and Noll 1965, p. 5).
In other words, the utility of any of our designs or analyses must first be checked
in the laboratory.

Recall, too, that matter is typically thought to exist in one of three phases:
solid, liquid, or gas. Mechanics tends to be divided along these lines into solid
mechanics and fluid mechanics, where fluid mechanics includes the study of
both liquids and gases. That is, one can define a fluid as a substance that assumes
(within short times) the shape of the container in which it is placed, whereas a
solid tends to resist such shape changes unless so forced. Referring to Fig. 1.4,
therefore, note that solid and fluid mechanics are generally studied in the order
of increasing complexity, which has (artificially) given rise to subfields of
study. Although no solid is rigid, the assumption of a rigid body can lead to
many useful designs and analyses, as, for example, in satellite dynamics.
Likewise, all fluids resist the forces that cause them to deform, or flow.
Again, however, neglecting this intrinsic resistance to flow (or, viscosity) can
lead to many useful engineering solutions, particularly in aerodynamics. Hence,
despite being based on unrealistic assumptions, rigid-body solid mechanics and
inviscild fluid mechanics are both useful and convenient starting points for
study.

! 1t is assumed herein that the student has had an introduction to mechanics, which
typically covers rigid body statics and sometimes dynamics. If not, a brief review of
statics is found in Appendix 1.
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Ficure 1.4 Flowchart of traditional divisions of study within continuum mechanics.
Note that solid mechanics and fluid mechanics focus primarily on solidlike and fluidlike
behaviors, not materials in their solid versus fluid/gaseous phases. Note, too, that linear
and nonlinear refer to material behaviors, not the governing differential equations of
motion. As we shall see in Chap. 11, many materials simultaneously exhibit solidlike
(e.g., elastic) and fluidlike (e.g., viscous) behaviors, which gives rise to the study of
viscoelasticity and the theory of mixtures, both of which are important areas within
continuum biomechanics.

Our focus herein is on deformable solids and viscous fluids, for which it is
often convenient to study separately the linear and nonlinear behaviors
(Fig. 1.4), which give rise to additional subfields of study such as elasticity
and plasticity (in solid mechanics) or Newtonian and non-Newtonian fluid
mechanics. Although many problems in biomechanics necessitate dealing
with the complexities associated with nonlinear behaviors (e.g., the stiffening
response of soft tissues to increasing loads or the flow-dependent viscosity of
blood), we shall focus primarily on the linear behavior of both solids and fluids.
Not only do such problems serve as a natural preparation for the consideration
of the more complex problems found in advanced courses, but many solutions
to linear problems are fundamental to clinical and industrial applications as well
as to basic research. For an introduction to nonlinear cardiovascular solid
mechanics, see Humphrey (2002).

1.4 A Brief on Cell Biology”

The word “cell” comes from the Latin cellulea, meaning “little rooms.” This
terminology was coined by Hooke (1635-1703) who was perhaps the first to
describe a cellular structure, which in his case was remnant cell walls in a thin

2 Much of Sects. 1.4 and 1.5 are from Humphrey (2002).
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Ficure 1.5 Schema of a mammalian cell showing its three primary constituents: the cell
membrane (with various receptors, pumps, channels, and transmembrane proteins), the
cytoplasm (including many different types of organelles, the cytoskeleton, and the
cytosol), and the nucleus. From a mechanics perspective, the three primary proteins of
the cytoskeleton (actin, intermediate filaments, and microtubules) are of particular
importance. [From Humphrey (2002), with permission.].

slice of cork. Today, by the word “cell,” we mean “the fundamental, structural,
and functional unit of living organisms” (Dorland’s Medical Dictionary 1988).
For a detailed discussion of cell biology, see the wonderful work by Alberts
et al. (2008) or similar texts; here, we simply offer a brief introduction.

Most cells consist of various organelles (i.e., organized structures having
specific functions), the cytosol, the cytoskeleton, and an outer membrane
(Fig. 1.5). The most conspicuous organelle is the nucleus, which contains the
genetic information, chromosomal DNA. The nucleus consists of its own
porous membrane or envelope, which mediates all transport into and out of
the nucleus, a nucleoplasm that contains a fibrous scaffold, and a nucleolus that
produces the ribosomes that are responsible for translating mRNA data for
protein synthesis. The primary functions of the nucleus, therefore, are to archive
and replicate the genetic code as needed to direct cellular activity. Whereas the
cells in a given organism contain the same genetic information (the genotype),
each cell does not “express” the same genes. The genes that are expressed define
the phenotype; hence, skin cells are different from bone cells and so on. That
cells are able to express different genes in response to changing external stimuli,
particularly mechanical loads, will prove to be very important in biomechanics
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and, thus, is discussed separately in Sect. 1.6. Other organelles within a cell
include the mitochondria, endoplasmic reticulum (rough and smooth), and the
Golgi apparatus. Mitochondria provide the cell with usable energy by oxidizing
foodstuffs (e.g., sugars) to make adenosine triphosphate (ATP). A typical cell
may have over 1,000 distributed mitochondria, which, together, may constitute
up to one-fourth of the total cell volume. The rough endoplasmic reticulum
represents an interconnected space that specializes in the synthesis of proteins;
it connects to the outer portion of the nuclear membrane and is intimately
associated with ribosomes—carriers of the RNA. The smooth endoplasmic
reticulum is tubular in structure; although it aids in the packaging of proteins,
it specializes in the synthesis of lipids and steroids. The Golgi apparatus plays a
key role in the synthesis of polysaccharides as well as in the modification,
packaging, and transport of various macromolecules; this transport includes
secretion into the extracellular space. In addition to these organelles, which are
responsible for the conversion of energy or processing of products, lysosomes
and peroxisomes are responsible for the degradation of various substances
within the cell. Lysosomes are capable of digesting proteins, carbohydrates,
and fats and thereby aid in both the breakdown of foodstuffs and the removal of
unnecessary cellular components. With an internal pH of about 5, lysosomes
accomplish this degradation via various acidic enzymes, including nucleases,
proteases, and lipases. Peroxisomes are capable of generating and degrading
hydrogen peroxide, which is cytotoxic, and they assist in the detoxification of
other compounds (e.g., formaldehyde). Of course, cells also ingest extracellular
substances via a process called phagocytosis, which facilitates a controlled
intracellular degradation by the lysosomes and peroxisomes. A controlled
degradation of “old” constituents plays an important role in the biomechanics
of tissue maintenance, adaptation, and wound healing.

The cytoplasm is defined as that part of the interior of the cell that does not
include the nucleus. Thus, it consists of all the other organelles, the cytoskel-
eton, and the cytosol. The cytosol constitutes up to one-half of the total cell
volume and consists primarily of water.” The cytoskeleton consists primarily of
three classes of filamentous proteins: actin, which is often the most abundant
protein in a cell; microtubules, which are formed from tubulin; and intermediate
filaments, which include vimentin, lamins, and keratins. These cytoskeletal
filaments have diameters of 5-25 nm and they can polymerize to form linear
units that span distances between organelles or even over the entire length of a
cell. Collectively, these filamentous proteins along with hundreds of different
types of accessory proteins endow the cell with much of its internal structure,
they aid in cell division, they enable cell mobility, and they maintain cell shape.
The cytoskeleton is thus fundamental to cell mechanics. Moreover, much of the

3 Note: 70 % of the total cell volume is due to water.
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FiGUre 1.6 Schema of some of the constituents that participate in cell-matrix interac-
tions that are important to the mechanobiology. The transmembrane protein that “links”
the cytoskeletal (e.g., stress fibers) and extracellular (e.g., fibronectin and collagen)
proteins is often a member of the family of integrins. [From Humphrey (2002), with
permission.].

water and other proteins within the cytosol are bound to the cytoskeleton, which
aids in the selective positioning or movement of components within the cell.
The cytoskeleton is a dynamic structure, continually reorganizing to meet the
needs of the cells. For example, the intermediate filaments can increase in
density in response to increased mechanical stress. Likewise, stress fibers
consisting of temporary bundles of actin often form within fibroblasts. They
serve to connect the strong network of intermediate filaments that surround the
nucleus to the plasma membrane at sites where it is connected to the extracel-
lular matrix via transmembrane linker proteins (e.g., integrins). This arrange-
ment (Fig. 1.6) may allow the stress fibers to transduce the level of tension in the
extracellular matrix to the nucleus and thus to control gene expression (i.e.,
mechanotransduction). Conversely, stress fibers in fibroblasts also allow them
to exert tension on the extracellular matrix, which is particularly useful during
morphogenesis or repair in wound healing. Understanding the mechanics of
growth and remodeling is one of the most important open problems in biome-
chanics at this time; this general area is discussed more in Sect. 1.6.

Note that striated muscle (e.g., that makes up the myocardium of the heart
wall or skeletal muscle) contains an additional, specialized intracellular con-
stituent—the myofibril. These contractile elements are approximately 1-2 pm
in diameter, they span the length of the cell, and they consist of a chain of
shorter (2.2 pm) units, called sarcomeres. According to the sliding filament
model proposed in 1954, sarcomeres consist of overlapping thin (actin) and
thick (myosin) filaments. It is thought that the myosin has tiny “cross-bridges”
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Ficure 1.7 Schema of the cross-bridge mechanism that is thought to control the
contraction and relaxation of muscle. In particular, the cross-bridges allow a ratcheting
motion between the thick myosin filaments and the thin actin filaments. Calcium plays a
key role in this process.

that attach, detach, and reattach in a ratcheting fashion with the actin, which
thereby produces movement associated with the contraction of muscle
(Fig. 1.7). Smooth muscle cells similarly rely on actin—myosin interactions
although they do not have a sarcomere structure. Thus, studying the biome-
chanics of muscular organs such as the heart, blood vessels, diaphragm, or
uterus as well as studying locomotion at the organism level all require an
understanding of the associated cell biology.

The cell membrane separates the cellular contents from their surroundings. It
consists primarily of a phospholipid bilayer with embedded proteins and is on
the order of 5 nm thick (cf. Fig. 1.5). Held together by noncovalent bonds, this
membrane is described in biology texts as having “fluidity”; that is, the lipid
molecules can exhibit rapid lateral diffusion, which is to say that they can
readily exchange places with each other. It appears that this fluidity endows
the membrane with a self-sealing capability and it plays a role in some pro-
cesses of transport across the membrane (e.g., ion transport facilitated by
glycolipids). The embedded proteins likewise play many roles: they may
participate in the conduction of electrical signals or the transport of various
substances across the membrane by serving as selective channels, gates, and
pumps. Alternatively, these proteins may serve as enzymes to catalyze specific
reactions, they may act as selective receptors that bind extracellular substances
to the cell membrane, or they may serve as anchors for the attachment of
intracellular cytoskeletal filaments or extracellular proteins to the membrane
(Fig. 1.6). The latter is accomplished primarily via a special class of transmem-
brane proteins, the integrins, which consist of two noncovalently associated
glycoproteins referred to as a and f units (there are at least 14 different a units
and 9 different f units). Some integrins bind to specific proteins (e.g., laminin or
fibronectin), whereas others bind to multiple proteins by recognizing a
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particular amino acid sequence (e.g., arginine—glycine—aspartic acid, or RGD).
Integrins are found in large numbers, but their binding to a particular ligand
tends to be weak. This would be advantageous in cell migration, for example,
wherein local adhesion would be short-lived. Cells can regulate the activity of
their integrins, and, conversely, gene expression can be mediated by the extra-
cellular matrix via the integrins. Finally, note that some of the embedded
membrane proteins are decorated with carbohydrates; this glycocalyx, or
“sugar coat,” appears to protect the cell from mechanical and chemical damage
and may participate in certain transient adhesion processes.

Cells can be interconnected via three types of junctions: occluding, or tight,
junctions seal cells together; anchoring junctions mechanically attach cells to
other cells or extracellular matrix at specific sites; and communicating (e.g.,
gap) junctions allow cell-to-cell exchange of electrical or chemical signals. At
any particular instant in the mature organism, most cells are simply performing
their primary function (e.g., muscle cells are contracting and fibroblasts are
synthesizing extracellular matrix). Nonetheless, normal tissue maintenance also
typically requires a delicate balance between continuous cell replication and
cell death; in the adult, for example, millions of cells are produced each minute
to replace cells that are damaged, killed, or simply experience a normal cell
death (apoptosis). Of course, cells reproduce by duplicating their contents and
dividing in two. Although we will not consider the details of the cell cycle (see
Alberts et al. 2008), note that it appears that cells require multiple external
signals before they will divide. Growth factors, for example, are special proteins
that bind to specific receptors on the cell membrane and encourage cell division.
According to Gooch et al. (1998),

Growth factors can stimulate or inhibit cell division, differentiation, and migration.
They up- or down-regulate cellular processes such as gene expression, DNA and
protein synthesis, and autocrine and paracrine factor expression. [They] ... can
interact with one another in an additive, cooperative, synergistic, or antagonistic
manner. They may cause dissimilar responses when applied to different cell types
or tissues, and their effect on a certain type of cell or tissue may vary according to
concentration or time of application.

Among the over 50 different growth factors in humans are the platelet-
derived growth factors (PDGFs), fibroblast growth factors (FGFs), and
transforming growth factors (TGFs). Mechanical stresses and injuries have
both been shown to modulate the secretion of growth factors; hence, tissues
that normally have a slow turnover of cells (replication and death) can experi-
ence rapid increases in turnover in response to certain mechanical stimuli.
Understanding and quantifying these homeostatic control mechanisms is a
newly identified, important topic in biomechanics and mechanobiology.

This is but a cursory introduction to the general structure and function of
the cell, yet it serves as sufficient motivation for our purposes. Of course,
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in most cases, we will not be interested in a single cell, but rather large
populations of communicating cells. In this regard, the role of the extracellular
matrix, in which most cells are embedded, is of utmost importance. Let us now
consider this important component in more detail.

1.5 The Extracellular Matrix

It is axiomatic in continuum mechanics that the properties of a material result
from its internal constitution, including the distributions, orientations, and
interconnections of the constituents. Examination of microstructure is essential,
therefore, for quantifying the mechanical behavior and analyzing the internal
distribution of forces. In most tissues and organs in the body, the microstructure
depends largely on the extracellular matrix (ECM).

The ECM serves multiple functions: it endows a tissue with strength and
resilience and thereby maintains its shape; it serves as a biologically active
scaffolding on which cells can migrate or adhere; it may regulate the phenotype
of the cells; it serves as an anchor for many proteins, including growth factors
and enzymes such as proteases and their inhibitors; and it provides an aqueous
environment for the diffusion of nutrients, ions, hormones, and metabolites
between the cell and the capillary network. In many respects, therefore, it is the
ECM that regulates cell shape, orientation, movement, and metabolic activity.
It is the cells (e.g., fibroblasts), however, that fashion and maintain the ECM.
Hence, the ECM and cells have a strong symbiotic relation.

The ECM consists primarily of proteins (e.g., collagen, elastin, fibronectin,
and laminin), glycosaminoglycans (GAGs), and bound and unbound water
(Fawcett 1986; Ayad et al. 1994; Ninomiya et al. 1998; Alberts et al. 2008).
The GAGs are often bound covalently to protein cores, thus forming proteo-
glycans. Although collagen was long regarded to be a single protein, more than
25 distinct forms have been identified. Collectively, the collagens are the most
abundant protein in the body (~25-30 % of all protein), common forms being
types I, II, III, and IV, as well as types V, VI, and VIII. Types I and III form
fibers and provide structural support in tension; they are found in tendons, skin,
bone, the heart, arteries, and cornea. Type II collagen occurs as fibrils; it is
found largely in cartilage, which also contains significant proteoglycans. Type
IV collagen forms as a porous network (basement membrane) that acts as a
scaffolding for epithelial and endothelial cells (adhesion being aided by fibro-
nectin or laminin); it is found, for example, in the lens capsule of the eye as well
as in the inner layer of blood vessels. Types V and VI collagen tend to associate
with smooth muscle cells, whereas type VIII tends to associate with endothelial
cells. For more on the collagens, see Kucharz (1992).

Synthesized by various cells (Fig. 1.8), the collagen molecule consists of
three polypeptide o chains, each containing 1,300-1,700 amino acid residues.
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Ficure 1.8 Schema of collagen at different levels of organization: from the triple-helix
molecule consisting of three a-helices of repeating triplets of amino acids (G-X-Y),
where G is glycine and X and Y are often proline or hydroxyproline, to an undulated
fiber that could be found in arteries, cartilage, cornea, the heart, lungs, skin, tendons, and
many other tissues. [From Humphrey (2002), with permission.].

The majority of these residues (~1,000-1,400) are organized into a central
triple-helix motif (Ayad et al. 1994), which is on the order of 285 nm long and
1.5 nm in diameter. The triple helix results from the repetition of a triplet of
amino acid residues of the form (G-X-Y),, where G stands for Glycine,
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the simplest amino acid, and X and Y may be any of the other 19 common
amino acids, although often proline or hydroxyproline. The triple-helix
structure is stabilized by abundant interchain hydrogen bonds, many via the
hydroxyprolines. Intramolecular covalent cross-links in or near the nonhelical
ends of the molecule provide further structural stability, often via
hydroxylysine. Type IV collagen also has extensive disulfide bonds. Details
on the biosynthesis of collagen can be found in Nimni (1992) and Kucharz
(1992); details on the chemical structure can be found in Ayad et al. (1994).
Vascular type IV collagen is synthesized, for example, by endothelial cells,
whereas types I and III collagen are synthesized by fibroblasts and smooth
muscle cells; it takes the cell on the order of 10—-60 min to synthesize a complete
intracellular collagen precursor, called procollagen (Nimni 1992). Following
secretion by the cell, newly synthesized type I collagen molecules undergo
extracellular modifications prior to assembly (polymerization) into 4-8-nm-
diameter microfibrils consisting of repeating quarter-staggered (which gives
the characteristic 67-nm periodicity) groups of four to five molecules in cross
section. This assembly results from electrostatic and hydrophobic bonding
(which liberates previously bound water) between molecules. The specific
directional assembly may be aided by narrow extracellular channels within
the plasma membrane of oriented cells [e.g., the fibroblast (Birk et al. 1989)].
Note, therefore, that the orientation of cells appears to be governed by the local
force field (Carver et al. 1991) and so too for the orientation of the collagen [e.
g., in tendons, the collagen tends to be oriented uniaxially, whereas in skin, it is
distributed primarily in a two-dimensional (2-D) fashion]. The microfibrils, in
turn, are organized into successively larger fibrils (~10-500 nm in diameter)
and ultimately fibers (1-500 um in diameter), the specific diameter of which is
also thought to be dictated largely by the mechanical force field in the ECM.
The extracellularly organized fibrils and fibers are stabilized by interchain
cross-links that occur primarily through the conversion of lysine
and hydroxylysine (in the nonhelical portion of the molecule), via the enzyme
lysyl oxidase, into peptide-bound aldehydes. Further aldehyde cross-linking
of collagen is important industrially with regard to the engineering of bio-
prosthetic heart valves, which must exhibit sufficient biocompatibility,
strength, and efficiency as a valve. The need to understand the microstructure,
which governs these characteristics, is thus clear. Finally, note that additional
cross-links also form in type III collagen via intermolecular disulfide bonds.
Cross-links can be either reducible or nonreducible; reducible cross-links can be
broken, for example, during thermal treatment.* Overall, the degree of cross-
linking tends to increase with age, which results in concomitant stiffening;

* Advances in laser, microwave, and radio-frequency technologies continue to encour-
age new uses of thermal energy to treat disease and injury (Humphrey 2003b).
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pathological stiffening, via the addition of glycosylated cross-links, occurs in
diabetes. Note, too, that collagen fibers are usually undulated at physiologic
loads; thus, they exhibit their true stiffness only when straightened under the
action of applied loads. For example, the tensile strength of nearly straight
uniaxially oriented type I collagen in tendons can be 100 MPa in mature tissue.

Finally, the half-life of collagen varies tremendously throughout the body: it
is only a few days in the periodontal ligament but typically many months in
tendons and possibly years in bones.” In the cardiovascular system, the half-life
of collagen is on the order of 15-90 days. Regardless of the specific half-life,
maintenance of physiologic levels of collagen depends on a delicate balance
between continual synthesis and degradation, the kinetics of which is complex
but may be assumed to be of first order (Niedermuller et al. 1977; Gelman et al.
1979). Degradation can be accomplished by blood-plasma-borne serine pro-
teases, the extracellular release of matrix metalloproteinases (MMPs), as, for
example, by macrophages or via intracellular lysosomal activity within phago-
cytotic fibroblasts (Ten Cate and Deporter 1975). As noted earlier, phagocytosis
can be a highly selective mechanism of degradation. It also appears that much
of the synthesized collagen is degraded prior to its incorporation into the
ECM (McAnulty and Laurent 1987). The reason for this is not clear, but may
simply reflect an internal mechanism for culling imperfectly synthesized
molecules (i.e., a cellular quality control). In response to disease or injury,
however, the rates and control of the continual degradation and synthesis
can change dramatically, as needed. Wound healing in skin is a prime example
of an accelerated turnover of collagen, which in this case may result in a
collagenous scar.

Strictly speaking, elastic fibers in the ECM consist of two components—one
microfibrillar (10 nm in diameter) and one amorphous. Whereas the former
consists of multiple glycoproteins, the amorphous (major) portion is called
elastin. It consists of a polypeptide chain of ~786 amino acid residues, the
majority of which are glycine, alanine, and proline. Elastin is synthesized in
minutes, as the precursor tro proelastin, via normal pathways—mRNA, endo-
plasmic reticulum, Golgi apparatus, and so forth. Moreover, it appears that
synthesis can be assumed to be a first-order process, one that is completed in
less than 1 h (Davidson and Giro 1986). In the vasculature, this synthesis is
accomplished primarily by smooth muscle, but also by specialized fibroblasts
and, perhaps, endothelial cells. Once secreted into the extracellular space, the
soluble tropoelastin is cross-linked to form the insoluble (stable) elastin mesh-
work. Two unique amino acids, desmosine and isodesmosine, are largely
responsible for the formation of distributed covalent cross-links between the

> In contrast, many cellular proteins have half-lives of hours or days (Alberts et al.
2008).
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relatively loose and unstructured chains. It is the loose, amorphous, but highly
cross-linked structure of elastin which results in a meshwork that exhibits an
elastic (i.e., nondissipative or recoverable) response over large deformations
(indeed, elastin appears to be the most elastic protein in the body). Moreover, a
high concentration of nonpolar hydrophobic amino acids renders elastin one of
the most chemically, thermally, and protease-resistant proteins in the body.
Indeed, in contrast to collagen, the turnover of elastin is much slower in the
adult, perhaps on the order of years to decades (Lefevre and Rucker 1980).
Much of the production of elastin occurs during development. The protease
elastase, which can be secreted by macrophages, is capable of degrading
elastin, however. Such degradation appears to play a role in the formation of
aneurysms in the vasculature. For more details on elastin, see Robert and
Hornebeck (1989).

Elastic fibers appear to consist of aggregated 10-nm-diameter microfibrils
embedded in the amorphous elastin. These fibers can be from 0.2 to 5.0 pm in
diameter, and they tend to branch and form networks or sheets. When straight,
elastic fibers can experience uniaxial extensions of 150 % without breaking
(compared to less than 10 % for collagen), and they return to their original
configuration when unloaded. Indeed, it has been said that the primary role of
elastic fibers is to store and then return mechanical energy.

Other important components of the ECM include the aforementioned fibro-
nectin and laminin, both of which play important roles in cell adhesion
(cf. Fig. 1.6). Fibronectin consists of ~2,476 amino acid residues; it is a widely
distributed glycoprotein—synthesized by fibroblasts, endothelial cells, and
smooth muscle cells—that mediates cellular interactions and migration. For
example, fibronectin binds fibroblasts to underlying collagen substrates, thereby
playing an important role in normal development, growth, remodeling, and
wound healing. It may likewise play a role in the aggregation of platelets.
The ability of fibronectin to bind to different proteins and cells is due to the
presence of different binding sites, which depend in part on the aforementioned
RGD sequence. The laminins constitute a family of large glycoproteins (over
3,000 amino acid residues) that are associated with the basement membrane;
they self-assemble into a feltlike sheet. Laminin, one of the first proteins
produced in the embryo, has numerous functional binding domains, as, for
example, for heparan sulfate, type IV collagen, and various cells. Hence, like
fibronectin, this protein plays an important role in the migration and anchoring
of cells.

Proteoglycans represent a relatively small portion of the ECM in most tissues
and have no preferred structural organization; they play important roles
nonetheless. Proteoglycans consist of a core protein to which is attached
multiple glycosaminoglycan (GAG) chains via covalent bonds. GAGs are linear
polymers that contain repeating disaccharide units, the principal ones being
hyaluronan, chondroitin sulfates, dermatan sulfates, keratan sulfates, heparan
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sulfates, and heparin. Because GAGs tend to occupy large volumes compared to
their mass, and because they are highly negatively charged, they tend to imbibe
considerable water into the ECM. Water, in turn, enables many of the necessary
diffusive processes within the ECM and enables the tissue to withstand com-
pressive loads (this is particularly important in cartilage). Moreover,
hyaluronan, for example, gives the aqueous portion of the ECM its fluidlike
consistency, or viscosity. It is for this reason that the nonfibrous portion of the
ECM is often referred to as an amorphous ground substance or gel matrix.

Referring to Sect. 1.4, note that the core protein of the proteoglycan is
made on membrane-bound ribosomes and transported to the endoplasmic retic-
ulum. Upon passage to the Golgi apparatus, GAGs are affixed to the core
and possibly modified (Alberts et al. 2008). By associating with the fibrous
proteins in the ECM, proteoglycans and individual glycosaminoglycans create a
highly complex 3-D structure embodied with chemical reactivity and
intercellular signaling pathways. For example, fibroblast growth factor (FGF)
binds to heparan sulfate, which may not only localize the FGF, it may also
activate it. The ubiquitous transforming growth factor (TGF) likewise binds to
numerous proteoglycans. Similarly, proteases and protease inhibitors may bind
to proteoglycans, thus localizing activity, inhibiting activity, or providing a
storage mechanism for later use.

In addition to the binding of specific cells to fibronectin and laminin, recall
from Sect. 1.4 that cell-matrix interactions are often mediated by the integrins.
For example, the integrins that are connected to intracellular actin can “pull” on
extracellular proteins to which they are bound. Alternatively, tensions in the
ECM may be sensed by the nucleus of a cell via the ECM—integrin—cytoskeletal
connections. It is through the integrins, therefore, that cells influence the ECM
and the ECM may provide inputs for cell growth.

Finally, when discussing the extracellular matrix in tissue and organs, the role
of fibroblasts cannot be overemphasized. Fibroblasts belong to the differenti-
ated cell family known as connective tissue cells [other members in this family
include osteocytes, chondrocytes, adipocytes, and smooth muscle cells (Alberts
et al. 2008)]. Fibroblasts are the least differentiated member of this family
and are found throughout the body. Their primary responsibility is regulation
of the collagen-rich ECM. For example, in response to tissue damage, fibro-
blasts will quickly migrate to the site of injury, proliferate, and then synthesize
new collagen. Such activity is regulated in part by growth factors, in particular
FGFs and TGF-p. Likewise, macrophages are essential in regulating the ECM:
they dispose of dead cells and degrade unneeded matrix material. Macrophages
are mononuclear phagocytes that arise from stem cells in the bone marrow,
enter the bloodstream as monocytes, and eventually enter tissues wherein they
increase in size and phagocytic activity. Macrophages secrete a wide variety of
products in addition to proteases, including coagulation factors, prostaglandins,
and cytokines.
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1.6 Mechanotransduction in Cells

As noted earlier, one of the most exciting and important recent findings in cell
biology is that mechanical stimuli have a direct influence on gene expression in
many different cell types. Such cells have been classified as mechanocytes,
which include chondrocytes, endothelial cells, epithelial cells, fibroblasts, mac-
rophages, myocytes, and osteoblasts. Consider, for example, the endothelial
cell. Endothelial cells form a contiguous monolayer throughout the vasculature
(Fig. 1.2). Because the luminal surface of the endothelial cell is decorated with
the glycosaminoglycan heparan sulfate, it was long thought that these cells
serve primarily as a smooth, nonthrombogenic surface that minimizes blood
clots and thus facilitates blood flow. We now know that this is but one of the
many functions of the endothelium. In response to local increases in blood flow,
endothelial cells increase their production of nitric oxide (NO), a potent vaso-
dilator; conversely, in response to local decreases in blood flow, endothelial
cells increase their production of endothelin-1 (ET-1), a potent vasoconstrictor.
That is, by altering its production of vasoactive molecules that diffuse into the
wall and cause vascular smooth muscle cell relaxation or contraction, the
endothelium is able to help control the diameter of the blood vessel in response
to changing hemodynamic demands. Of course, sympathetic and parasympa-
thetic signals as well as circulating hormones also contribute to the control of
blood vessel diameter.

In addition to its mechanosensitive control of the production of vasoactive
molecules (e.g., NO, ET-1), growth regulatory molecules (e.g., PDGF, FGF),
cytokines (e.g., IL-1,6), and adhesion molecules (e.g., vascular cell adhesion
molecule VCAM-1, monocyte chemoattractant protein MCP-1), the endothe-
lium also changes its shape and ultrastructure in response to changing hemo-
dynamic loads. In vivo and in vitro studies both reveal that these cells realign to
follow the direction of the blood flow and they realign perpendicular to an
applied uniaxial stretching of a substrate on which they are adhered (Note:
whereas the flow of blood along the axis of an artery causes cells to align in the
axial direction, the distending blood pressure stretches the vessel circumfer-
entially, which, being perpendicular to the axial direction, also causes the cells
to align in the axial direction; hence, these two effects are complementary.)
Additionally, an increased blood flow induces an increase in the density of flow-
aligned stress fibers (i.e., specialized actin filaments). For beautiful time-lapse
figures of these changes, see Galbraith et al. (1998).

One of the key questions facing biomechanics and mechanobiology, there-
fore, is how are these many different changes effected? In other words, how
does a cell sense a changing mechanical environment and how is this signal
transduced to the nucleus wherein different genes are expressed? This question
becomes more acute when we realize, for example, that vascular smooth muscle
cells independently express different genes in response to the changing
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hemodynamics even though they are not in direct contact with the pressure-
driven blood flow. As noted by Zhu et al. (2000), which is a very readable, nice
review of cell mechanics, critical questions are as follows: How do forces
applied to a tissue distribute around the surface of a cell? How are these forces
balanced within the interior of the cell? How does this internal force field
induce a biological response? See, too, the review by Stamenovic and Ingber
(2002). Although we do not have answers to these and similarly important
questions, competing hypotheses and theories are under consideration. The
student is encouraged to read, for example, the provocative paper by Ingber
et al. (2000), which contrasts two ideas on how the intracellular forces balance
the externally applied loads. One idea is based on tensegrity (tensional integ-
rity), an architectural concept advanced by Buckminster Fuller wherein a meta-
stable structure is constructed from self-equilibrating tensional and compres-
sive elements; the other idea focuses on the combined fluidlike and solidlike
behaviors exhibited by cells under different conditions. Clearly, there is a
pressing need for more data on the mechanical properties of cells; fortunately,
experimental tools such as laser tweezers (see Chap. 3) and the atomic force
microscope (Chap. 5) allow increased insight into cell mechanics and, indeed,
the various intracellular constituents, which includes actin filaments, interme-
diate filaments, microtubules, the plasma membrane, and even the cytosol. The
need to understand cellular responses also leads naturally to a focus on molec-
ular biomechanics (i.e., how individual molecules respond to applied loads).
Zhu et al. (2000) point out, for example, that in response to applied loads, a
molecule may rotate/translate, it may deform, or it may unfold/refold. By
changing the conformation of a molecule, one can change its biochemical
character, as, for example, the availability of binding sites. In summary then,
there is a need for mechanics at all scales in biology—from the molecule to
the cell to the organ to the organism. Although much is known, much remains
to be discovered.

1.7 General Method of Approach

The biomechanical behavior of biological tissues and organs results from the
integrated manifestation of the many components that constitute the structure
and their interactions. Although we may not always be directly interested in
cellular- or molecular-level phenomena, as, for example, when calculating the
forces within the wall of an aneurysm to evaluate its rupture potential or when
designing a wheelchair, some knowledge of the associated cell and matrix
biology can always provide important insight. In the case of an aneurysm,
its fibroblasts regulate the continuous production and removal of intramural
collagen in response to changes in the intramural forces; in the case of the
wheelchair, the skin may break down at the cellular level (e.g., decubitus ulcer)
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in response to frictional forces, which must be designed against. Throughout
this book, therefore, we will continually refer to the biology that motivates the
mechanics.

Whereas Issac Newton (1642—-1727) developed a “discrete” mechanics in
which his fundamental postulates were assumed to apply to individual mass
points (whether the Earth or an apple), Leonard Euler (1707-1783) showed
that these same postulates apply to every mathematical point within a body.
We submit, therefore, that every continuum biomechanics problem can be
addressed via the five fundamental postulates of continuum mechanics by
specifying three things: the geometry (i.e., the domain of interest), the consti-
tutive relations (i.e., how the material responds to applied loads under condi-
tions of interest), and the applied loads (or associated boundary conditions).
Moreover, we agree with Fung (1990) and others that the key to success in this
approach is often the identification of robust constitutive relations. We discuss
specific constitutive relations in Chaps. 2, 6, 7, and 11. Here, however, simply
note that there are five steps in every constitutive formulation®:

Delineate general characteristic behaviors

Establish an appropriate theoretical framework

Identify specific functional forms of the constitutive relation
Calculate the values of the material parameters

Evaluate the predictive capability of the final constitutive relation

Specifically, the first step is to observe the particular behaviors of interest and
then, by induction, to delineate general characteristics of the material’s response
to the applied loads. In practice, this step is as difficult as it is critical. In many
cases, the biomechanicist must distill the results from tens to hundreds of papers
in the biological and clinical literature to delineate the underlying mechanism or
general characteristics of importance. Once accomplished, one then attempts to
formulate a general hypothesis and establish a theoretical framework; robust
theories should rely on the axiomatic and deductive foundations of mathematics
and mechanics. Two frameworks that we will consider in detail in this book are
the theories of the linearly elastic behavior of solids and the linearly viscous
behavior of fluids. Next, one must perform experiments to test the hypothesis or
theory, which includes identification of specific functional relationships
between quantities of interest and calculation of the values of the associated
material parameters. Because of the unique behaviors exhibited by living
tissues, performing theoretically motivated experiments may necessitate the
design and construction of a novel experimental system or transducer. More-
over, based on comparisons to experimental data, one will often need to refine

6 A former student suggested that these five important steps in a constitutive formula-
tion are remembered easily via the acrostic DEICE.
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Ficure 1.9 Illustration of the scientific approach employed by many in biomechanics.
In particular, note that observations and experiments are equally important, but very
different. The latter must be designed based on a hypothesis or theory for the purpose of
testing an idea. Because science is “relative truth,” we often need to iterate to improve
our models of the physical and biological worlds.
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the hypothesis or theory and then to perform additional experiments and data
analysis. This iterative procedure continues until the associated constitutive
relation has predictive capability, which must be verified against additional
observations or experimental data. Only then can one begin to answer applied
questions of interest, often via numerical simulations (i.e., computations) and
then animal and clinical trials. See Fig. 1.9 for a summary of this overall
approach, which is best appreciated via the examples that are provided in
Chaps. 2-11. In conclusion, we emphasize that a constitutive relation is but a
mathematical descriptor of particular behaviors exhibited by a material under
conditions of interest, it is not a descriptor of a material per se. Hence, multiple
theories will likely be needed to describe the myriad behaviors exhibited by a
given molecule, cell, tissue, or organ under different conditions. Moreover,
although we should always seek to understand and quantify the basic mecha-
nisms by which responses to applied loads occur, this is often difficult or
impossible; hence, we must sometimes rely on phenomenological descriptors
or empirical correlations. Regardless of approach, the main goal of biomechan-
ics must remain clear—to improve health care delivery via careful and appro-
priate design and analysis.
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Chapter Summary

There are five basic areas of study in mechanics: discrete mechanics, continuum
mechanics, statistical mechanics, quantum mechanics, and relativistic mechan-
ics. Each area is important in its own right, but the first four areas play
particularly important roles in life science research and clinical care. For
example, discrete mechanics is useful when studying athletic performance at
the scale of the whole person and statistical mechanics is fundamental to
understanding structure — function relations of individual biomolecules. The
focus of this book, however, is at the scales of cells, tissues, and organs, and
thus the development, extension, and application of continuum mechanics to
study living things and the materials or structures with which they interact.

Continuum biomechanics requires that one always consider five different
classes of mechanical relations or concepts: kinematics (i.e., the study of motion),
the concept of force (and related measures such as tractions, stress, and pressure),
the five basic postulates (namely, balance of mass, linear momentum, energy, and
angular momentum, plus the entropy inequality), constitutive relations (which
quantify how individual materials respond to applied loads under conditions of
interest), and initial or boundary conditions (which close a problem mathemat-
ically and thus allow its solution). Of these, quantification of the mechanical
responses of individual materials is perhaps the most challenging and yet the most
important; the acrostic DEICE can help us to remember the five basic steps
required in the formulation of a constitutive relation. By convention, we tend to
focus such studies on solidlike versus fluidlike responses, with specialized theo-
ries to handle coupled solidlike and fluidlike responses. In this book, we focus on
solidlike responses in Chaps. 2—6 and fluidlike responses in Chaps. 7-10, with
Chap. 11 introducing coupled responses.

In addition to needing to understand the mechanics well, we must also
understand the associated biological structure (i.e., anatomy, which is the
study of gross structure, and histology, which is the study of fine structure)
and function (i.e., physiology, which is the study of normal function, and
pathophysiology, which is the study of function in disease). Of course, advances
in modern biology reveal that structure and function result from genetic and
epigenetic causes, thus we must also understand well the underlying molecular
and cell biology.

In summary, the goal of this Introductory Chapter was to define continuum
biomechanics and to provide some motivation for its study while introducing
briefly the areas of cell and matrix biology. Although mechanics is viewed by
some as primarily the collection of solutions to individual initial or boundary
value problems, this perception is far from the truth. Continuum Biomechanics
is an axiomatic science with rich rewards if one learns well a general method of
approach that can and should be applied to the many different problems that
arise in analysis and design. The reader is thus encouraged to look for parallels
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throughout this text, that is, the common methods of approach that are
introduced and applied first to solidlike, then fluidlike and finally coupled
biomechanical behaviors.

Appendix 1: Engineering Statics

From physics, we recall that Newton put forth three “laws” that form the
foundation of classical mechanics: (1) a body at rest will remain at rest, or a
body in motion at a constant velocity will remain at a constant velocity, unless
acted upon by an external force; (2) with respect to an inertial frame of
reference, the (time) rate of change of the linear momentum must balance the
applied external forces; (3) for every force that acts on a body there is an equal
and opposite force that acts on some other body. Of these, the second law of
motion is of particular importance herein; it is a statement of the balance of
linear momentum. To this postulate, we can add the balance of mass, balance
of angular momentum, balance of energy, and the entropy inequality. These five
basic postulates form the foundation of continuum mechanics from introductory
statics and dynamics to the sophisticated theories addressed in graduate courses.

Here, however, let us only consider the two balance of momentum equations:

Y F=ma, Y M=lIa, (A1.1)

where F is an applied force (i.e., a vectorial push or pull), m is the mass of a
material particle, a is its acceleration vector, M is the applied moment (i.e., a
force acting at a distance), / is the inertia, and a is the angular acceleration vector.
Hence, these balance equations state that relative to an inertial frame, the sum of
all forces acting on a body must balance the (time) rate of change of the linear
momentum of the body and that the sum of all moments must balance the rate of
change of the angular momentum. (Note: For a particle of constant mass, the time
derivative of the linear momentum mv, where v is the velocity, is simply ma, and
similarly for the angular momentum.) In addition, recall that a moment M is
defined with respect to a reference point, say 0. M, is thus defined as’

M,=ryxF (A1.2)

where r4 is a position vector that connects point o to any point A along the
line of action of F. The line of action is simply a line that coincides with the force
vector but extends well beyond it in each direction. It is important to be com-
fortable with the calculation of moments; hence, consider the following example.

7 Vector operations are reviewed in Appendix 7, if needed.
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Example Al.1 Prove that r x F=r, X F where r, is the shortest distance
between o and the line of action of F.

Solution: For simplicity, let us consider the 2-D case. Referring to Fig. 1.10 let
r,=de, and r= rxf +r y.;' :r;f /+r/y_;'/ depending on which coordinate
system is found to be most convenient. Likewise, the force vector can be written
as F = Fxtﬁ—l-Fy]A' :F);ly—l-Fy’JA'l. Because F, =0, it is easiest to consider

M,=rxF= (r;,ly—i—r;}'/) X (F;]M>
or
M, = (r;_FQIQ’ +0.

Note, however, that d =7 and é , = i, thus proving r x F=r, x F.

line of action
of force

Ficure 1.10 Schema of a force F acting in the x-y plane relative to an origin O.
Although forces are vectors, and thus defined independent of a coordinate system (i.e.,
an origin and basis), they must be resolved into components relative to convenient
coordinate systems to permit computations.

Whereas moments should be computed with respect to a fixed reference
point, there exists a special moment whose value is independent of that refer-
ence point. Such a moment is called a couple. It is constructed via two equal and
opposite forces F separated by a distance d, and it has a magnitude of |Fld.

Figure 1.11 illustrates, in two dimensions, the couple C = —Fdk . In general,
however, we will typically seek to compute M =r X F; hence, let us review a
simple method to determine r. Any position vector r from o to A can be
determined by subtracting the coordinate locations of A and o with respect to
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FiGure 1.11 Schema of
couple C (or, pure
moment), which is con-
structed by equal and
opposite forces sepa- d
rated by a distance d.

a common coordinate system. A coordinate system is defined by an origin
and a basis, of course, where a basis is a linearly independent set of (unit)

vectors, as, for example, the triplet (i s ;, 13) in a 3-D Cartesian space. For

example, if o is located at (x,, y,, z,) and A is at (x4, y4, zZ4), then the position
vector r4 between o and A is

ra = (xa = Xo)i + (ya — Y, )J + (2a — 20 )k . (AL3)

In Engineering Statics, both accelerations are zero and Egs. (A1.1) reduce to

Y F=0, > M=0, (A1.4)

which are our “two” basic equations of mechanical equilibrium. We say two
equations, but because each is vectorial, we actually have three total (scalar)
equilibrium equations in 2-D problems and six total equations in 3-D problems.
Regardless, an important observation is that if a body is in equilibrium, then
each of its parts are in equilibrium. This observation allows us to make
fictitious cuts to isolate parts of a body in order to quantify internal forces and
moments that are necessary to maintain equilibrium. For example, consider
Fig. 1.12: The upper part of the figure shows that the body is maintained in
equilibrium by two externally applied forces, f; and f,, which must be equal
and opposite; the lower part of the figure shows that these forces are balanced
by equal and opposite internal forces f that act on the cut surface, plus possibly
equal and opposite moments, which we neglect at first. For example, equilib-
rium of the whole requires

whereas equilibrium of the parts requires
fLi—f=0— f=f, (tothe <) (A1.6)

and
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Ficure 1.12 Free-body diagram of a generic body B subjected to applied end loads f;
and f>; a fictitious cut isolates the internal forces f, which are equal and opposite on
opposing faces, consistent with Newton’s third law.

f—f£=0— f=f (tothe —). (A1.7)

We will see that in solid mechanics, it is often useful to draw such free-body
diagrams to analyze the distribution of internal forces and moments. By a free-
body diagram, we mean a drawing of the body of interest, free from all external
structures, that depicts all externally applied forces, including those due to
interactions between the body and its environment. Because each part of a body
in equilibrium is also in equilibrium, one often considers multiple free-body
diagrams for the same body; that is, multiple judicious, fictitious cuts are often
needed to expose and determine all of the internal forces and moments of
interest. It is upon these basic ideas of mechanics that we will build; thus, we
return to this issue in Chap. 2 and again in Chap. 7. Here, however, let us
introduce a few additional topics of statics and consider a few examples. Indeed,
because statics is embodied in the two balance relations in Eq. (A1.4), much of
statics simply entails illustrations of the use of these relations in diverse
applications.

Example A1.2 Consider the structure in Fig. 1.13, a rigid strut fixed at its base
and loaded in three dimensions via a cable. Given the applied force and the
dimensions and assuming the strut is rigid, find the reactions (forces and
moments) at the base of the strut.

Solution: In statics, a cable is typically defined as an inextensible structure of
negligible mass that only supports a tensile (axial) load. A fixed support is
one that completely prevents displacements and rotations of a member at the
support. In two dimensions, this means that two displacements (e.g., in x and y)
and one rotation (about the z axis) are prevented by horizontal and vertical
reaction forces and one reaction moment; in three dimensions, all three dis-
placements and rotations are prevented at a fixed support by three reaction
forces and three reaction moments. Letting the reactions at the fixed support be
denoted by R,, R, and R, for the forces and M,, M,, and M, for the moments,
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Free Body Diagram
FiGure 1.13 A rigid, vertical strut is loaded in three dimensions via a rigid cable.

A fixed end can, in three dimensions, supply three reaction forces, which resist dis-
placements, and three reaction moments, which resist rotations.

each according to a positive sign convention, and letting the force applied by the
cable be F, we have from force balance

Z F=0— Ri+R,j+R.k+Fi+F,j+F.k=0
or

(Re +F)i+(Ry +F))j+R. +F )k -0 —
R,=—F, R,=-F, R.=-F.

If we know the magnitude of the force, say T=IFlI, then

)

rpa (xa —xB)i + (yo — yp)J + (2a — 28)k
e=T =T
(|VBA|> \/(XA - XB) + (ya — YB)Z + (24 — ZB)2

which thereby yields the components of F in terms of (x, y, z). If, consistent with
Fig. 1.13, x4 > xp and z4 > zp, then the values of F, and F, will be positive; if
YB > Ya, then the value of F, will be negative, which is to say that the assumed
direction of R, is correct, whereas those for R, and R, are not; that is, a negative
value tells us to switch the assumed direction of a particular component of a
force (or moment). It is usually best to assume that all reactions are positive and
to let equilibrium determine the actual directions. Likewise, for moment bal-
ance, we have
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> M, =0 — Mi+M,j+M.k+r x F=0,

where r is a position vector from the origin o to any point along the line of action
of the force, say point A. Thus,

r = (xa = 0)i+(y; — 0)j+(z4 — O)k,

~o>
X
~
I
e

whereby, remembering that ii=1,i } =0,..., but
ixj=k,...,

rx F= (yAFZ - ZAFy); + (zaFy — xaF.)j + (xAFy — yAFX)I;.
Consequently,

M+ (yuF: —zaFy) =0, My + (zaFx — x4F.) =0,

M, + (xAFy — yAFx) =0,
from which the reaction moments are computed easily. Although it is critical
to rely on the mathematics to solve 3-D problems, it is also important to
consider simple special cases, for they provide important checks and they
help to develop our intuition. For example, with (xg, vz, zg) = (0, L, 0), consider
a special case where (x4, ya, z4) =(L, L, 0) and, thus, (F,, F,, F.)=(T, 0, 0),
which is to say a simple horizontal load at the top of the strut. In this case, we
find, as expected,

R,=—F,=—-T, R,=0, R.=0,
M,=0, My,=0, M.=TL.

Conversely, if we have (x4, ya,24)=(0,2L,0) and (F, F,, F,)=(0,T,0) (i.e., a
simple tensile end load acting on the strut), then

R,=0, R,=—F,=-T, R.=0,
M,=0, M,=0, M.=0,

which, again, is expected if the line of action of F goes through point o.
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Example A1.3 Find the tensions T;=I1F;l and T>=IF,l in the two cables in
Fig. 1.14 that support the weight W.

Solution: A free-body diagram of the (whole) weight reveals that the lines of
action of the three forces go through a common point o. Thus, M), =0 is
satisfied identically. Hence, we have two remaining equilibrium equations
to find our two unknowns T; and T5. In vector form, F; + F> + W =0, where

Ww=w (—j), the component equations of which are

Y Fi=0—Fq+Fa+0=0,
Y Fy=0—Fy +Fy—-W=0.
Written this way, however, it appears that we have four unknowns (the x, and y

components of two force vectors) and just two equations. Clearly, we need more
information. Note, therefore, that

F = Fxll?—FFyzj = T]élle (COS¢1;+ Sin¢1j),
Fy=Foi+Fyj =Thé,=T, [ cos ¢, (—f) +sin ¢2.;} ;
where ¢; and ¢, are assumed to be known. Hence, the x and y components of

the two yet unknown forces actually represent but two unknowns, which can be
found (do it) to be

FiGure 1.14 A weight W is supported by two cables, each having individual tensions
T, =IF,l and T, =IF,l. The free-body diagram is shown to the right.
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w
(cosdh/cosdy) (sindy) + singy’
B w
~ singy, + sing,(cos ¢,/ cos ;)

Note, therefore, that if ¢ = ¢, = ¢, then T = T, = W/(2sin ¢), which would go to
infinity if ¢ =0; that is, a cable cannot support a transverse load without a
change in shape.

Pulleys are often used in the biomechanics laboratory (e.g., to calibrate load
cells) and in the clinical setting (e.g., to apply traction to a broken limb). An
ideal pulley is one in which there is no friction (i.e., no resistance to rotation).
Consequently, a cable (e.g., a suture, a thin string, or a true metal cable) has the
same tension “going onto” and “coming off of” a frictionless pulley.

Example A1.4 Prove that the tension in a cable is the same on each side of an
ideal pulley.

Solution: This observation is proved easily considering Fig. 1.15. A free-body
diagram of the whole structure reveals that the reactions (in two dimensions) at
the fixed support are given by

ZF;:O—>R;—T1cosa—T2sina:0,

ZF'y :0—>R;—T1 sina — T cosa =0,

)

ZM;)A —0—- Mk + [(Lcosa)f—l—(L sina—l—a)_;} X (—Tlf)
+ [(Lsina+a)f+(Lsina)j'} X (—Tz.;) = Ok

in terms of the known quantities, T T,, L, a, and a. Moreover, a free-body
diagram of the pulley alone reveals that

ZM;)B:O%TWI—TQ(Z:OHTIZTQ.

Not all cables run over a frictionless surface, however. Friction is defined as
a force of resistance that acts on a body to prevent or retard its slipping with
respect to a second body with which it acts. The friction force f thus occurs in a
plane tangent to the two contacting bodies and has been found experimentally to
be proportional to the normal force N between the contacting bodies; the
constant of proportionality is the so-called coefficient of friction u. Thus,
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Ficure 1.15 An ideal (frictionless) pulley of radius « is mounted from a wall at angle o
and length L. Free-body diagrams of the whole pulley and its rotating part alone isolate
reaction and internal forces and moments of interest.

f =nuN. (AL1.8)

The maximum value of f (i.e., the value just prior to slipping) is given via the
coefficient of static friction pg; thus fi. = p,N.

Example A1.5 Find the relationship between the force in a cable as it goes onto
and off of a surface with friction.

Solution: Figure 1.16 shows a cable (or belt) that is pulled over a rough surface.
In this case, the force (or tension) on the side corresponding to the direction of
motion is larger than that on the “feed direction”; that is, T, > T;. A free-body
diagram of a small part of the belt, wherein T, is only slightly greater than T,
reveals the pointwise equilibrium result (governing differential equation). Note
that the frictional force is denoted by Af, which we know from physics is related
to the normal force AN via Af=u AN, where pg is the coefficient of static
friction. Hence, equilibrium requires
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FiGure 1.16 Free-body diagram of a belt being “pulled” over a rough, cylindrical
surface. A differential element (free-body diagram of a part) allows derivation of the
governing differential equation.

A0 AOQ
13" Fooma = 0 — —T'sin =)~ (T +A4T)sin (=) + AN =0,
A0O AOQ
" E Fiangent = 0 — (T + AT) cos <7) — Tcos (7> —Af=0.

If we assume AO<1, then sin(A6/2)=A0/2, cos(Af/2)~1, and
AT =~ Af=u,AN. Hence, the normal force equation requires that

A A AT
—2T<79> — AT(;) =—AN=——-.

If we ignore the higher-order term ATA@/2 with respect to the other terms,
we have

AT AT

TA) = — — —=uT
MS - Ae M.\ b
or in the limit as A0 — 0,
dT
—=u.T.
40 Hs

This first-order differential equation, with a constant coefficient, admits a
solution via integration, namely

1dr
JT%CM :J,usde — InT = u0 + c;.

Now, if T=T, when =0 (i.e., we establish our coordinate system where the
belt first contacts the surface), then
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InTy =04 c¢; — InT — InT = pu0,

or

T
In <T_> =uf — T =Ty

N

The maximum tension is thus 7, = Tye*#, where =6, -0 in Fig. 1.16.
We see, therefore, that in contrast to the frictionless pulley wherein T, =15,
here the ratio of the two tensions depends exponentially on the angle of contact
and the coefficient of friction.

Finally, let us consider a structure referred to as a truss. Such a structure is
composed of elements that may support tension or compression along their long
axis and are joined together at their ends by pins or welds. It is further assumed
that each member is rigid, which is to say, inextensible. Again, an illustrative
example serves well to introduce the associated analysis.

Example A1.6 Consider the structure in Fig. 1.17a, a 2-D truss fixed at A by a
simple pin and at B by a simple roller. Given the applied force at C and the
dimensions, and assuming the truss is constructed of rigid members, find the
reactions (boundary conditions) at A and B as well as all internal forces.

Solution: Let the reactions at the pin be denoted as A, and A, (note: a 2-D pin
cannot resist a rotation and thus cannot supply a reaction moment) and similarly
let the reaction at the roller be denoted as B, (note: a roller cannot resist a
horizontal motion or a rotation), each according to a positive sign convention
(Fig. 1.17b). In such problems, it is best to first solve equilibrium of the whole
and then equilibrium of individual parts as needed to find all of the values of
interest. For overall equilibrium, we have from force balance,

Y F=0— Ad+A,j+B,j + Fi=0
or in components,
A,\'_'—F:OHAX:_F, Ay+By:0HAy:_By.

Now, for moment balance, let us take moments about point A because the lines
of action of two of the four forces go through A. Hence,



Appendix 1: Engineering Statics 39

Physical C
Problem > F ‘T’ i
y ! Equilibrium
of Whole
A 2/ B A l‘ 2/
X Ay s "T }
Panel a A B

y y

Panel b

Equilibrium F
of Parts

C

B

CA B
AC BC . )
tension COmpreSSlOn
¥
AB A
F2 F2 -~}

Panel ¢ Panel d
Ficure 1.17 Shown is a simple 2-D truss (panel a) and associated free-body diagrams of
the whole structure (panel b) and individual parts (panel c). Panel (d) shows results of
the final analysis with regard to which members support tension versus compression.

S M)y =0 - 20 x By}'+(zi+z_}') x Fi =0 — 2iB,k — IFk = 0.

From moment balance and the second force balance equations respectively, we
thus have

F F
2 2

B}’: y A}’:_

It is reemphasized that in two dimensions, we have three scalar equations
(summation of force in x and y as well as summation of moments about the z
axis at any one point) to find three unknowns; if there are more unknown
reactions in the overall problem, it is said to be statically indeterminate,
which is to say that we need additional equations to find the reactions. The
focus of Chaps. 2-5 is the development and use of such additional equations.
Here, however, the reactions are now known; thus, we can consider equilibrium
of the parts. Toward this end, there are two commonly used approaches: the
method of pins and the method of sections. In the former, one isolates, via a free-
body diagram (FBD), the pins at each joint and then enforces equilibrium at
each; in the latter, one similarly isolates, via FBDs, sections of the truss and
likewise enforces equilibrium. Because of the 2-D nature of each of these
subproblems, one can only determine two unknowns in each. We review the
method of sections here.
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Figure 1.17c shows the truss with three fictitious cuts; note that each cut
crosses only two structural elements, thereby isolating only two unknown
internal forces each. (Because the lines of action in each “part” go through a
point, one can only enforce force balance in the x and y directions and thus solve
for only two unknowns in each FBD—Why is this the case?) For the part
including pin A, we have,

ZFx:0—>ACCOSQ+AB—F:O,

ZF 0 — ACsin F 0— AC F2 _F
= — 1 _———= —_— ==
’ 2 22 V2

where sin@ = 1/2/2 and cos@ = +/2/2 given the geometry. From the x-
direction equation, therefore, we find that AB=F/2. Similarly, for the part
containing pin B, we have

ZFX =0 — —BCcosf —BA = 0,

F F
ZFy:0—>BCsin6’+§:0—>BC:—E

and thus from the x-direction equation, BA = F/2. Although the solution is now
complete (i.e., all reactions and internal forces have been found in terms of F
and /), we shall consider the part containing pin C as a consistency check.
We have

> F,=0— —CAsin0 + CBsin0 + F =0,
> Fy=0-— —CAcosf — CBcosf =0 — CA = —CB,

and thus from the x-direction equation, CB = —F/ /2, and from the y-direction
equation, CA = —F / V2. The correctness of the solutions is thus verified by
the consistency check. Finally, note that we assumed a positive sign convention
(i.e., tensile load in each member) when denoting each unknown symbolically.
When doing so, a positive sign for the solution of an unknown reveals that the
direction was assumed correctly, whereas a negative sign reveals that the
direction is actually opposite that which was assumed. Hence, as shown in
Fig. 1.17d, members AB and AC are in tension and BC is in compression.

Although this truss problem is very simple, it reveals most of the important
methods of approach in statics: the use of FBDs, equilibrium of the whole
followed by equilibrium of individual parts, the use of vectors to sum forces and
moments, the need to take moments with respect to specific points, the need to
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match the number of unknowns and equations, the need to know boundary
conditions, and the importance of checking for internal consistency. Indeed, it is
for this reason that appreciating the approach to solving simple, illustrative
problems serves us well when we approach new, more difficult problems.
Although Civil Engineers are typically the ones who study trusses, examination
of the cytoskeleton of a cell reveals a truss-like structure and similar approaches
have been applied to studying cell mechanics. Of course, the primary assump-
tion that needs to be relaxed when moving from steel structures to cytoskeleton
components is that of rigid members. We shall consider in Chaps. 2-6 how to
begin to address structures and structural members that are not rigid (i.e., solids
that deform under the action of applied loads). In such cases, however, we do
not “forget” the statics, we merely add new considerations.

Exercises

1.1 Write a four-page (double-spaced, 12-point font, one-inch margins)
summary of the biomechanical interests of either Leonardo da Vinci or
Galileo Galilei, including biographical information. Ensure that refer-
ences are cited amply and correctly (e.g., see the citation format in
current journals such as the Annals of Biomedical Engineering or Bio-
mechanics and Modeling in Mechanobiology).

1.2 Write a four-page summary of the impact/role of biomechanics in health
care research. Illustrate via one or two specific examples.

1.3 Pick a particular biomedical “device” (e.g., a heart valve, an orthotic
device, a balloon catheter for angioplasty, an artificial hip, an intraocular
device, a tissue engineered skin graft) and review the process of design
and analysis that was employed in its development. Submit a four-page
summary.

1.4 Identify the top-ten employers of biomedical engineers, with expertise in
biomechanics, in your region and discuss their products or service in no
more than four pages.

1.5 Write a five-to-seven-page summary of Engineering Statics, based upon
your prior course work. Pretend that you are charged with giving a
review of statics for the Engineering Fundamentals Examination, the
first step toward becoming licensed as a Professional Engineer (P.E.),
and thus ensure that you review all of the salient features of the subject.

1.6 Write a five-page summary of mechanotransduction in cells. Select a cell
type of interest, as, for example, osteoblasts, fibroblasts, or smooth
muscle cells.

1.7 Draw a free-body diagram of an epithelial cell that lines the bronchioles
and discuss the types of loads that may act on it. Likewise, show a
schema of the cytoskeletal architecture in both no-flow and high-flow
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1.9

1.10

1.13

1.14

1.15

1.16
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environments. What morphological or histological changes occur in
these airways at the time of birth (i.e., the beginning of breathing)?
Draw a free-body diagram of an artificial hip implant and discuss the
types of load that may act on it. Discuss how different methods of
fixation affect the boundary conditions.

Tissue maintenance depends on a delicate balance between the produc-
tion and removal of constituents. If the synthesis and degradation of
collagen each follow first-order kinetics, namely

d[C]
dt =—k [C]7
where £ is a specific reaction rate, find the change in concentration [C] as
a function of time.

The explosion of discoveries in molecular and cellular biology have
given rise to new areas of research in bioengineering, including tissue
engineering and genetic engineering. Write a four-page review of
the state of the art in functional tissue engineering emphasizing the
role that biomechanics must play.

Write a four-page summary of the work by Wolff in the late nineteenth
century on remodeling in bone and contrast it with current trends in
research in bone mechanics.

Write a three-page discussion of the differences between induction and
deduction. In particular, consider the roles of Bacon (1561-1626)
and Descartes (1596—1650). Because biomechanics combines biology
and mechanics, which tend to employ induction and deduction, respec-
tively, discuss how these two different philosophical approaches should
be synthesized in modern biomechanical research.

Write a three-page essay on the difference between observation and
experimentation in the overall scientific method. You may want to
consider the commentary of the nineteenth century scientist C. Bernard
whose book is entitled An Introduction to the Study of Experimental
Medicine (reprinted in 1957 by Dover Books, New York).

Write a four-page summary of the scientific method, including its ori-
gins. In particular, define and discuss the role of hypothesis in biome-
chanical research. Illustrate your position by reviewing three to five
hypotheses of importance in recent scientific papers.

Visit the NIH webpage (www.nih.gov) and search for information on
bioengineering and biomedical engineering. Write a four-page summary
of current trends and directions for research.

Write a four-page summary of new experimental tools that promise to
provide new insight into the response of cells and intracellular proteins to
applied loads. Consider, for example, the atomic force microscope, laser
tweezers, confocal microscopy, and magnetic bead cytometry.
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Prove that the value of a couple Fd, where F =IF| is the magnitude of
equal and opposite parallel forces separated by the distance d, is the same
regardless of the point about which moments are computed.

Repeat Example A1.2 with (x4, ya, z4)=(0, L, L) and IFI =T, that is, find
the reaction forces and moments.

In two dimensions, the so-called direction cosines (cos @ and cos f here)
are determined easily:

A A,
cosa = —, cosfp =2,
A A

where A = A, —|—ij — Aé with é = cosai + sin (x} oré = cosai+
cos ﬁj’. Repeat this for three dimensions given angles a, f, and y, and
A=A +ij' + Ak with a clear diagram showing all quantities.
Because ¢ is a unit vector, lél=1, note that a, f#, and y are not indepen-
dent. Find their inter-relationship. Does such an inter-relationship make
sense in two dimensions?

Use equilibrium restrictions and vectorial representations for r; and r, as
well as forces F'| and F», with magnitudes T, =1F | and T, =|F>,|, respec-
tively, to relate Ty, T,, d;, and d, in Fig. 1.18.

FiGure 1.18 K | 28
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The following figure illustrates a simple setup for calibrating a (tension)
load cell. Determine the load “felt” by the load cell for each applied weight
W. Also, find the reaction supports for the (ideal) pulley (Fig. 1.19).

FiGure 1.19 ﬂ
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1.22  Use the following simple setup to design an experiment to determine the
coefficient of static friction y; between materials A and B. In particular,
show that y,=tan 65 where s is the angle at which the relative slippage
begins (Fig. 1.20).

Ficure 1.20 ’

1.23  Find the internal forces in the truss (see figure) and note the members that
are in compression versus tension (Fig. 1.21).

Ficure 1.21
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Biosolid Mechanics



2

Stress, Strain, and Constitutive
Relations

2.1 Introduction

Consider the two structural members in Fig. 2.1, each acted upon by an applied
weight W that is much larger than the individual weights mg, which we
therefore neglect. From statics, we know that if these two members are in
equilibrium, then XF =0 and XM =0. Free-body diagrams of the whole struc-
ture and the individual parts reveal that the reaction and internal forces are the
same: R, =f,=W; that is, from the perspective of statics alone, these two
problems are equivalent. Nevertheless, intuition tells us that the behavior of
member A need not be the same as that of member B. One may fail before the
other. An important question to be answered by mechanics, therefore, may be
the following: Which member will likely fail first given increasing weights W?
At first glance, we may be inclined to say that A will fail before B, for A is
“thinner,” and indeed this may well be. Yet, our information is incomplete: We
have not specified what A and B are made of; A could be made of a much
stronger material than B. Thinking back to statics, we realize that we never
specified the properties of the materials or structures that we studied, we simply
assumed that they were always rigid (i.e., infinitely stiff). In this book, however,
we will see that the individual properties of materials are central in biome-
chanics. For example, we often seek to match the properties of man-made or
tissue-engineered replacements to those of the native tissue or organ. Indeed,
one of the continuing challenges in biomechanics is accurate characterization,
or quantification, of the material behavior of both living tissues and
biomaterials.

© Springer Science+Business Media New York 2015 47
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Ficure 2.1 Contrast the potentially different responses of two simple structural
members, A and B, which have the same type of fixed support at the top, the same
initial length, and the same axial loading W at the otherwise free-end. Free body
diagrams of the whole and a part reveal the reactions at the fixed support and the
internal force.

Returning to Fig. 2.1 and the question of whether structure A or B will fail
first, we first need to define what is meant by failure. In mechanics, failure
simply implies an inability to perform the intended mechanical function. Struc-
tures A and B could thus fail by the following:

e Material failure, including fracture, tearing or rupture, as, for example, in the
tearing of an anterior cruciate ligament

e Deforming excessively, which may or may not include a permanent defor-
mation such as a severely bent (e.g., plastically deformed) surgical instru-
ment, which does not return to its functional shape

Determination of failure criteria for materials is thus an important responsi-
bility of the biomedical engineer. Recalling our intuition earlier that structure A
may fail before B because A is thinner (Fig. 2.1) suggests that failure criteria
cannot be written in terms of the applied loads alone; one must also consider the
geometry. This brings us to the concept of stress.
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2.2 Concept of Stress

In 1678, Robert Hooke published the anagram (in Latin) ceiiinosssttuv, which
can be deciphered as, ut tensio sic vis, and translated, as the force, so the
extension. That is, by studying the response of linear metallic springs to the
application of various weights, Hooke realized that there is a one-to-one
relationship for many materials between the applied load (force) and the motion
(extension). Figure 2.2 shows force—extension curves for three similar but
different linear springs, each described by the general formula f=k({—/))
where / is the current length, ¢, is the original length, and & is the so-called
spring constant or stiffness. The results in Fig. 2.2 for three different springs
suggest that each is characterized by an individual spring constant k1, k;, or k3
(or material property). If we apply the same idea of plotting force versus
extension for cylindrical specimens of various materials (e.g., aluminum or
stainless steel), we quickly discover that such tests do not characterize the
material. If the same loads are applied to the same material in two different
labs, which use two different diameter specimens, we find different slopes in the
force—extension data. Indeed, the thicker sample, albeit composed of the same
material, will appear “stiffer” because it will extend less in response to the same
force.! Hence, in contrast to Hooke’s original idea, there is more to it than just
“as the force, so the extension.”

force k

W

extension

Ficure 2.2 Force—extension behavior of three different metallic springs, which exhibit
linear behaviors and thereby can be quantified by individual spring constants k (or
stiffnesses). Although many springs exhibit a linear behavior, nonlinear springs exist as
well.

! Differences between structural stiffness, which depends in part on geometry, and true
material stiffness are important in clinical measurements, as discussed later.
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Ficure 2.3 Schema of the x component of a differential force Af, (actually, the mean
value of a distributed force) that acts on an area AA. Clearly, the effect of this single
component of force on the underlying material will depend on the orientation of the area
over which it acts: If the area is oriented in the same direction as the force, we expect a
tension or compression, whereas if the area is oriented orthogonal to the force, we
expect a shearing action. The directions of both the force f and the area (given by its
outward unit normal vector n) are equally important.

In 1757, Leonard Euler realized that a better measure for analysis is a “force
intensity” or stress. Simply put, Euler defined this intensity as a force acting
normal to an area divided by the value of that area (i.e., a pressure-like quantity
that we now call a normal stress). During the period 1823-1827, Augustin-
Louis Cauchy formalized the concept of stress. Defined as a force acting over
an oriented area at any point in a body, it is clear that there can be different
“stresses” at the same point depending on the orientation of the applied force
and the orientation of the area of interest, which implicitly says depending on
the choice of a coordinate system (i.e., an origin and basis)—that is, stress is a
mathematical construct; its “value” is not unique.

For example, consider a force having only an x component, say Af,, which
acts over an area AA in the current (deformed) configuration of the body
(Fig. 2.3). Intuitively, the effect of the same force Af, on the same area AA
will have different effects depending on the orientation of AA, which is denoted
by the outward unit normal vector n (i.e., Inl=1). For example, if n is in the
direction of Af,, we call the force a normal force and its intensity (per unit area)
a normal stress; if n is perpendicular to the direction of Af,, we call the force a
shearing force and its intensity a shear stress. Note, therefore, that although a
force could act on an area at any angle, it is generally convenient to resolve the
force vector into components that are normal and parallel to the surface.
Specifically, then, if we let AA, denote that AA has an outward normal n=¢,
and take the limit as AA tends to zero, then we obtain the normal stress:
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i A _df,
A—0 AA,  dA,

=0y (2.1)

that is, we denote stress (i.e., a force acting over an oriented area in the current
deformed configuration) with the Greek lowercase sigma, with the first and
second subscripts (or indices) associated with the oriented area (i.e., face) on
which the force acts and the direction of the applied force, respectively. Hence,
with

O (face)(direction) s (22>
then

L Af_df,
AA—0 AAy dAy

= Oy (2.3)

for a shear stress in the x-y plane.

Although stresses act in the direction of that component of the force that acts
at the point of interest, they are not vectors. Rather, because stress is a force
acting over an oriented area, it is associated with two directions, one each for
the direction of the force and the outward unit normal . Mathematically, such
quantities are called tensors, but we will not exploit this character. It is useful
nonetheless to represent the components of stress by arrows that act on the
appropriate faces of a body in the appropriate directions. See, for example,
Fig. 2.4, which shows the so-called positive sign convention for a 2-D state of
stress relative to a Cartesian coordinate system. In particular, we shall assume
that normal stresses are positive when tensile; this requires that o, be directed
in a positive direction on a positive face (i.e., one having an outward unit normal
in a positive coordinate direction) and conversely that ¢, be directed in a
negative direction on a negative face (i.e., one having an outward unit normal
in a negative coordinate direction). Indeed, for consistency, we assume the same
for the shear stresses, as seen for oy, and o,, in Fig. 2.4. (Note: An easy way to
remember this positive sign convention is that a positive times a positive is
positive and a negative times a negative is a positive; hence, the positive sign
convention requires a negative direction stress on a negative face.) As in statics,
it is best to use the directions associated with the sign convention; if the
computed value turns out to be negative, it simply tells us to switch the assumed
direction of that component of stress.

Recall that if a body is in equilibrium, then each of its parts must also be in
equilibrium—this holds true for any material point p. Note, therefore, that
because of our sign convention (Fig. 2.4), the “two” normal stresses o,, in the
figure balance and so too for the x-direction action of the “two” shear stresses o,,.
If the mathematical point p represents a material particle even of infinitesimal
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Ficure 2.4 Positive sign convention for a 2-D state of stress, relative to Cartesian
coordinates, that exists at point p but is shown over a square domain for illustrative
purposes. The direction of each component is positive on a positive face (i.e., a face with
an outward unit normal in the positive coordinate direction) but negative on a negative
face. This convention is consistent with normal stresses being positive when tensile and
it is consistent with equilibrium at a point (i.e., the balancing of equal and opposite
pushes and pulls).

dimension, however, we see that equilibrium is not necessarily satisfied; that is,
the two 6,,’s would tend to create a couple (i.e., a pure moment, or force acting at
a distance) that would tend to rotate the differential region centered at particle p.
Equilibrium could be ensured by the addition of an opposing pair o,,, as seen in
Fig. 2.4, wherein we have preserved both the positive sign convention (e.g.,
positive direction on a positive face) and the notation sigma subscript (face,
direction). Consequently, o,, = o,, numerically at every point, which can be
proven rigorously via the balance of angular momentum (i.e., ZM =0 in this
case) as shown below. Committing the sign convention represented in Fig. 2.4 to
memory serves one well throughout mechanics.

In general, however, we note that each point p could be thought of as an
infinitesimal cube that is reduced in size in a limiting process. As such, each
point can be thought to have six faces relative to each Cartesian coordinate
system. For (x, y, z) coordinates, this implies positive and negative AA,, AA,,
and AA, faces. Moreover, given that each point can be acted upon by a force Af,
which has a component representation relative to (x, y, z) as

Af=Afd+Af j+Afh=Af 6+ Afé,+Af.é., (2.4)

where i = ¢, and so forth, there are nine possible measures (i.e., components)
of stress at each point p relative to (x, y, z). They are
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df, df, df.]
dA, dA, dA;
d fx d f ' d fz B Oxx O-xy Ox;
O (face)(direction) — dA} dji’ dAy = ‘;yx Zyy Zyz ) (25)
X zy 2z
df, dfy df.
| dA. dA. dA. |

which we have written in matrix form for convenience (matrices are reviewed in
Appendix 6). The components o, 6y, and o, are normal stresses, they can
cause extension or compression. The components 6y, 6., 0y, 0y, 0., and o,
are called shear stresses; they can cause a body to distort, which is to say to
experience changes in internal angles. Consistent with the above, this matrix is
symmetric (i.e., 6., = 0Oy, 6. = 0., and 6,. = o) for the Cauchy stress, which
is a measure of actual forces acting on current oriented areas. This can be shown
formally by letting the dimensions of an infinitesimal element be Ax, Ay, and
Az. Because the components of stress have units of force/area, to sum the
moments about an axis such as the z axis in Fig. 2.4, we must first multiply
the respective component of stress by the area over which it acts and then
multiply by the associated moment arm about any point, say o (because two of
the four stress components have lines of action that go through o, this point is
convenient for computing the moments). Hence,

> M.), =0 — —0y,(AxAz)Ay + 0y, (AyAz) Ax = 0. (2.6)
Simplifying, therefore, we have the result:
Ory = Oyy. (2.7)

Similarly, show that o, = 0., and 6,. = 0.,.

Example 2.1 Referring to Fig. 2.5, what are the values of o, 6,,, 0,, and oy,
in this 2-D state of stress.

Solution: Noting that the right face is an x face (with outward unit normal é,)
and that the top face is a y face, we have o,,=120 kPa, 0,,=0 kPa,
oy, =150 kPa, and o,, =0 kPa. Being able to identify components of stress
O (face)(direction) 1S an important step in understanding the mechanics.

It cannot be overemphasized that stress is a mathematical concept; it is
defined as a measure of a force acting over an oriented area at a point.
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FiGure 2.5 An illustrative 2-D state of stress acting at a point, components of which act
over oriented areas that are expanded for ease of visualization. Although the magnitudes
of the components can be considered arbitrary, these values are consistent with in-plane
values of stress within a large artery.

Mathematically, stress is a tensor, which is defined independent of a coordinate
system. Yet, to solve practical problems, one must always compute components
of stress relative to a particular coordinate system. Because coordinate systems
(which are defined by an origin and a set of base vectors) are not unique but can
be defined in many different ways, many different sets of components of
stress exist at the same point in a body that is subjected to a single set of applied
loads. For example, for the three Cartesian coordinate systems shown in
Fig. 2.6—defined by (o; é,, é,, é.), (0; €, €, €'.), and (0, &, €', é".)—the
point p admits three different sets of components of the same stress

G(face)(direction):

and
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o) - X

Ficure 2.6 Interrelations, via single angles, between different Cartesian coordinate
systems that share a common origin and a z-axis. The angle « is taken to increase in
the direction given by the right-hand rule: counterclockwise, with the z-axis coming out
of the paper.

6, 0, 0, |. (2.10)

[Note: The (...) and (...)"” notation here simply denotes different coordinate
systems; it does not imply differentiation as used in many courses on differen-
tial equations.]

In some cases, it may be more natural to compute one set of components, say
Oyys Oyys- -, Oz, Whereas in other cases, it may be more useful to compute
another set of components, say ¢y, ¢',,. .., 0... A good example of this need
is the case of a rectangular structure that consists of two members that are glued
together on a 45° angle (Fig. 2.7). Because glue is stronger in shear than in
extension (empirically compare removing a Postit®™ note by applying a normal
versus a shear force), it is useful to know how much of the applied force f results
in shear versus normal stresses at the glued interface; that is, we would like to
know the values of ¢/, and ¢’,,, which are computed relative to (0; €', €, €',).
Yet, from Fig. 2.7, it is clearly easier to enforce equilibrium relative to (o; é,, é,,
é.); that is, assuming the force is applied uniformly over the surface area on
which it acts, it is easy to show (see Sect. 3.3.2) that ZF =0 yields o,, = f/A and
oy =0 on a cross section with an outward unit normal n = &, that cuts through
the glued region. It is clear, therefore, that multiple coordinate systems can be
useful even in the same problem. Fortunately, we shall discover in Sect. 2.3 that
the desired values o', and ¢’,, can be determined directly from the more easily
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FiGure 2.7 Free-body diagrams of the same structure cut along two cross sections: one
with an outward unit normal in the direction of the applied force (which is natural for
solving the equilibrium problem) and one with an outward unit normal to the glued
surface (which exposes stresses that act thereon and are important with regard to
possible debonding). In each case, the components are identified as G(face)(direction)-
Note: although we could denote stresses with respect to an x’ face and x” direction as
oyx, We prefer to denote them as o', for convenience.

computed values o, =f/A and o,,=0; that is, we will not need to solve the
equilibrium problem for each coordinate system of interest.

Inasmuch as coordinate systems are introduced for convenience, many dif-
ferent coordinate systems prove useful in the wide variety of problems that fall
within the domain of biomechanics. For problems in the circulatory and pulmo-
nary systems, for example, the nearly circular nature of the arteries, capillaries,
veins, and bronchioles render cylindrical-polar coordinate systems very useful.
For problems involving certain cells, saccular aneurysms, the urinary bladder,
and so forth, spherical coordinates are very useful. For problems in cardiac
mechanics, particularly for the left ventricle, prolate spheroidal coordinates are
useful. For problems in developmental cardiology, toroidal coordinates are
convenient. Indeed, the list goes on and on, including more complex coordinate
systems. Fortunately, regardless of the coordinate system, our notation o (fyce)
(directiony Will hold; that is, we seek measures that describe the intensity of the
force relative to both the oriented area on which the force acts and the direction
of the applied force. In cylindrical coordinates (r, 8, z), we have (Fig. 2.8)

Orr  Org Oyz
[G]: ogr Og9 O¢; |, (2.11)

Oz Oz9 Oy

and likewise for spherical coordinates (7, 6, ¢»), we have (Fig. 2.9)
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cylinder

Ficure 2.8 Components of stress relative to a cylindrical coordinate system, again using
the standard notation 6 ¢ace)(direction)-
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FiIGURE 2.9 Normal components of stress relative to a spherical coordinate system, again
denoting the components as Ggace)direction): AS an exercise, add the shearing
components.

O Or9 Org
o] = | 6o o090 00y |, (2.12)
Opr  Opo  Opg

each at every point p. It is important to review and understand that which is
represented in these figures.
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Independent of the specific coordinate system, a /-D state of stress is one in
which only one component of stress (e.g., 0,,) is nonzero relative to the
prescribed coordinate system; a 2-D state of stress is one in which four
components of stress (€.g., Oy, Oyy, 0y, and o,,, three of which are independent
because o, = 0,,) may be nonzero relative to the chosen coordinate system;
a 3-D state of stress is one in which all nine components (six of which are
independent) may be nonzero in general.

In summary, the concept of stress is a mathematical one. Stress may be
computed at each point in a continuum body; when resolved with respect to a
coordinate system, there are nine components at each point, although only six
components of the Cauchy stress are independent relative to each 3-D coordi-
nate system—three normals and three shears. Because coordinate systems can
be related via transformation relations, the various components of stress can be
related through transformation relations. Let us now derive these useful rela-
tions for Cartesian components.

2.3 Stress Transformations

Consider a 2-D state of stress relative to either (o; é,, é,) or (0; €', €'y) as shown
in Fig. 2.10. Because these figures merely represent the stresses that act at point
p, we can cut either square part in order to represent components relative to both
coordinate systems in a single figure. Anticipating the need to sum forces and
moments to enforce equilibrium (of the parts), let the diagonally cut part be of
uniform width Az and length Ay along the vertical cut edge. Hence, the three
exposed areas of interest are computed easily, as shown in Fig. 2.11.

From geometry, we have sin a=opp/hyp and cos «a=adj/hyp, where
opp = Ax and adj = Ay. Hence, hyp = Ay/cos a = Ay sec a. Now, if we multiply
through by the width Az, then we have the result that the area that ¢’ and ¢/, act
over is given by Az (hyp) = AA sec a, with AyAz = AA being the area over which
oy and o,y act. Similarly, 6, and o, act over Az(opp) = Az(hyp) sin a = AA sec
a sin a = AA tan a. Now, we are ready to sum forces. Balancing forces (i.e.,
stresses multiplied by the areas over which they act) in the X’ direction requires
that we find the components in the x” direction. Clearly, the x-directed forces must
be multiplied by cos a, whereas the y-directed forces must be multiplied by sin «
to get the x’ direction components. Hence, equilibrium yields

ZFx’ =0=o0,AAseca— (6,AA)cosa — (o, AAtana) cosa
— (ayyAA tan (x) sina — (o-xyAA) sin o

or
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Ficure 2.10 General 2-D state of stress at the point p emphasizing again that the
components are defined with respect to the orientation of the area over which they act
(i.e., the face) and the direction of the applied force (i.e., the direction). Hence, different
sets of components coexist at the same point. This allows us to make fictitious cuts that
expose, on the same element, components relative to different coordinate systems.

Cax a

Gyy 1

FiGure 2.11 Detailed diagram of the fictitious element from Fig. 2.10 with the 2-D
components of stress isolated relative to two different Cartesian coordinate systems.
Remembering that if a body is in equilibrium, then each of its parts are in equilibrium,
we can therefore use a force balance to relate the components of stress for the two
coordinate systems. Alpha is an arbitrary cutting angle.
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!

_ 2 . -2
0. = 0 COS“a + 20y, sinacosa + oy, sin“a, (2.13)

wherein we let 6., = o, from above, and we see that the AA cancels throughout,
thereby rendering the equation valid for arbitrarily chosen (small) dimensions
about point p. It is important to realize, therefore, that the continuum concept of
stress actually represents an average force intensity within a small region
(neighborhood) centered about the point of interest.

Recalling the trigonometric identities

) 1 + cos2a .9 1 — cos2a . .
cos“a = —s sin“a = — sin2a = 2sina cos a
(2.14)
Equation (2.13) can be rewritten as
) 1 2 1— 2
6, = oxxw + 64y Sin2a + oy %, (2.15)
or
/ Oxx +0yy  Oxx — Oyy .
O =" 5 cos 20 + oy, sin 2a. (2.16)

Given that Eq. (2.13) is a perfectly acceptable way to compute ¢, from values of
stress relative to (o; é,, é,) for any a, one might ask: Why use the trigonometric
identities to obtain the alternate form [Eq. (2.16)]? This is actually a good question,
the answer to which comes from hindsight. Throughout this text, we must remem-
ber that even what may appear to be simple or obvious may have taken great
thinkers many years to realize (e.g., nearly 150 years passed between Hooke’s
ideas on force to Cauchy’s on stress). We will see below that Eq. (2.16) is
extremely convenient in one particular application. It is also important to remem-
ber that we, as students, benefit from the many hours, days, indeed weeks or even
years of thought by many which resulted in simplifications we have today.
Forces in the y' direction (Fig. 2.11) can similarly be balanced, namely

ZFy/ =0= a;yAA seca + (0, AA) sina — (axyAA) cosa
— (ayyAA tan a) cosa + (ayXAA tan a) sin «,

or

O';y = 251nacosa<@) + (cos’a — sin’a)oyy. (2.17)
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FiIGURE 2.12 Alternate
fictitious  cut  (cf.
Fig. 2.11) to expose
y'-face components of
stress ©.

O
(0
S |
Oy
Again, using trigonometric identities, we can rewrite this equation as
’ Ovyy — Oxx .
o, = % sin 2a + o, cos 2a. (2.18)

Remembering that if a body is in equilibrium, then all of its parts are in
equilibrium, we often fictitiously cut a body into multiple different parts to
expose, on cut surfaces, specific components of stress of interest. Because the
selection of the oblique cutting plane in Fig. 2.10 did not isolate a y" surface
(i.e., an area with outward unit normal é',), we must consider another free-body
diagram that isolates ¢’,, and ¢, (Fig. 2.12). Doing so, we can again balance
forces in X’ and y’. This is left as an exercise; thus, show that given such a cut,

ZFx’ =0— a'yxAA seca = —(oAAtana)cosa — (o, AAtana) sina
+ (oyyAA) sina + (6,,AA) cosa,

or

) . Gyy — Oy
o 2smacosa(ny

" ) + (cos’a — sin’a)oyy. (2.19)

Again, using trigonometric identities, we have the alternate form

g’yx — w sin 2a + o, cos 2a, (2.20)

which is the same as Eq. (2.18), as it should be (i.e., ¢’,, must equal &', to
satisfy the balance of angular momentum for a rectangular body cut parallel to
x" and y'). Finally, show that

ZFy/ =0— o/yyAA seca = (o AAtana) sina — (o, AAtana) cos a
+ (6yyAA) cosa — (04 AA) sina,
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or

!

. .2 . 2
0, = Ox Sin“a — 20y, sinacos a + oy, cos “a. (2.21)

This equation can then be written as

o, =22 ; O O > ¥ c0s2a — oy, sin 2a. (2.22)

Together, Egs. (2.16), (2.18), (2.20), and (2.22) show that the components of a
2-D state of stress relative to one Cartesian coordinate system can be related to
those of any other Cartesian system sharing a common origin. All that is needed
is the angle a that relates the two coordinate systems; indeed, as a check, we see
that at @ =0, the (0; x, y) and (0; X', y') coordinate systems coincide, and our
transformations yield ¢',, = 6, at @ =0, and so on, as they should. Although it
can be shown that similar transformation relations hold for 3-D states of stress
and also for other coordinate systems, we will not go into the details here.
Rather, the most important things to realize are that the concept of stress is
defined at every point in a continuum body and that the components of the stress
(tensor) are not unique; they are determined by the coordinate system of
interest. Fortunately, one does not have to solve the equations of equilibrium
to determine the value of each component of stress relative to each coordinate
system. Rather, one only needs to solve equilibrium once (in terms of the
coordinate system that is most convenient) and then to compute any related
component of interest through the transformation relations. Because these
derivations did not require us to specify the material, these relations are good
for any solid or fluid as long as the continuum assumption is valid. We will thus
use these transformations throughout this book.

Example 2.2 Consider the 2-D state of stress in Fig. 2.5. Find the values of
stress ¢, 6'yy, and o, for a =45°.

Solution: From Egs. (2.13), (2.21), and (2.17), we have

’

0. = 120(cos 45°)* + 2(0) cos 45° sin 45° 4 150( sin 45°)*
2 2
= 120(42) "+ 150(*2)" = 135kPa,

G, = 1zo(ﬁ)2 + 150(@)2 — 135kPa,

Oy = 2(‘@) (?) (M) + 0 = 15kPa.
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Cl'yf 150 kPa ley: ()-'yx:ls kPa

'
| Oyy = 135kPa ! =
O= O yy Oxx=135kPa

y . Oxx= 120 kPa

a =

\

FiGure 2.13 Two-dimensional state of stress from Fig. 2.5 with components computed
relative to both the original x-y coordinate system and an x’-y’ coordinate system with
a=45°.

Hence, the state of stress at point p can also be represented as in Fig. 2.13.
We see, therefore, that a “shearless” state of stress with respect to one coordi-
nate system need not be shearless in general. Indeed, it can be seen from
Eq. (2.17) that if 6,, =0, then ¢’,, = 0 only if 6,, =06, or a=0 or a =90°.

2.4 Principal Stresses and Maximum Shear

Given that different values of normal stresses and shear stresses can be
computed at the same point in a body depending on the choice of coordinate
system (e.g., different Cartesian coordinate systems related via the arbitrary
angle a), it is natural to ask if a particular coordinate system exists relative to
which the normal or shear stresses are maximum or minimum. The answer, of
course, is yes, which will prove very important. For example, if we plot ¢’
as a function of a according to Eq. (2.13) (e.g., for values from Example 2.1
of ¢’\=120 kPa, o,,=150 kPa, 6,,=0 kPa), we obtain the result shown
in Fig. 2.14, with ¢',, minimum at @ =0° and maximum at a=90° in this
case. Recall from calculus, therefore, that general max/min problems require
us to compute a first derivative with respect to the quantity of interest. Hence,
to find a maximum or minimum normal stress in two dimensions, relative to
Cartesian coordinates, differentiate Eq. (2.16) with respect to a and set the result
equal to zero; that is,

!

do,, _ Ox — Oyy

da 2

(—sin2a)(2) + oyy(cos2a)(2) =0, (2.23)
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FIGURE 2.14 Plot of the normal and shear stresses ¢',x and o'y, as a function of
a € [0, n/2] radians (i.e., 90°). Note that the local extrema for the normal stress occur
at a=0 and 90°, whereas the local maximum for the shear stress is at o« =45°.

or

sin2a,, Oxy
= = tan2a,. 2.24
cos2a, (0w —0yy)/2 P (2.24)

Hence, the maximum or minimum normal stresses ¢, occur when a is given by

1 20y,

—_— 2.25
(60— 0yy) 229

C{p zitan

We denote this value of a as a,, because the maximum/minimum normal stresses
are called principal values. Note that whenever o, =0, then a,, = 0, which is to
say, o, and oy, are the max/min values of the normal stress. This was the case in
Example 2.2 and thus Fig. 2.14. Conversely, if o, = o,,, then tan 2a, = co.
Recall that the tangent function goes to infinity at z/2 radians; hence in this case,
2a, = /2 radians, which is to say, a, = z/4 radians whenever o, = o, regard-
less of the value of o,,. All other values of ), are computed easily.

Now, if we substitute the value of @ = a,, into Egs. (2.16), (2.18), and (2.22)
for ¢y, 6y, and &'\, we will find 61 = 6’ )max/min> 02 = 6’ yy)max/min, and the
value of shear associated with these so-called principal values of stress o1 and
0,. This is easily done numerically, but it proves useful to note the following.
The tangent of an angle equals the opposite over the adjacent. Hence, we can
think of a triangle with an angle 2a), and sides as shown in Fig. 2.15 (this is
hindsight for which we introduced the above trigonometric identities). Hence,
we have

Oxy

sin2a, = —, 2.26
P H
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Ficure 2.15 Trigonometric

interpretation of the angle

ap,, which is associated with H
the principal values of stress

in two dimensions.

where

H= \/ (w)z +o2, (2.27)

and, similarly,

(GM‘ - ny)/z'

2ap = 228
cos 2a o ( )
Using these relations for cos 2a, and sin 2a), in Eq. (2.16), we have
. ! Oxx +o0
Gxx)max/min = Gxx(a = aﬂ)E#yy
(2.29)

H H

4 Ju ; Oyy ((Gxx - ny)/2> + oy (@)’

wherein the second and third terms have a common denominator and can be
combined. Multiplying this combined term by unity (i.e., H/H), we have

2
, - O — Oyy)/2) +02 H
o )max min — Tut vy + (( y})/ ) ? -, (230)
o/ max/ 2 H H
or, finally,
/ Oy +0 Oy — Oyy\ 2
Glzaxx)max/min = ) 2+ \/( D) })’) + 0,%))‘ (231)

Hence, we see that it is easy to compute one of the principal stresses. Show
that 6’y )max/min Yields the same result; that is, the two principal values of stress
are given by the same equation with the plus/minus signs preceding the radical
delineating the two.
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Next, note that if we compute ¢, at @ = a,,, we obtain from Eq. (2.18)

o) = (257 () +on(B5E) <0 e

that is, the shear stress associated with the max/min normal (or principal)
stresses is always zero. In other words, a principal state of stress simply imposes
extension or compression, not shear, relative to the principal directions (defined
by a,,).

Finally, one can ask similarly: At what value of « is the shear maximum or
minimum? In this case, we differentiate Eq. (2.18) with respect to « and set the
result equal to zero. Doing so, we obtain

!

do.,  —
dU = w (cos2a)(2) + 6,y(—sin2a)(2) =0, (2.33)
a

or

in2 )y — Oxx 2
sin2as (Gw 0,)/ — tan2a. (2.34)
cos 2u Oxy

Denoting the value of a at which the shear is max/min as «y, we thus have

a; = %tan -1 (Ly _ O-xx). (2.35)

20y,

Here, we see that if 6,, = 0,,, then a; = 0 and the associated o, is an extremum;
conversely, if o,,=0, then 2a,=7x/2 or a;=n/4. Recalling that the shear
stress is zero when the state of stress is principal, this reveals that a; and aj,
differ by z/4 or 45°. Substituting the value of «; into Eq. (2.18) and using ideas
similar to those in Fig. 2.15, we find that

’ / Ovyy — Oxx [Ovyy — Oxx Oy
O-xy)maX/min =o,(a=a,) = = 2 - ( )yZH “) + Oy (ﬁ)7 (2.36)

which can be written as

/ Oyy — Oxy\ 2
G,Yy)max/min = i\/(%) + 6,%); (237)

or because of the squared term, it is often written (which is the same as H above)
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) Oxx — Oyy\ 2
TmEGXy)max/min = i\/(T}y> + Gf)w (238)

Here, note two things. First, the normal stresses at a = o, are nonzero in general
(this is different from the vanishing shear at a=a,), but computed easily.
Second, if the principal stresses occur at a =0, then o,, and o, are principal,
whereas 6,,=0. In this case, 6’ y)max/min 18 simply one-half the difference
between the principal values [cf. Eq. (2.38)]. Indeed, it can be shown (do it)
that this is the case in general:

01 — 02
D) )

=% (2.39)

where o and o, are the principal values, usually ordered o > o,.

Example 2.3 For the state of stress in Example 2.1 (o,,=120 kPa,
oy, =150 kPa, o,, = 0 kPa), find a, and a, and discuss.

Solution: From Eq. (2.25), we have

a —ltan*1 L B —ltan*l o =0
P2 (o —o0y)/2) 2 15)

and, therefore, the (o; €,, é,) coordinate system is principal; that is, the values of
o' and &'y, are max/min at @ =0, which is consistent with Fig. 2.14 and the
finding in Example 2.2 that ¢, (@ =45°) =6/, (@ =45°) =135 kPa, which is
an intermediate value between 120 and 150 kPa.

From Eq. (2.35), we have

—1tan_] 150 — 120 —ltan_l( )_l(ﬂ)_ﬂ'
) 2000 )2 =321) 7 g

or 45°. Hence, the value of 6’ \,)max/min = 15 kPa, as computed in Example 2.2.

Example 2.4 Given the 2-D state of stress o, = —p, 6,,= —p, and o,,=0,
show that such a “hydrostatic state of stress” exists relative to all coordinate
systems.
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Solution: Recall from Eq. (2.13) that

!

O, = 0y COS 2a+ 20,y sinacosa + oy, sin a;

hence for our state of stress,

!

o= —p(cos2a+ sinza) =—p Va

XX

and similarly for a’yy. Likewise, recall from Eq. (2.17) that

0., = sinacosa(oy, — oy) + (cos

*a — sin’a)oyy,

and thus for our state of stress,

/

o, = sinacosa(—p+p)+0=0 Va
A similar finding can be shown in three dimensions. Thus, a hydrostatic state of
stress (in two dimensions, ¢, = 6,, = —p and ¢,, =0, or in three dimensions,
Oy = 0y, = 0., = —p and o, = 0,, = 6., = 0) is principal relative to all coordi-
nate systems. This is a very special case.

Finally, the student should be aware that Otto Mohr showed in 1895 that the
simple trigonometric structure of these relations [Egs. (2.26)—(2.28)] for max/
min components of stress can be represented easily in a 2-D diagram called
Mohr’s circle. The interested reader is encouraged to explore this representation
via any standard textbook entitled Strength of Materials or Mechanics of
Materials. We shall not discuss Mohr’s circles herein because the computer
(or calculator) has rendered these computations so easy (compared to the slide
rule) that Mohr’s circle is no longer needed even though some still use it
because of its visual appeal. Rather, we refer the reader to Fig. 2.16, which
reviews the methods discussed herein.

2.5 Concept of Strain

Mechanics is, of course, the study of forces and the associated motions. In
dynamics, we tend to study the motion (i.e., kinematics) in terms of quantities
like the velocity vector v or the acceleration vector a. These will likewise prove
central to our discussion of biofluid mechanics in Chaps. 7-10. In biosolid
mechanics, however, our primary interest is usually the displacement vector u.


http://dx.doi.org/10.1007/978-1-4939-2623-7_10
http://dx.doi.org/10.1007/978-1-4939-2623-7_7
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FiGure 2.16 Flowchart MAXIMUM COMPONENTS
showing our approach OF STRESS
for determining max/min

. Given o, ,0,, ,0;
values of stress (or strain) et dtad

) from equilibrium
relative to  preferred o
coordinate axes. transformation
relations

Compute 0}, ,0}, ,0%

for any angle a
max/min max/min
normal shear
Take S(0*.)=0 Take 3(0".)=0
do da' ™
‘ solve \
Find o, Find o,
' use trigonometry l
A
1 substitute back j
g, (a,,) =0 ) i o, (o ) = something
05(%)=0 O(%) = O ) namin
(repeat for oy, ) 0,,(a ) = something

Basically, a displacement vector quantifies the difference between where we (a
point) are, denoted by a position vector x, and where we were originally,
denoted by a position vector X. Thus, u =x-X (Fig. 2.17). Because each
point in a body can displace separately (provided certain compatibilities are
maintained between neighboring points, except in cases of fracture, of course),
the displacement vector can vary with position and time, namely

u(X,t) =x(X,1) — X, (2.40)

where the position vector x also depends on which point (i.e., originally located
by X) is being tracked. Because u is a vector, it has components relative to the
selected coordinate system. With respect to Cartesian coordinates, we may write
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FiGURE 2.17 Schema of the
displacement vector u of a
generic point p from its
location X in an undeformed
reference configuration to its
location x in a deformed
configuration.

///
1 N u(x=0)=0
X g 5 0. (x=0)=f/A

}
~__ u(x=L12)=u
o.(x=L2)=f/A

I T u(x=L)=u
O O o.(x=L)=f/A

Figure 2.18 Displacements at various locations in a uniformly loaded, vertically
suspended structural member. Note, in particular, that the value of the displacement
varies from point to point (i.e., it is nonuniform), whereas the value of the xx component
of stress does not vary.

u=u,i + uy]A'—i—uZI; =ul  + Uyl y + uzé ., (2.41)

where u,, u,, and u. are the components relative to the chosen Cartesian
coordinate system. As a simple example, consider a slender structural member
that is fixed at its upper end and loaded by a uniformly distributed force at its
other end (Fig. 2.18). From Sect. 2.2, we can show that each cross section (e.g.,
that obtained via the cutting plane D-D) has a stress o, = f/A, where fis the total
axial force and A is the cross-sectional area. If the member is of homogeneous
composition, we would expect this same stress at each point to cause the same
response. An obvious question then is whether the displacement u can serve as a
good measure of this response: Do we expect a one-to-one relation between the
stress and the displacement at a given point? A quick examination of the
problem reveals that the answer is no. Whereas the value of ¢,, is the same at
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all points in this member, the displacement clearly differs from point to point.
Because of the fixed support at X =0, the u, displacement there is zero.
Conversely, the u, displacement at the end of the member is a maximum.” As
it turns out, the displacement gradient Ou,/0X, like stress, is the same at each
point in this simple problem. Without going into details, Cauchy showed during
the period 1827-1841 that certain combinations of displacement gradients
(called strains) are convenient for relating to the stress. Indeed, because stress
and strain are both mathematical concepts, or definitions, various nineteenth
and early twentieth-century investigators (Almansi, Green, Kirchhoff, and
others) showed that different definitions of stress and strain can be equally
useful in different situations. One of the commonly used definitions of strain in
biomechanics is that due to George Green in 1841. In terms of Cartesian
components, it can be computed via

78ux 1 auX 2 auy 2 al/lz 2
Ex=ox *2 (ﬁ) +<ﬁ> +<a—)
u

<

Sl - () ()]
oY 2| oY oY oY ]
e @ @@ .

Relations are similar, but more complex, for other coordinate systems such as
cylindrical and spherical. For a complete derivation and interpretation of these
relations, see Humphrey (2002). Suffice it to say, however, that one of the
reasons that these relations are so useful is that they are insensitive to rigid-body
translations or rotations; that is, the components of the Green strain measure
only the deformation part of a total motion, where we note that it is the
deformation (changes in length or internal angle due to applied loads) that we

2 If the overall deformation is homogeneous, careful experimental measurements show
that u, = AX—X = (A—1)X, where A is just a number, a so-called stretch ratio. Stretch
ratios are used extensively in Chap. 6.


http://dx.doi.org/10.1007/978-1-4939-2623-7_6
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wish to relate to the stress. Clearly, however, Green’s definition of strain is
nonlinear (quadratic) in terms of the displacement gradients. Even for the
simple (idealized) example in Fig. 2.18, which consists only of an axial exten-
sion and associated lateral thinning, we have

aMX 1 al/lx 2 aMy 1 auy 2
Eyy — — 4 (22X Evy — 0¥ 2 (25
X ax+2<ax> ’ ” 8Y+2<8Y> ’
auz 1 8142 2
E=———+=-|==]| -
=37 2( 0z
As it turns out, the nonlinear terms can introduce considerable complexity into
the solution of the full boundary value problem. We will consider such prob-
lems in Chaps. 6 and 11.

Here, let us consider a tremendous simplification. IF the displacement is
small, then x~X from uy=x-X and similarly for y~Y and z~Z; IF the
displacement gradients are small, then the nonlinear terms can be neglected in
comparison to the linear terms (e.g., if Oux/0X ~0.001, then %(Ziux/aX)2 ~

0.0000005 is small in comparison); and IF the rigid-body rotations are small
(see below), then the Green strains can be approximated as

(2.43)

Exx 8xy Exz
€] = | eye &y &y |, (2.44)
Ex  Ey €

where

Ouy 1 <5uX 5uy>
Exx = = Ex +—==]= Eyx,

Ox’ S Oy | Ox
Oou 1/0u. Ou
Eyy = a—yy, Ey; = §<a—y + a—Zy) = &y, (245)
oe . _1(du o) _
T ™ To\ox "oz ) T

where &,,, €,,, and & are the extensional components and &,,, &,., and &, are the
shear components of the linearized strain.

Similarly for cylindricals, u =u,é, + ugéy+ u.é, and the linearized (often
called small) strains are

[8]: Egr E0o Eoz |, (246)


http://dx.doi.org/10.1007/978-1-4939-2623-7_11
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where
Tor’ v—o\ro00 "or ) ™
u, 10uy 1/0up 10u.
_tr 10up 10w 10w\ _ 2.47
€00 r+r o0 2(az+r 56’> €20 ( )
_ o _ (0w, Ou _
=0 e =\ Tor ) T

Finally, for sphericals, the linearized strains are

Err &g Erg

el = | €or €00 €0y |, (2.48)
Epr €0 Epg
where
Ou, 1/10u, N Oug uy
Epp = 5 Eg == — = — — | = &ors
or *=2\r 00 " or - 0
u,  10uy 1 1 Oug 10uy uy cot
ggp = —+——=> egp = —| ———=—+— _22 = £40,
o r 00 %~ 2\rsin00¢p ' r o0 r 96

1 Ouy N U o N u, 1 1 Ou, N Ouy uy
e —Co —, == —— — ) =¢&4..
0= L sing op r 7 2\ sing op Or r o

(2.49)

Of course, the exact (nonlinear) components can likewise be represented as
3 x 3 matrices because they too consist of nine components (six independent)
relative to a particular coordinate system. It is also very important to note that
we have not derived the exact (nonlinear) or the approximate (linear) relations
for strain; we have merely listed the results. In many introductory textbooks,
the linearized relations are often derived poorly, primarily in an attempt to make
the derivation “accessible” to the beginning reader. We prefer to adhere to the
adage stated in the preface: To tell the truth, nothing but the truth, but not
the whole truth until the student is ready to appreciate the whole truth. Hence,
rather than derive these relations poorly, let us merely consider a few 1-D or
2-D examples to illustrate their meaning and usage. First, consider a motion
described by the displacement vector u = u.€é, + u,é,, with components

u, = (A= 1X, uy, =0, (2.50)
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FiGUure 2.19 Schema of three simple motions: (a) a 1-D extension by the amount A, (b)
a simple shear via the measure k, and (c¢) a rigid-body rotation given by the angle ¢. In
each case, note that we assume that the motion is homogeneous; that is, although the
displacements differ from point to point, their spatial gradients do not. In other words,
each point experiences the same strain in a homogeneous motion, although each point
need not experience the same displacement.

where A is a number close to unity. That is, as the body deforms, none of its
material particles displace vertically, whereas particles may displace in the X
direction differently: at X =0, there is no displacement, which is to say that the
left edge is fixed, whereas the right edge displaces the most. Hence, current
positions of points originally at (X, Y) are given by x =AX and y =Y, which
allows us to map material points from original to current places (cf. Fig. 2.17).
For example, point (X, ¥) = (0, 0) stays put, whereas point (X, Y) = (1, 1) goes to
(x, y) =(A, 1) for any value of A. Finally, for A near unity (which satisfies the
above requirement that the displacement and displacement gradients are both
small for this problem with zero rigid-body rotation), the linearized strain is

Exx = A - 1’ gyy - 0, 8xy == O (251)

As can be seen in Fig. 2.19a, this motion represents a 1-D extension only. That
the linearized values of strain differ from the exact (nonlinear) values is seen
easily given that

Eo=(A—-1)4+=(A—-1)7= %(AZ — 1)%(/\ + 1) (A1),
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Second, consider a motion described by
u, = kY, u, =0, (2.52)

where k is a number close to zero. Hence, x = X + kY and y =Y allows us to map
points from the undeformed to the deformed configuration. For example, point
(X,Y)=(0, 0) stays put again, whereas point (X, Y) = (0, 1) goes to (x, y) = (x, 1).
Moreover,

gxx = Os gyy == 0, Sxy - _K7 (2.53)

and as can be seen from Fig. 2.19b, this motion is one of simple shear (if x =X +
kY and y =Y + kX, then we would have a pure shear). Third, consider a motion
given by

x = cos ¢pX + sin @Y,

. (2.54)
y = —sin¢X + cos @Y,
where ¢ is some fixed angle. Hence, the displacements [differences between
where we (a point) are (x, y) and where we were (X, Y)] are

u, = (cos¢p — 1)X + sin ¢y,

uy = (—sing)X + (cos ¢ — 1)Y. (2.55)

Consequently, the linearized strains are

1
£q = cos¢ — 1, gyy = cos¢p — 1, Exy = E( sing — sin¢g) = 0.

(2.56)

Clearly, &, and ¢, equal zero if and only if ¢ = 0. If we use these displacements
to map the motions of points demarcating a unit square, we find that this case
represents a rigid-body rotation about the z axis (Fig. 2.19c). Although we do
not expect strains to arise due to rigid-body motions, increasingly larger values
of ¢ wrongly suggest increasing extensional strains. As we stated earlier,
therefore, the approximate (linearized) relations for strain are only good for
small deformations and small rotations. This is extremely important to remem-
ber in biomechanics, especially in soft tissue biomechanics wherein the defor-
mations and rigid-body motions are often large (finite). This is the case for the
heart, for example, which twists, shortens, shears, and becomes much smaller in
diameter upon contraction. There are, nonetheless, many articles in the litera-
ture that use the small strain measure to study the heart—this is wrong and the
reader must beware.
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Example 2.5 Show that, in contrast to the linearized measure ¢,,, the exact
measure Exy is insensitive to the rigid-body motion in Eq. (2.54).

Solution: From Eq. (2.42), the 2-D strain Exy is

al/lx 2 T al/ly 2
oX oX
where for the rigid-body rotation,

Ouy Ouy
ox sl oy

aux 1

Exx = ——
XX 5X+2

i

= —sing.
Thus,

Exx = cos¢p — 1 —l—%[(cosqﬁ — 1)+ (—sinqﬁ)z}

1
cos¢p — 1 +§(cos2¢—2cos¢+ 1 + sin’¢)
1
= cos¢p— 1 +§(—2cos¢+2) =0 V.

As an exercise, the reader should confirm that Eyy =0 and Exy=0 for this
rigid-body motion as well.

Observation 2.1. Although we illustrated a few simple states of strain using
examples based on the displacements of four points that define a 2-D rectan-
gular domain, we must realize that strains cannot be computed, in general, by
simply knowing the displacements at a few points. Strains are computed from
displacement gradients, which requires that we know the displacement field
{i.e., the displacement as a continuous function of position [e.g., u = u(x, y, z)]}.
Experimentally, however, we cannot measure the displacement at all points; we
can only measure the displacements at a finite, often small, number of points. In
practice, therefore, one often introduces interpolation functions, which allow
one to estimate displacements between measurement points. Because the math-
ematics of interpolation is well established, knowledge of these functions aids
the experimentalist in designing the number and placement of markers for
measuring displacements. For example, the minimum number of points to
estimate the mean 3-D strain in the wall of the heart is four, which forms a
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tetrahedron.” Conversely, the minimum number of points needed to estimate the
mean 2-D strain on the surface of the heart is three, which form a triangle. By
using multiple sets of four or three markers, one can begin to map region-to-
region differences in strain using interpolation functions. The biomechanicist
should thus be familiar with interpolation, even though we leave such study for
intermediate and advanced courses. See, for example, Humphrey (2002).

In Chaps. 3-6, we will seek to relate the deformations (strains) to the applied
loads (stresses) that act on the body. To do this, we will see that we must use
equilibrium equations to determine the stresses that exist at each point, which,
in turn, will be related to the strains at the same point through functions that
quantify the material behavior (i.e., through constitutive relations). Conse-
quently, it is very important to note the following. Like stress, strain can have
different components at each point (given the same deformation) depending on
the coordinate system to which it is referred. Fortunately, similar to Egs. (2.13)—
(2.22) for stress, it can be shown that strain transforms in like fashion:

’ . 2 . . 2
€, = ExCOSTa + 2£Xy SIn@Ccosa + €y, SIn“a,
ro_ s 2 : 2
€,y = Exsin-a 2ey sinacosa + &,y cos “a, (2.57)
, Eyy — Exx
A yy X 2 .2
€y = 2s1nacosoc(72 ) + (cos“a — sin“a)e,y,

where a is again the angle that relates the (o; x, y, z) and (0; X', y', z’) Cartesian
coordinate systems. Note: If a=0, then the components relative to the two
systems are equal, as they should be. Similarly, principal values for strain are
determined at @ = a, [cf. Eqgs. (2.25)—-(2.39)], namely

!

/ Ex + €y Exx — Eyy\ 2
1,2 = EM-)max/min = gyy)max/min == ) 2+ \/( = ) yy) + 8,%)77 (258)

with

1
ap=—tan '[—22 ) (2.59)

? Note that the discussion in Chap. 5 in Humphrey (2002) contains an error. It correctly
notes the need for a minimum of three line segments, but wrongly suggests that they can
be obtained from three coplanar points.
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Similarly, the maximum value of the shearing strain is determined at o = «;
that is,

/ / Exx — Epy\ 2
exy)max/min = exy(as) = i\/( . D) ”) + g,%y’ (260)
where
Lian -1 (€2 " 6n (2.61)
ag = —tan B L .
) 2e.y

Whereas the stress transformation equations were derived via equilibrium
considerations and thus force balances, here we must take a different approach.
Consider, for example, the linearized extensional strain £, = 0u/,/0x’, just as
€¢, = Ou,/Ox. Recall from calculus that two coordinate systems can be related
via a coordinate transformation (Fig. 2.6), specifically

X =xcosa+ ysina, y = —xsina + ycosa (2.62)

whereby ¥’ =x and y =y if a=0 (i.e., if the coordinate systems coincide).
Because displacement is just a vector (i.e., difference between position vectors;
Fig. 2.17), we have similar relations for each component,

’

u/\ = u,cosa + uy sina, U, = —uysina + uy cos a, (2.63)
where, of course, the displacement components can each vary from point to
point in the body: u, = u.(x, y) and u, = u,(x, ), and likewise ', = v’ (x’, y') and
u'y=u'y(X', y"). Yet, from Eq. (2.62), the primed coordinates are a function of
the unprimed coordinates, namely x' =x'(x, y) and y' =y(x, y), and,
consequently,

!

do= (X)) =i (Y ) (), (2.64)

which is to say, u’, and i, also depend on position (x, y).
Hence, we can compute strains relative to (X, y') using the chain rule:

. Ou, Ou, Ox  Ou, Oy

— X

o Ty T ox ox Oy 0x

(2.65)

and so forth. Toward this end, let us first solve for x and y in terms of x’ and y’
[from Eq. (2.62), which represents two equations and two unknowns]:
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x=xcosa—y sina, y=xsina+y cosa. (2.66)

Now, we have from Eq. (2.65), using Egs. (2.63) and (2.66),

o (O +%' ( )+8ux +%' (sina)
e = (7, cosat 5= sina(cosa 5, 8@+, sina | (sina

Ouy  » Ouy, Ouy\ . Ouy . ,
= cos — sin a cos —— sin
0x ot ax+ay acosat Oy %
(2.67)
whereby, from Eq. (2.45), we have the desired result,
e;.x = £, €08 2a + 2¢e,y sinacos a + €y, sin 2a, (2.68)

which is similar in form to the relation for ¢’,,. It is left as an exercise for the
reader to find the transformation equations for €'y, and €',,.

As we saw earlier, one way to infer components of strain based on experi-
mental measurements is to place multiple markers (points) on the specimen and
to follow their motions. From these motions, we then construct displacement
vectors at each point to identify the displacement field, as, for example, u = u(X,
Y, Z), from which one can compute the appropriate displacement gradients and
thus strains. Indeed, using noncontacting methods [e.g., video, X-ray, magnetic
resonance imaging (MRI), laser Doppler] to track the motions of multiple
surface or embedded markers is a common way to “measure” strains in soft
tissues and even cells. Such approaches are used in applications ranging from
gait analysis to quantifying cardiac motion in health and disease. Figure 2.20
shows, for example, that all six components of the finite Green strain are
nonzero and changing throughout the cardiac cycle; likewise, they vary from
point to point. For more on cardiac motions, see Humphrey (2002).

Here, however, let us consider devices called strain gauges, which are useful
for inferring surface strains on many engineering structures, from bridges to
components on airplanes, as well as hard biological tissues. Briefly, in 1856,
Lord Kelvin (William Thompson) reported three important observations: The
electrical resistance of metallic wires increases with increasing mechanical
loads applied along their long axis, different materials have different
sensitivities, and the Wheatstone bridge can be used to measure well the
changes in resistance. These observations led to the invention of the electri-
cal-resistance strain gauge (Fig. 2.21). These gauges are glued onto the surface
of the specimen, which allows them to deform with the underlying specimen.
By deforming with the specimen, the electrical resistance changes in the wires,
which, in turn, provides (via calibration) the value of the associated extensional
strain (i.e., in the predominant direction of the wires). These gauges are very
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FiGure 2.20 All six components of the Green strain (extensional and shear) calculated
from the motions of small metallic markers that were implanted within the wall of an
animal heart. Note that 11, 22, and 33 denote circumferential, axial, and radial compo-
nents of strain, respectively, with 12, 23, and so forth denoting the associated shears.
The principal values, are E;, E,, and E;. Clearly, all six components are nonzero, finite
in magnitude, and time varying over the cardiac cycle. [From Waldman et al. (1985),
with permission from Lippincot Williams & Wilkins.].
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FiGure 2.21 Schema of an electrical-resistance strain gauge that is glued onto a
structure of interest. Such gauges are commonly used in aerospace, civil, and mechan-
ical engineering to measure strains in materials that experience small strains. They are
likewise useful in biomechanics for measuring strains in transducers, select biomate-
rials, and hard tissues such as bone and teeth.
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useful when the strains are small, as, for example, in bones, teeth, and bioma-
terial implants such as an artificial hip. One limitation, however, is that these
gauges can only measure extensional components, not shears. To know
completely the strain at a point, however, we must know both extensional and
shearing strains in general. Fortunately, theory supports experiment, thus
allowing us to make the necessary measurements as shown next.

Example 2.6 Design an experimental set-up using strain gauges whereby one
can measure a complete 2-D strain in a small region (i.e., averaged over a small
region even though strain is, strictly speaking, defined at a point).

Solution: From Eq. (2.57), we see that an extensional strain relative to a primed
coordinate system is related to the 2-D components of strain relative to an
original coordinate system. If an extensional strain &, is measurable by a strain
gauge, then measuring three extensional strains would provide three equations
for the three components &,,, &, and &,,; that is, as illustrated in Fig. 2.22,

! . .
£, = Ex COS 2 a) + 28Xy Cos ay SINQy + &y sin? ai,
" . .
£, = Ex COS 2 ar + 2e¢, cos ap sinap + €y, sin 2 as,
n _ 2 2 . 3 2
€ = ExxCOS” a3 + 2&yy cOSaz sIn a3 + €y SIN~ A3,
f /
/S
/
/
/
y x"'
xll
f“ xl
X
p
\
\
\ N\
\
f N\ strain gauge placements

FiGure 2.22 Placement of three strain gauges to form a so-called strain rosette. It is
assumed that each gauge is affixed to the surface at a known angle. Although small,
strain gauges are obviously of finite, not infinitesimal, size, thus information from
rosettes necessarily represent mean values of strain within the region of measurement.
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where the angles a, a,, and a3 relate the coordinate systems to a baseline x
direction. Clearly then, these equations represent three equations in terms of
three unknowns (., €yy, €y,) provided that &', ", €” .\, a1, @, and a3 are
measured. (Note: Whereas the strains come from the resistance changes,
the angles are known because we are the ones who glue the gauges onto
the surface). Although any values of @, a,, and a3 are fine, certain values
are preferred. For example, a; =0, a, =z/4, and a3 = /2 radians or a; =0,
a, =n/3, and az = 2x/3 radians are common. For example, let us consider the
former case:

£0o = e;x(a =0) = &y,

- <a %) . ( 72)2 + 2e,, <\/7§> <\/7§> +é&yy (§>z

" 7[
€900 = €, | A E = Eyy.

. ! 1" "
Hence, if €, €, €, are known from the gauges, e,.= &gy, &y, = €90°, and

Evy = €450 — €0°/2 — €900/2 are thereby measurable.

We emphasize, therefore, that theory is indispensable in the design of
experiments; it tells us what to measure, why, and to what accuracy. Moreover,
theory reveals the inherent limitations and restrictions. Given that the strain
gauge provides information that is averaged along its length and that clusters
(rosettes) of gauges further average information over the enclosed region, strain
gauges should not be used in areas where large gradients (i.e., point-to-point
differences) are expected in the strain field. Again, theory will often reveal the
domain of applicability.

In summary, although Hooke’s suggestion in the late seventeenth century, “as
the force, so the extension,” was profound, we now see that Euler, Cauchy,
Green, and others in the eighteenth, nineteenth, and early twentieth centuries
showed that the mathematical concepts of stress and strain are often much more
useful in continuum mechanics than the physical quantities of force and exten-
sion. Being mathematical concepts, however, stress and strain are merely
definitions, not physical realities or experimental measurables. Stress and strain
can thus be defined in different ways, to suit the particular need, and, fortu-
nately, they can be inferred from experimental “measurables” such as forces,
dimensions, and displacements. Because stress and strain are but mathematical
concepts, having different components depending on the coordinate system to
which they are referred, they cannot be sensed directly by a cell and thus cannot
be the stimulus for mechanotransduction (Humphrey 2001) even though many
have suggested otherwise. These quantities can nevertheless be conveniently
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correlated with mechanosensitive responses by cells (e.g., altered gene expres-
sion due to a microgravity environment) and thus they can serve as important
metrics in phenomenological theories that have predictive capability. More on
this later. First, however, let us explore mathematical relationships between
stress and strain that serve to quantify the behavior of particular materials.

2.6 Constitutive Behavior

Mathematical relations that describe the response of a material to applied loads
under conditions of interest are called constitutive relations because this
response depends on the internal makeup, or constitution, of the material.
That is, given the same overall dimensions, a piece of rubber will respond
differently than a piece of metal to the same forces because of the marked
differences in their internal makeup—Ilong-chain molecules that are held
together via covalent and van der Waals bonds versus collections of atoms
that are held together by metallic bonds. Indeed, even different metals and metal
alloys respond differently because of differences in their internal makeup and so
too for collagenous tissues such as tendons and the cornea, each of which
consist largely of type I collagen, albeit with very different microstructural
arrangements. Likewise, the conditions of interest must be specified. Rubber,
for example, behaves very differently below its glass transition temperature
than it does at room temperature or above its melting point. Quantifying, via
constitutive relations, the different (solidlike and fluidlike) behaviors of mole-
cules, cells, tissues, organs, biomaterials, and other materials under conditions
of importance in biomedical engineering are critically important to both anal-
ysis and design.

As noted in Sect. 1.7, there are five general steps in a constitutive formula-
tion, which can be easily remembered via the acrostic DEICE. First, we must
delineate general characteristics of the behavior. For example, we must deter-
mine if the behavior is solidlike or fluidlike. The former is said to admit a shear
stress in equilibrium, no matter the value of shear; the latter is said to be
incapable of supporting a shear stress in equilibrium, which is to say that it
will flow as long as the shear is applied. We emphasize that although one
generally thinks of solids and fluids as phases of matter, in continuum mechan-
ics we really seek to delineate solidlike versus fluidlike behaviors. For example,
most people would classify glass to be a solid at room temperature, and indeed it
exhibits solidlike behaviors at these temperatures. Yet, over many years to
centuries, one also finds that glass flows at room temperature, as evidenced by
the vertical variations in the thickness of glass window panes in Gothic
churches in Europe. Hence, it is really the behavior under the condition of
interest, including timescales, that is most important, and we may equally well
model glass as a solid or a fluid at room temperature depending on the problem
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FIGURE 2.23 Qualitative comparison of the stress—strain behavior of three classes of
materials: metals, soft tissues, and elastomers. Note the different order of magnitudes of
the associated strains (from 0.002 to 2.0) and that the soft tissues and elastomers not only
exhibit nonlinear behaviors, but they also reveal a slight hysteresis (i.e., noncoincident
loading and unloading curves). The values of stress would obviously be very different as
well, but we simply emphasize the general character of the curves here.

at hand. Inasmuch as this is clear, we can loosely talk about solids versus fluids,
as most do; we will discuss particular constitutive behaviors and relationships
for biofluids in Chap. 7.

It is also very important to determine if a material’s response to an applied
load is linear or nonlinear. For example, if we apply increasingly greater loads
(stresses), do we observe proportionate or disproportionate increases in exten-
sion (strain). Metals and bone tend to exhibit a linear stress—strain response
under small strains (i.e., strains that do not cause permanent changes in the
microstructure and, thus, properties). In contrast, elastomers and soft tissues
tend to exhibit nonlinear stress—strain responses under large strains without a
permanent change in structure, as seen in Fig. 2.23. Nonlinear behavior is much
harder to quantify. Indeed, note that elastomers and soft tissues exhibit behav-
iors very different from those of traditional engineering materials (e.g., metals)
because of their long-chain polymeric structure. In particular, much of the
behavior of such polymers depends on changes in the underlying conformations
of the molecules (i.e., their inherent order or disorder). Their mechanical
behaviors are thus said to be governed by entropic mechanisms in contrast to
energetic mechanisms that govern the lattice atomic structure in metals. It is, of
course, the biopolymers (proteins) elastin and collagen that dominate soft tissue
behavior—entropic changes in which complicate the associated quantification.

Another important characteristic exhibited by some solids under certain
conditions is a so-called elastic behavior. By elastic, it is meant that the material
does not dissipate any energy as it deforms. In other words, the path followed by
the material in a stress—strain plot is the same during loading and unloading and
the material will recover its original size and shape when all loads are removed.
Moreover, an elastic behavior suggests that a material responds instantaneously
to an applied load (again, the importance of timescale). Whereas metals exhibit
an elastic response under small strains, tissues and rubber only exhibit a
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“nearly” elastic behavior under many normal conditions. That the behavior is
not purely elastic is evidenced, in part, by the small differences between the
loading and unloading curves (hysteresis) in Fig. 2.23, the dissipation being
due, in part, to moving the structural proteins within the viscous, proteoglycan
dominated ground substance matrix. Fung calls the nearly elastic behavior of
soft tissues pseudoelastic and offers some ideas to simplify the quantification
(Fung 1990). Constitutive relations for such behavior are discussed in Chap. 6.

If the behavior of a material is independent of the position within the body/
structure from which it was taken, we say that the material is homogeneous.
Obviously, a fiber-reinforced composite like steel-reinforced concrete would
not be homogeneous because the steel and surrounding matrix exhibit very
different behaviors. In contrast, many metals and rubberlike materials are often
homogeneous or at least nearly so, notwithstanding impurities. Although soft
tissues are also composites, consisting of elastin, various collagens, proteogly-
cans, water, and so forth, there are cases in which it is reasonable to consider an
associated homogenized behavior. Examples may include describing the behav-
ior of skin, lung parenchyma, myocardium, bone, or even brain tissue under
certain circumstances. In other cases, however, accounting for the heterogeneity
due to layering (e.g., intima, media, and adventitia in blood vessels or even
cortical versus cancellous bone) is essential.

Finally, if the behavior of a material is independent of its orientation within
the body/structure, we say that its response is isotropic. Whereas many metals
exhibit isotropy under small strains and rubber exhibits isotropy under large
strains, tendons (with axially oriented type I collagen) and the stalks of plants
clearly would not exhibit an isotropic response. Indeed, most tissues exhibit

fiber direction circumferential
direction
stress perpendicular  Stress apex-to-base
direction direction
strain strain
a. Myocardium b. Epicardium

FiGURE 2.24 Schema of typical stress—strain data from a thin slab of noncontracting
myocardium and associated epicardium. Both exhibit nonlinear anisotropic behaviors
over finite strains, but the epicardium is more strongly nonlinear because of the initially
very compliant behavior that is thought to arise due to the highly undulated collagen (cf.
Fig. 1.8) in the unloaded state. Also shown is the slight hysteresis exhibited by the
primarily collagenous epicardium; muscle tends to exhibit greater hysteresis (not
shown).
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anisotropic responses (see Fig. 2.24), which again are more difficult to quantify
in general. Later in this section, we will discuss two different anisotropics and
compare their quantification to that of isotropy for the case of small strains.
Whereas we seek to characterize the responses of materials in terms of
concepts such as linearity, elasticity, homogeneity, and isotropy, we emphasize
again that these are but descriptors of behavior; no material is linear, elastic,
homogeneous, or isotropic. Rather, material behaviors and the constitutive
relations that describe them depend on the conditions of interest. Water, for
example, behaves differently depending on the temperature; it can behave as a
gas (steam), liquid (fluid), or solid (ice), each of which requires a different
constitutive descriptor. Common metals also exhibit markedly different behav-
1ors under different conditions. Under the action of a shear stress, the atoms
comprising the lattice structure of a metal move relative to one another. If the
shear is small (remember, even if the shear is zero relative to one coordinate
system, shears will exist relative to other coordinate systems except in the very
special case of a hydrostatic pressure as discussed in Example 2.4), the atoms
maintain their bonds with their original neighbors, and upon the release of the
loads, they return to their original positions (i.e., deform elastically). Under
larger strains, however, the atoms cannot maintain bonds with their original
neighbors and they slip relative to one another and form new bonds with new
neighbors (this process is called yielding). Thus, when the load is released, they
remain “permanently” displaced rather than going back to their original posi-
tions (Fig. 2.25). This is called plastic set, and this inelastic behavior is called
plasticity. For constitutive relations in plasticity, see Khan and Huang (1995).

ultimate
stress
. lelastic
yield = — failure
stress : plastic
l permanent
strain

FIGURE 2.25 Schema of the stress—strain behavior of a metal that exhibits a linearly
elastic response over small strains but a plastic (i.e., nonrecoverable) response there-
after. In particular, the loading and unloading curves in the plastic domain have a similar
character as those in the elastic domain except that the subsequent “yield point”
increases with increased plastic deformation (a so-called hardening) up to a point called
the ultimate stress. Yield and failure occur due to excessive shear stresses in such ductile
materials.
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We see, therefore, that the strain level of interest can also dictate the constitutive
behavior of a material. Although it is important to analyze plastic deformations
in many fields of engineering (e.g., in metal forming), we seldom design
implant biomaterials to exceed their yield point under the action of in vivo
loads. Hence, in this book, we will focus on elastic behavior. Finally, note that
soft tissues behave differently depending on whether they are hydrated, heated
excessively, or exposed to certain medications. Because constitutive relations
describe material behavior, not the material itself, the bioengineer must always
be mindful of the specific conditions under which the material will perform,
knowing that multiple constitutive relations may be necessary to describe the
behaviors of the same material under different conditions.

Observation 2.2. One of the most important, and challenging, areas within
biomechanics remains the formulation of constitutive relations to describe
material responses to applied loads under biological conditions of interest.
Generally, such formulations require measurement of the geometry, applied
loads, and resulting deformations, or strains. A basic tenet of experimental
biomechanics is that one should design tests that represent simple initial or
boundary value problems for this facilitates both the measurement and the
interpretation of the data. Yet, many biological tissues and organs, particularly
in disease, have inherent geometric complexities or material heterogeneities
that render the experimentation more challenging.

A method for inferring surface strains for complex geometries that is gaining
increasing usage in biomechanics is referred to as Digital Image Correlation, or
DIC. Briefly, using non-contacting imaging, one seeks to identify surface
characteristics within sequential configurations of the body as it is loaded.
Local correlation of these characteristics from configuration to configuration
over large portions of the surface allows one to estimate point-wise displace-
ments, which via the use of interpolation (see Observation 2.1) or similar
methods can be used to compute “full-field” strains. Having information on
geometry, applied loads, and strains is typically sufficient to estimate the
associated material properties, provided the functional form of the constitutive
relation is known. Such estimations are known as inverse methods. A recent
innovation in soft tissue mechanics is a panoramic digital image correlation
(p-DIC) method, which allows one to simultaneously monitor displacements
along the axial length and around the entire circumference of a cylindrical
specimen such as an arterial aneurysm (Genovese et al. 2013). Because DIC
allows one to quantify components of the deformation gradient, one can easily
compute both rigid body rotations and strains, the latter of which can be
computed relative to a convenient coordinate system or via transformation
relations (Chap. 2) relative to principal directions. Innovations in experimental
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methods, such as p-DIC, promise to provide increasingly better information on
soft tissues that exhibit regionally varying, anisotropic, nonlinear responses
under finite strains, particularly in injury repair and disease processes.

2.6.1 Illustrative Characteristic Behaviors

Figure 2.26 shows illustrative data from a uniaxial test on a bovine chordae
tendineae. This tissue connects the heart valve to the papillary muscle within the
ventricular cavity of the heart; it consists primarily of uniaxially oriented type I
collagen having only a slight undulation when unloaded. As seen in the figure,
chordae (similar to tendons and ligaments of the joints) exhibit a nonlinear stress—
stretch response over finite (not infinitesimal) but moderate strains. Because of the
highly oriented collagen fibers, chordae are strongly anisotropic; because of the
slight hysteresis upon cyclic loading/unloading, there is slight energy dissipation;
because of the presence of a thin membranous covering (sheath), the tissue is not
homogeneous. Nonlinearity, inelasticity, anisotropy, and heterogeneity are com-
mon characteristics of soft tissues. Figure 2.24 shows similar responses by excised
noncontracting myocardium and epicardium. The latter is a thin collagenous
membrane that covers the outer surface of the heart. Whereas the myocardium
consists primarily of locally parallel muscle fibers embedded in a 3-D plexus of
collagen and a ground substance matrix, the epicardium consists primarily of a 2-
D plexus of collagen and elastin embedded in its ground substance matrix (pro-
teoglycans and bound water). The collagen fibers tend to be highly undulated in
both tissues in an unloaded configuration, hence the initially very compliant,
perhaps isotropic response by the epicardium that is followed by a rapid stiffening
(due to the straightening of the fibers). The initially greater stiffness of the
myocardium is due to the presence of myofibers. Although the chordae and
epicardium consist of very similar constituents, their behaviors are very different
because of the different microarchitectures. Histology, the study of the fine

Chordae
stress Tendineae

| 0.05
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FIGURE 2.26 Schema of stress—strain data from a uniaxial test on an excised chordae
tendineae, the thin stringlike tissue that connects the heart valve to the papillary muscle.
Note the small, but not infinitesimal, strain. Many ligaments and tendons exhibit similar
behavior.
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Bone

stress E

strain

FiGure 2.27 Schema of stress—strain data from bone prior to yield, which reveals an
initially linear, nearly elastic response. Note that bone (type I collagen impregnated with
hydroxyapatite) is much stiffer and less extensible than the chordae (Fig. 2.26; primarily
type I collagen).

structure of tissues, thus plays an important role in constitutive formulations. We
will consider soft tissue constitutive relations in Chap. 6.

In contrast, Fig. 2.27 shows results from a uniaxial test on bone. Note the
much smaller range of strain and the near linear behavior. Although not shown,
bone exhibits anisotropy and it is heterogeneous—cortical and cancellous bone
being very different, as discussed in Chap. 4. Quantification of the stress—strain
behavior of bone is discussed in Sect. 2.7. Although we could discuss much
more about the characteristic behaviors of these and other solids, we refer the
student to texts on material science and biomaterials (e.g., Askeland 1994;
Ratner 2003), which emphasize the need for biomechanics and material science
to go hand-in-hand. Here, we simply note that we will focus in Chaps. 2-5
primarily on a class of material behaviors that we refer to as LEHI:

Linear: linear stress-strain behavior and linearized kinematics

Elastic: no dissipation and the loading/unloading curve coincide
Homogeneous: same material behavior everywhere in the material/body
Isotropic: same material response in all directions at a point

2.6.2 Hookean LEHI Behavior

Due largely to A.L. Cauchy, S.D. Poisson, G. Lamé, L.M.H. Navier, and
G. Green in the early to mid nineteenth century, a constitutive relation was
established for LEHI behavior under small strains. It is,

1 1

Exx = E[Uxx - V(Jyy + 022)] + BAT, Exy = EGX);»
1 1

Eyy = E["yy — V(o + Gzz)] + BAT, Exz = %sz, (2.69)
1 1

&, = E[O'ZZ — v(aﬂ + ayy)] + PAT, €y, = 360
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where T is the temperature and E, v, G, and f are material parameters, the
specific values of which vary from material to material. In particular, E is called
Young’s modulus (after T. Young, a physician interested in biomechanics, who,
for example, gave lectures in 1808 to the Royal Society of London on the
biomechanics of arteries); £ is a measure of the extensional stiffness (i.e.,
change of stress with respect to strain) of a material, which can be inferred by
plotting normal stress versus extensional strain in a uniaxial stress test. The
parameter v is called Poisson’s ratio; it describes a coupling between orthogonal
directions and is often defined as v = —&p eral/€axial, Which is to say that it
describes the thinning of a material that is extended. Thermodynamics shows
that —1 <v < 1, the value of ; being associated with an incompressible behavior
(see below). G is called the shear modulus; it provides a measure of the
resistance to shear. It can be shown that G =E/2(1+v) for LEHI behavior.
Finally, f is a coefficient of thermal expansion; it tells us how much the material
expands/contracts due to changes in temperature from some reference temper-
ature T,; that is, AT=T-T, and thus there is no thermal effect when the
material is isothermal at T,. Although the body regulates temperature very
closely at ~37 °C, clinical interventions often involve local warming (e.g.,
hyperthermia treatment of cancerous cells) or cooling (e.g., cryosurgery). We
will focus on isothermal behavior, however. Table A2.1 (see Appendix 2) lists
values of some parameters for various materials.

Example 2.7 Given E = 14 GPa and v =0.32, which are reasonable values for
bone, find the values of strain for a LEHI behavior and the 2-D state of stress in
Example 2.1: o0,,=120 kPa, o,,=150 kPa, and o,=0. Note: 1
GPa = 10° MPa = 10° kPa = 10” Pa, where 1 Pa=1 N/m°.

Solution: From Eq. 2.69,

1 kPa
o =———-71120 — 0.32(150 + 0)] — = 5.1 x 107°,
S yeer ( ) iPa
1
b, =———]150 — 0.32(120 + 0)] = 8.0 x 107°
Eyy 14 x 106[ ( )
1
€xy ﬁ(O) = 07

where G = E/2(1+v). Unless the problem is treated as purely two dimensional,

1
=———[0—0.32(150 4+ 120)] = —6.2 x 10°,
14 x 10

zz
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which is to say that the material will thin in the z direction due to the (inplane)
stresses in the x and y directions. Note, too, that each value of strain is much less
than unity, consistent with the small strain requirement for Hooke’s law, and
positive values denote lengthening, whereas negative values denote shortening.
Moreover, strain is unitless (it represents normalized changes in length and
changes in angles) and a value of strain times 107° is often called a microstrain
(ue), as, for example, 5.1 x 10°=5.1 HE.

Finally, it is important to note that Eq. (2.69) is called Hooke’s law (although
it is merely a constitutive relation, not a law) to commemorate R. Hooke’s
profound observation relating force and extension even though Hooke had no
concept of stress or strain. Hooke’s law can be derived mathematically because
of the assumptions of linearity, elasticity, homogeneity, and isotropy (LEHI),
but we did not do so here; we merely listed the final form. Hooke’s law can also
be established through a comprehensive battery of laboratory observations and
experiments; again, we did not provide the associated, detailed information.
Herein, therefore, we will focus on its use, not its formulation. Qualitatively, it
is also useful to note that for a 1-D state of stress, say o, =f/A, under isothermal
conditions, &, =o0/E and e,,=¢..=—v(o.)/E=—ve,. Hence, it is easy
to see how one could/would design a uniaxial experiment to determine the
values of E and v for a LEHI behavior; the value of G could then be calculated
as E/2(1 +v) and verified via a shear test. For example, E is simply the constant
slope (stiffness) in the o,, versus &,, plot (cf. Fig. 2.27); that v is a measure of
the lateral thinning relative to the axial extension is seen by taking (for this 1-D
state of stress)

6}’}’ (_VGM/E) €z
- _ —y=— 2.70
Exx Oxx / E Y Exx7 ( )

which reveals how its value can be inferred from experiment.

Finally, let us consider Poisson’s ratio in more detail. Noting that &,, = Ou,/
0x = 0u,/0X where u, = x(X) — X, we can think of (roughly, but not rigorously)
an extensional strain €., over a small region as a change in length divided by the
original length: that is, €., ~ (Ax — AX)/AX = Au,/AX, where Ax is the current
length and AX is the original length. Now, if we consider a cube having initial
dimensions AX, AY, and AZ and deformed dimensions Ax, Ay, and Az, then the
current (deformed) volume A= AxAyAz can also be computed as
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Ay = AxAyAz = AX(1 + e ) AY (1 + &,,) AZ(1 + &..)
= (AXAYAZ)[(1 + ex) (1 4 £yy) (1 + &)
= (AV)[1 + & + &gy + &6 + Exx + Exxaz + Exbyy + ExcEyyez]
= (AV)[1 + &y + &y, + €] + HO.T,,

(2.71)

or

Ay — AV

Av= AV + AV(exx + &y, + ezz) — AV

= gxx + 8yy + 833, (272)

where H.O.T. stands for higher-order terms, terms that can be neglected in
comparison to other terms (i.e., given that ,,, &,,, €., < 1, quadratic and cubic
terms are negligible with respect to linear terms). Now, if we let €, be the axial
direction strain and &,, and ., be the lateral direction strains, then by the above
definition,

Eyy = —VEy, £ = —VEyy, (2.73)

and, thus,

Ay — AV Ay — AV
— = Veu T En —VEw D =

AV N7 ex(1 —2v). (2.74)

Hence, if there is no volume change, then v = % as alluded to earlier, which is to
say that the material deforms incompressibly. Determination of a value of a
material parameter from a thought experiment is thus possible, albeit uncom-
mon. In most cases, the value of a material parameter must be calculated
directly from experimental data. Note, therefore, that with respect to the steps
outlined in Sect. 1.7 for formulating a constitutive relation (DEICE), we must
delineate characteristic behaviors, here manifested as a LEHI behavior; estab-
lish a theory, here a linearized theory of elasticity in which stress ¢ and strain &
are related; identify the functional form, here a linear relation (Hooke’s law);
and calculate values of the material parameters, here E, v, and G. Evaluating the
predictive capability is thus the final step, which is typically performed by
comparing computed and measured values of stress or strain for situations not
used to formulate the constitutive relation. For example, if we find values of £
and v for a particular material from a uniaxial test, we will want to ensure that
these values also provide a good description of the behavior of the material in
torsion and bending, particularly if these situations are experienced in service
conditions.
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2.6.3 Hooke’s Law for Transverse Isotropy

We emphasize that “Hooke’s law” as stated in Eq. (2.69) holds if the material
behavior is isotropic (i.e., the behavior is independent of the direction in which
the force is applied at a point within the material). This can be seen, for
example, by interchanging the subscripts x, y, and z in the equations, which
leaves them unchanged.

Whereas many metals exhibit an isotropic behavior under small strains, many
other materials do not. Wood, fiberglass, and other man-made composites as
well as tendons, ligaments, skin, bone and most other biological tissues exhibit
an anisotropy. Consider, for example, a piece of wood. It is clear that the
mechanical response in the direction of the grain is different from that across
the grain. The same is true of heart muscle (Fig. 2.24) due to the locally parallel
arrangement of the muscle fibers. When a material has a different behavior in
one direction compared to all directions in an orthogonal plane, the behavior is
said to be transversely isotropic (i.e., isotropic in a plane transverse to a
preferred or different direction). If the transversely isotropic behavior is other-
wise linear, elastic, and homogeneous under small strains, it is describable via a
transversely isotropic Hooke’s law of the form

!

1 % 1
Exx = E (Gxx - V"yy) - EGZZ, Exy = ngy,
1 v 1
Eyy = E(ayy - vaxx) - Eazm Exz = 2_(;/0);:» (275)
1 v 1
€z = Eazz - E (G,VX + Jyy)» Ey; = 2_(;/0)727
where, again,
E
G——" 2.76
2(1+4v) (276)

with the z direction (arbitrarily) taken to be the preferred direction. Note that in
contrast to the relation for isotropic behavior [Eq. (2.69)], which is described by
two independent parameters (£ and v, with G related to these two), this relation
for transversely isotropic behavior is described by five independent parameters
(two Young’s moduli E and E’, two Poisson’s ratios v and v/, and a shear modulus
G', where G is, again, related to E and v and thus is not independent). Again,
because of the linearity, this relation can be derived theoretically or determined
via a complex battery of experiments. We do not focus on either here; we will
simply consider in subsequent chapters how one can utilize this relation.
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2.6.4 Hooke’s Law for Orthotropy

Given the complexity of the microstructure of many materials in their solid
phase, it should not be surprising that there are many different types of anisot-
ropy. In addition to isotropy and transverse isotropy, however, the other most
common type of material symmetry is orthotropy. As the name implies, an
orthotropic response is one that differs in three orthogonal directions. It is
thought, for example, that an artery exhibits an orthotropic response: Its behav-
ior differs in the axial (due to axially oriented adventitial collagen), circumfer-
ential (due to the nearly circumferentially oriented smooth muscle in the
media), and radial directions. Bone, too, tends to exhibit an orthotropic
response, albeit nearly transversely isotropic in some cases. When the response
is otherwise linear, elastic, and homogeneous under small strains, Hooke’s law
can be generalized to account for the orthotropy via

1 V21 V31 1
Exx = =0y — —0Cyy — —0; Exy = =——0yy
Xx E] XX E2 yy E3 zZs Xy 2G12 Xy»
1 V12 V32 1
Eyy = —0yy — —0y — —0; £y = =——0y, 2.77
Yy E, vy E, XX Es 75 X 261 XZ> ( )
1 Vi3 V23 1
€7 = 50z — 5 Oxx — 7 O Ey; = 70y
E; E; E, " P 2Gy Y

wherein there are now nine independent material parameters: three Young’s
moduli E;, E,, and E5, three shear moduli G5, G13, and G»3, and six Poisson’s
ratios vi,, V21, V13, V31, V23, and v3,, only three of which are independent; that is,
it can be shown that

Yiz _var iz _ Va1 Vs _Vn (2.78)
E, E) E, Ei’ E, Ej )

2.6.5 Other Coordinate Systems

It is essential to recognize that Hooke’s law relates stress to strain at each
point with respect to a given coordinate system. Whereas Egs. (2.69), (2.75),
and (2.77) are written in terms of Cartesians, they could also be written for
cylindrical coordinates. For example, Eq. (2.69) for LEHI behavior can be
written as
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1 1

Epp = E[Urr - V(Uﬁf) + Gzz)] + ﬂAT, Erg = ﬁarﬁs
1 1
Egg = E[Gﬁﬁ - v(gl‘l‘ + JZZ)] + ﬂAT, Er; = Eal‘za (279)
= 2o~ vion +ow)] 4+ SAT,  en =7
€ = E Oz V(O (] ) £9; = D) GGHZ'

and similarly for sphericals and so forth.

Likewise, Hooke’s law can be written with respect to coordinate systems that
are transformed relative to one another. For example [cf. Eq. (2.69)], for
isotropy we may have, relative to (X', y', Z),

XZ 2 G
’ 1 .

’ 1
22 :| s €., = _ze9 (280)
:|, gyz :EO'),Z.

Indeed, see Exercise 2.23, which asks that you prove this.

Finally, note from Eq. (2.69) that a 2-D state of stress necessarily requires a
3-D state of strain and vice versa for a 2-D state of strain. Indeed, even a 1-D state
of stress (e.g., an axial force which induces a stress o, = Ee,,) will generally
induce a 3-D state of strain (an extensional strain ¢, plus thinning in two
orthogonal directions, given by &, and &.,). Hence, we must be careful when
describing the dimension of a problem. A truly 1-D or 2-D problem is thus one
wherein we simply ignore the effects in certain directions, which can be useful in
some cases. For example, in a purely 1-D problem, o, and ¢, alone may exist.

Here, however, let us define a state of plane stress as one where

Oxx Oxy 0 Exx  Exy 0
Oy Oy O, Eye &y 0 |, (2.81)
0 0 o0 0 0 e,

whereas a state of plane strain is defined by

=)

Oxx Oyxy 0 Exx  Exy
Oy Oy 0|, Eyx  Eyy
0 0 o, 0 0 O

=)

(2.82)
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Ficure 2.28 Schema of a state of plane stress, which is characterized by in-plane
stresses only. Such states of stress also exist locally in curved membranes such as the
pericardium, urinary bladder, and saccular aneurysms. Indeed, to a first approximation,
many tissues (e.g., even skin in some situations) can be considered to be in a state of
plane stress.

NN NN NN
g —]
S ST

FiGURE 2.29 Schema of a state of plane strain, characterized by nonzero values in a
single plane (often normal to the long axis of a prismatic structure). Although many have
assumed that arteries and airways are in a state of plane strain, given that they deform
primarily in the radial and circumferential directions due to internal pressurization, these
tissues are actually prestretched and thus the axial strain is not zero; they are in a fully
3-D state of strain.

A state of plane stress is realized easily in thin planar structures that are loaded
only in-plane (Fig. 2.28) whereas a state of plane strain is realized easily in long
straight members that are constrained from deforming in the axial direction
(Fig. 2.29). Although we will not go into these cases in detail, note that they
each afford certain simplifications in formulation and solution (Timoshenko and
Goodier 1970).
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2.7 Mechanical Properties of Bone

Whereas most soft tissues (e.g., skin, tendons, arteries, lung tissue, myocar-
dium) exhibit nonlinear material behaviors over finite (large) strains, teeth and
bones tend to exhibit a linearly elastic behavior over small strains. Hooke’s law
is thus applicable and the associated stress analysis is easier than that for soft
tissues. Therefore, let us consider bone in some detail.

According to Dorland’s Medical Dictionary, bone is

the hard form of connective tissue that constitutes the majority of the skeleton
of most vertebrates; it consists of an organic component (the cells and matrix)
and an inorganic, or mineral component; the matrix contains a framework of
collagen fibers and is impregnated with the mineral component, chiefly
calcium phosphate (85 percent) and calcium carbonate (10 percent).

Specifically, the type I collagen fibers tend to be organized in layers, locally
parallel within a layer with the orientation varying approximately 90° from
layer to layer. This layering may suggest a local transverse isotropy with the
preferred direction changing from layer to layer or, more grossly, an overall
orthotropic behavior at each point. Whereas the collagen endows bone with its
tensile stiffness, the embedded calcium endows it with a high compressive
stiffness.

Two primary cell types within mature bone are responsible for growth and
remodeling: the osteoblasts, which secrete bone matrix, and the osteoclasts,
which degrade it. These cells thus allow for a continuous turnover of the matrix
material (Alberts et al. 2008) (i.e., a continuous maintenance or, in times of
altered loading, a mechanism for adaptation). It is for this reason that bedridden
patients and astronauts each suffer bone atrophy, particularly in the legs and
arms, whereas athletes may have a buildup of bone. Indeed, as noted in Chap. 1,
it was the work of Meyer, Wolff, and Roux in the late nineteenth century on
bone that revealed a strong relationship between mechanical factors and bio-
logical growth and remodeling. For more recent work in this important and
active research area, see Mow and Hayes (1991), Cowin (2001) or Carter and
Beaupré (2001).

Bone typically consists of two to three layers, depending on its location
within the body: an outer, dense cortical layer, a middle trabecular layer, and,
in certain regions, an innermost layer of bone marrow. It is the marrow that
forms blood cells. Bone thus serves several important, diverse mechanical and
physiological functions: It supports and protects soft tissues and organs and it
serves as a primary store of calcium and producer of blood cells. We discuss the
associated microstructure further in Chap. 4.

The 206 distinct bones that constitute the adult human skeleton are often
classified into one of five groups according to their shape (see Table 1.2 from
Nigg and Herzog (1994)): long (e.g., femur), short (e.g., carpal), flat (e.g.,
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TaBLE 2.1 Physical

Variable Bone Value
properties of bone.

Density Cortical 1,700-2,000 kg/m3
Lumbar vertebra  600—1,000 kg/m®

Mineral content All 60-70 %

Elastic modulus Femur 5-28 GPa

Tensile strength Femur 80-150 MPa
Tibia 95-140 MPa

Compressive strength  Femur 131-224 MPa
Tibia 106-200 MPa

sternum), irregular (pubis), and sesamoid (e.g., patella). Table 2.1 lists some of
the physical properties of bone. In particular, the order of magnitude of the
stiffness (Young’s modulus) is ~16 GPa for cortical bone and ~1 GPa for
cancellous bone. As noted earlier, however, bone does not exhibit an isotropic
behavior. Rather, its linear, elastic, nonhomogeneous, and orthotropic response
is better described by Eq. (2.77) with values of the parameters on the order of

E1 = 6.9GPa, Vi = 0.49, Vo1 = 0.62, G12 =241 GPa,
E, =85GPa, v;3=0.12, v3; =0.32, G3 =3.56GPa, (2.83)
E3 = 184GPa, Vo3 = 014, Vip = 031, G23 =4.91GPa
for the tibia and
E, =12.0GPa, v, =0.376, vy =0422, G =4.53GPa,
E, =13.4GPa, v;3=0.222, v3 =0.371, G;3=5.61GPa, (2.84)
E3 = 200GP3., Vo3 = 0235, Vi) = 0350, G23 = 6.23GPa

for the femur, where 1 denotes the radial direction, 2 the circumferential, and 3
the axial (Cowin 2001). Separate values for the cortical and cancellous portions
can also be found in this reference. For more on the mechanobiology and in vivo
loading of bone, see Chap. 4.

Observation 2.3. When two or more materials are bonded together, delamina-
tion becomes a possible mechanism of failure. Simply put, delamination is a
load-induced separation between two mechanically distinct materials or layers.
One way to prevent, or at least to minimize, delamination is to create a 3-D
interaction (e.g., weave) at the interface. In the case of bone—metal interfaces,
for example, the surface of the metal implant is often made porous to allow in-
growth of the bone. Delamination often occurs due to interfacial shear stresses
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and thus there is a need to design experiments that impose shear stresses. One
simple experiment is a so-called “pull-out” test. Briefly, one material is bonded
to the inside of a hollow sample of the second material. The outer material is
then fixed in place and the inner material subjected to an axial load through its
centroid. A free-body diagram of the inner material reveals that the axial load
must be supported by the integrated manifestation of all the shear stresses acting
on its outer surface. Although the magnitude of these shears may vary from
point to point, one can determine the mean shear stress at which delamination
initiates. Subsequent design would then seek to protect the bonded surface from
experiencing damaging values of shear stresses.

Chapter Summary

Mechanics is the study of responses by materials and structures to applied
loads, the most familiar example of which is perhaps the simple linear spring,
first studied in detail by R. Hooke in the late seventeenth century. As we recall
from physics, Hooke said, as the force, so the extension (i.e., f=kd, where f is
force, k the spring stiffness, and 6 the displacement at the end of the spring).
Yet, during the period from the mid-eighteenth to the early nineteenth century,
savants such as L. Euler and A. Cauchy showed that it was much more
appropriate in continuum mechanics to work with the concepts of stress and
strain, not force and extension. Strictly speaking, stress is a mathematical
quantity that transforms an outward unit normal vector on a differential area
of interest into an associated traction vector in the direction of the applied force
but having units of force per area. Strain can similarly be defined in terms of a
transformation of a differential position vector from a reference to a current
configuration. See Humphrey (2001, 2002) for detailed derivations and descrip-
tions of the utility of the concepts of stress and strain in biology, including a
discussion of the fundamental utility of tensor calculus in continuum
biomechanics.

Herein, however, we introduced the concept of stress intuitively, not math-
ematically, and we noted that a component of stress represents the magnitude of
a component of force acting over an oriented area (i.e., stress is a force
intensity). We also noted that, relative to a single coordinate system (defined
by an origin and basis), one can define up to nine different components of stress
that act on a generic infinitesimal cube of material, which when reduced in a
limiting process becomes a point. Moreover, relative to each coordinate system,
one can associate nine different components of strain (defined by particular
combinations of displacement gradients, that is, changes in displacement with
position) with these nine different components of stress at each point. Albeit
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often not emphasized, it is vital to remember that there is nothing special per se
about a particular component of stress or strain; rather, each component results
from our choice of coordinate system, which we should select simply to render
the overall mathematical solution easier. Fortunately, transformation relations
allow components of stress or strain relative to one coordinate system to be
related to those of other coordinate systems. We found, for example, that a
judicious selection of coordinate system can yield the maximum/minimum
(e.g., principal) values of stress or strain at any point. Hence, our overall
strategy should be (1) determine components of stress and strain by selecting
that coordinate system which renders easiest the solution of the initial or
boundary value problem at hand and (2) transform these components of stress
or strain to those components that are most meaningful for experimental,
theoretical, or biological purposes.

Finally, recall that the aforementioned relation f= ké for a linear spring is a
simple example of a structural constitutive relation, that is, it describes the
response (extension) of a spring (structure) to an applied load (force) under
conditions of interest (e.g., ranges of loading that allow the spring to recoil
elastically when unloaded). The spring constant k is thus the constitutive
parameter for this simple 1-D linear spring. Whereas the five basic postulates
of continuum mechanics (e.g., balance of linear momentum) hold for all
continua, constitutive relations hold for individual materials or structures
under particular conditions of interest (e.g., temperatures or time scales). We
introduced the 3-D Hooke’s law for linearly elastic material behaviors under
small strain, which can be a useful descriptor for materials ranging from
stainless steel to bone. It is essential, however, that one understand the limita-
tions of each relation. Because the formulation of appropriate constitutive
relations is perhaps the most important and challenging aspect of modern
continuum biomechanics, the reader should be especially attentive to related
discussions throughout.

Appendix 2: Material Properties

The properties of many materials can be found in textbooks on material
science (e.g., Askeland 1994) or biomaterials (e.g., Ratner 2003) as well as
many handbooks. Here, we simply tabulate a few of the properties that may
be useful in the examination of example and exercise problems in this book.
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TaBLE A2.1 Physical properties of common engineering materials.

Material Young’s Shear modulus Density  Yield strength Ultimate

modulus (GPa) (GPa) (kg/m3) (MPa) strength (MPa)

Tension Shear Tension Shear

Aluminum
2024-T4 73 27.6 2,770 300 170 414 220
6061-T6 70 259 2,770 241 138 262 165
Steel
0.2 % Carbon 200 83 7,830 250 165 450 330
0.6 % Carbon 200 83 7,830 415 250 690 550
Exercises
2.1 Find a general relation for ¢, [Eq. (2.13)] when a = a.

22

2.3

24

2.5

2.6

Show that a,, = a, 4-45°. In addition, show that Eq. (2.25) for ,, can also
be determined via do’,,/da = 0.

Rederive the transformation equation for o', using the result for ¢’ and
the observation that ¢’y exists on a face at an angle 7/2+ a from the x
direction.

Show that for a 2-D state of stress,

/ !

ox + 0y, =0, +0, Ya.
This combination of the normal stresses is called an invariant; that is, its
numerical value at any point is independent of the coordinate system
even though its value will differ, in general, from point to point in a body
and, of course, with changes in load. Invariants have been found to be
useful in modeling material behavior, which, by definition, must be
independent of man and his coordinate systems.
Show that Eq. (2.80) can be determined directly from Egs. (2.69) and the
transformation relations (2.13) and (2.57).
The results for the max/min normal stresses can also be found using
matrix equations. Using ideas from linear algebra, show that the 2-D
eigenvalue problem for the matrix equation

O —Ap Oy

det
Cyx oy — A,

=0

yields eigenvalues A =0, (with p=1) and A, =0, (with p =2). Hint:
Solve the quadratic equation for A, the two roots of which correspond to
p=1 and p=2. Also, if familiar with linear algebra, find the
eigendirections n”, where In”l = 1, and discuss their relationship to ap.
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2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15
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Given the state of stress in Example 2.1, o, = 120 kPa, o, = 150 kPa,
and o,,, = 0 kPa, compute the values of ¢, for all values of a from 0° to
90° and plot as a function of a. Compare the values of & at which ¢’ is
max/min versus those found using the formula for a,,. Repeat for ¢’,, and
compare the value of a at which the shear is max/min versus that using
the formula for a;.

A state of pure shear is one in which the normal stresses are zero.
Consider o, =0, 6,, =0, and o,, =0, =5 MPa. Find the values of the
principal stresses and denote them on an infinitesimal element with
orientation given by a,,.

Given a hydrostatic state of stress, 6,,=0,,=0,.=—p, where p is a
pressure, we computed ¢’,,, ¢y, and ¢, for all @ in Example 2.4.
Likewise, compute the principal stresses o; and o6, [i.€., 6’ )max/min
and ¢’y )max/min]l as well as the maximum shear ¢’,,)max/min Using the
explicit formulas in the text. Discuss your findings.

Given o, =3 MPa, o, = 1 MPa, and o,,, =2 MPa, find the values of the
principal stresses and the maximum shear stress. What are the associated
values of a, and a,? Draw a 2-D representation of the stress at a point p
relative to each set of coordinates (x, y) and those for a), and a.

Given 6., =3 MPa and o,, = —3 MPa, find the maximum shear stress
and the plane on which it acts. Draw the 2-D representation of stress
about a point p.

Given u,=(A-1)X and u, =0, compute and compare the exact (Exx)
and the approximate/linearized (e,,) strains for A =1.001, 1.01, 1.1, 1.5,
and 2.0. Calculate the error introduced by the linearization in each case
and determine those values of A for which the approximation is
reasonable.

Let

u, = (X +0.001Y) — X,
uy, =Y Y.

Compute the values of the components of the 2-D Green strain Exy, Eyy,
and Eyy and compare to those for the linearized strain e,,, €,,, and &,.
Repeat with the value premultiplying Y in the expression for u, being 0.8.
Calculate the values of Eyy and Exy for the rigid-body motion given by
Eq. (2.54) and compare to the results for &, and &,,.

The transformation relations for strain [Eq. (2.57)] can be found directly
via coordinate transformations; recall Eqgs. (2.62-2.68). Hence, if we
recall from calculus that

/

’ . .
X = Xcosa—+ ysina, y = —Xxsma -+ ycosa
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and note that similar relations hold for the displacement vector,

!

! . .
u, = Uy Ccosa + uysina, Uy, = —ucsina + uy cos a,

then show that

' ) : 2
€y, = ExcSIN " — 2ey sinacosa + €y, cos “a,
Eyy — Exx

> ) + (cos’a — sin’a)e,y.

€,, = 2sinacos a(
Hint: Note that the angle a, which relates the two coordinate systems, is
very different from the angle ¢ used in the text to represent a rigid-body

rotation. Moreover, for the linearized strain,

o _Ou, Ouy dx 04y By
f = oy  0x 0y 0y oy’

For the delta strain gauge rosette (a; =0, a, = 60°, a3 = 120°), show that

1
Exy = %(5600 - 8120°)~

For the 0—45°-90° strain rosette of Example 2.6, find general expressions
for the principal strains and maximum shear strains in terms of the
measurable values &g, £45°, and £gg-.

Whereas Eqgs. (2.69), (2.75), and (2.77) are called strain—stress relations,
Hooke’s law can also be written as stress—strain relations. For example,
for isotropy, we have

Oy = A(SH + ey, + EZZ) + 2uéeyy, Oxy = 2UEy,y,
Oyy = ’1(5)@‘ +éyy + 522) + 2ueyy, Oy: = 2Jie,:,
0, = l(exx + &yy + 822) + 2ue,,, O = 2UExy,
where 4 and u are called Lamé constants (material parameters), after the
French scientist G. Lamé (1795-1870). Show that
vE E

S [Ty R T

G,

where E and v are the Young’s modulus and Poisson ratio, respectively.
Note from the previous exercise and Eq. (2.69) that A multiplies the first
invariant of strain e=g¢,, +¢€,,+¢&.., which is a measure of volume
change. Show that
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_1—2v
- E

e (axx + oyy + azz)

for isotropy. Note that there is no change in volume (i.e., e =0) if v = %

Moreover, if a cube of material is subjected to a hydrostatic pressure,

then o, = 6, = 6.. = —p. In this case, note that
3(1—2v) p_E

E e 3(1—2v)

K,

where K is the so called bulk modulus; it represents the ratio of the
hydrostatic compressive stress to the decrease in volume.
For a LEHI behavior, show that a plane state of stress requires that

E

=T ol Ve v(eaten)],

6.,=0

or

v
E;; = *j(ﬁ’xx + 8yy)-

For a LEHI behavior, show that the principal stresses in a plane state of
stress can be written as

o] = —v2(£1 +vea), o) =

T —vz(ez—i—vsl),

1 —
where ¢ and &, are the principal strains.

Given 6,,=20 MPa, 6,,=—10 MPa, and o,,=—20 MPa, find the
principal stresses and principal strains with LEHI behavior and
E =16 GPa and v=0.325.

Starting with Eq. (2.80) and using Egs. (2.13), (2.17), (2.21), and (2.57),
show that you recover Eq. (2.69). Note: We assume a rotation about the
z-axis thus ¢, =o...

Given reasonable values of the material parameters for bone, estimate the
axial stress in your femur due to standing, walking, and running. Toward
this end, estimate the increase in the applied load (in terms of body weight
and in comparison to the load due to standing) due to walking and
running. Once done, note that even though we did not discuss it, bone
exhibits viscoelastic, not just elastic, behavior under certain conditions.
In particular, the Young’s modulus increases with increases in strain rate.
It has been estimated, for example, that E ~ cé?, where ¢ is the exten-
sional strain rate and ¢ and d are material parameters. If £ =16 GPa at ¢
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=0.001 s (slow walking) and d~0.06, find the value of c. Next,
compute the value of E for vigorous activity, with £~0.01 s™', and discuss
how this would effect your first estimate for stress in your femur.
Research the different constitutive relations used to describe the behav-
ior of water in its solid, liquid, and gaseous phases (i.e., different
conditions of interest). Write a two-page report on your findings, show-
ing explicitly the different equations and discussing how the different
characteristic behaviors dictate the need to establish different theoretical
frameworks (DEICE).

Referring to Fig. 2.23a, note that the material can return to its original
configuration by releasing the energy that is stored in it due to deforma-
tion. This “strain energy” W can be computed (per initial volume) as the
area under the stress—strain curve. For the 1-D test in Fig. 2.23a,
o= Ee, and the stored energy is § (base)(height) = 1 &,,0. =5 €. Fe,.
Show, therefore, that the stress can be determined as the change in energy
with respect to changes in strain (i.e., 6, = 0W/0e,,), whereas the stiff-
ness can be computed as the change in stress with respect to the change in
strain (0o,,/0¢,,). Plot this stiffness as a function of stress and comment.
Although we chose not to derive the linearized strains directly, it is
common to relate them (for illustrative purposes) to changes in length
and changes in angle. The former was used to show that Poisson’s ratio
v=" if the behavior is incompressible. Here, note the following for
shear. Referring to Fig. 2.30, let point b displace upward an amount Au,.
With point d displacing rightward by Au,, we call this a pure shear. Note,
therefore, that the angles @ and f are given by

tan Au, Au, 5= tan Au, Au,
a = — | X =, = =~
Ax Ax Ay Ay

for which we used the small-angle approximation for the tangent, and
thus the mean value is

FiGure 2.30 y

a AUy

[«
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Auy,  Au, Ouy  Ouy
( P = (AX_FAy)_)AxAyﬂoz(a—’_ﬂ) (8 +5y>

which we recognize equals €,,. Repeat this exercise for the y-z plane.

2.28 Common experimental setups include uniaxial extension or compression
of a rod, biaxial extension of a sheet, tension—torsion of a cylinder,
inflation—extension of a hollow cylinder, and inflation of an axisymmet-
ric membrane (Fig. 2.31). Identify tissues that would be appropriately
tested using these potential setups without excessive dissection
following removal from the body.

\/ f
(0]
f
f f f
uniaxial uniaxial biaxial
extension compression extension
f

cts

S

[l >
|
f
tension-torsion inflation-extension n.lembyane
inflation

Ficure 2.31
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Using Egs. (2.13) and (2.21), it can be shown that, in two dimensions,
O+ 0y, =0 +0y,. Show, in addition, that the principal stresses
61 =0 ,(max) and 6, = ¢y, (max) simultaneously add to yield

Oy + 0yy =01 + 03.

A special 2-D state of stress is called an equibiaxial stress. It is defined
by 6.«=0,,=0, and o,, = ¢, =0. Find the principal stresses and max/
min shear stresses in this case. Note that equibiaxial stretching tests are
particularly useful in determining the anisotropy of a planar tissue
(membrane). Why?

A uniaxial test was performed on a bone specimen having a central
(gauge) region initially 6 mm long and 2 mm in diameter. Five data
points were recorded:

Axial force (N) 94 190 284 376 440
Change in length (mm) 0.009 0.018 0.027 0.050 0.094

Plot the associated stress—strain relation, calculate a Young’s modulus,
and show that the yield stress is ~118 MPa. Recall that the yield stress
reveals the transition from elastic to plastic (cf. Fig. 2.25). Data from
Ozkaya and Nordin (1999).

Data from a uniaxial tension test to failure (data point 4) for a human
cortical bone are

Stress (MPa) 0 85 114 128
Strain (mm/mm) 0 0.005 0.010 0.026

Plot the data and interpret. Estimate the Young’s modulus, yield stress,
and ultimate stress (cf. Fig. 2.26). Clearly, much more data are useful in
general. Data from Ozkaya and Nordin (1999).

Data from a uniaxial tension test in the elastic region for a bone sample are

Stress (MPa) 0 60 120 180
Strain 0 0.0034 0.0066 0.0100

Referring to Exercise 2.32, were these tests performed on the same type
of bone? Compare the Young’s moduli.
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Equilibrium, Universal Solutions,
and Inflation

3.1 General Equilibrium Equations'

Let us begin by recalling three important observations from Chaps. 1 and 2.
First, equilibrium requires that F =0 and XM =0. Second, if a body is in
equilibrium, then each of its parts are likewise in equilibrium. Third, there may
exist at each point p in a body (cf. Fig. 2.4) nine components of stress, six of
which are independent, which we denote as o (face)directiony Ielative to the
coordinate system of choice. Because stress may vary from point to point within
a body, the components at a nearby point ¢ may have different values. (Note: It
is usually convenient to refer components at different points to the same
coordinate system.) Now, if we consider a small cube of material, centered
about point p which is located at (x, y, z) and has stresses o, Oyys- - -» Oz, then
the stresses on the faces of the cube may differ from those at the center; that is, if
the xx component at the center of the cube is o,,, then on the positive and
negative faces of the cube, at distances +Ax/2 from the center, we may have
0.+ Aoy, and o, — Ao, respectively (i.e., values slightly greater than or less
than that at point p). The key question is thus: How can we evaluate this small
difference Ao, ? As we shall do throughout this text, let us recall a Taylor series
expansion from calculus [f(x + Ax) =f(x) + (df/dx)Ax +...] and let

+Ax B ()+aam. Ax +1626M- Ax 2+ (3.1)
ool ity ) =W+ (T ) a e 7)) T 6

! Sections 3.1 and 3.2 may be considered optional by some instructors for a first course
in biosolids.
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and

Ax Oow| [AX\ 10%w| [Ax\?
Uxx< _7> :U,\'x(x)_ ax x(?) —5 ax2 x(?) ey (32)

where other higher-order terms in Ax are not shown. Of course, the values of
each of the components of stress on each of the six faces can likewise differ
from those at the center.

For simplicity, however, let us consider a 2-D state of stress, as illustrated in
Fig. 3.1. We let o,, and o,,, which represent the mean value on their respective
faces, vary from the bottom to the top faces (because they are y-face stresses)
and thus their gradients (or changes) are with respect to y, whereas o,, and o,,,
which similarly represent mean values on their respective faces, are assumed to
vary from the left to the right faces (because they are x-face stresses) and their
gradients are with respect to x.

Now, to ensure equilibrium, we sum forces (which requires multiplying
appropriate components of stress by their respective areas) separately in the
x and y directions and set them individually equal to zero. In the x direction, this
yields (neglecting the |, notation because it is understood that our result will be
valid at x once we shrink the cube to the point p)

Oyy tAGyy
Oyx +ACyx
ny +A6xy
A 2-D
3-D y
O,y ~AC,x p Oy HAC,,
°p
A UXX goo ,O'yy
Oxy -AGC
Oy 53025 Az Xy Xy ——
Oyx -ACyx
Ax Y y
Oyy-AGyy

Ficure 3.1 Representative stresses at a point p, with particular attention to those
components in the x-y plane at distances +Ax/2 and £Ay/2 from point p. Note,
therefore, that the components of stress may vary from point to point in general (because
of the differential areas, the value of stress on an given surface area is represented by its
mean over that area).
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N 00y, [Ax N 10%,, [Ax\> N AVA
Oy +—=— | — | + == | = z
ox \2) 202 \2 Y

[ 00y [Ax 10%0, (Ax\*
g = 2 (2X) _2C 0 (2X) 0 AyA

’ 5x<2> 2ax2(2> o

[ 0oy (Ay 1 azo'yx Ay\? 53
+ GyX—F—ay (7 +§ 3y o + ... | AxAz

0oy (Ay 162% Ay\?

— Oy — - =] —= - =) —...|AxAz=0.

2Ty <2> 270y \2 e

Simplifying, dividing by AxAyAz, and taking the limit as AxAyAz — 0, we
have

1 06, 00y [Ax oo 0%y (Ay
li X x [ AX yx A AxAvAz — 0
AvAYA 0 AxAyAz< ox o (4 ) * Oy * 0y? (4) Eyae=

(3.4)

or (because the Ax and Ay go to zero)

00y 00y,

3" 3y 0, (3.3)
which is our final x-direction equation in two dimensions. Note, therefore, that
all higher-order terms (H.O.T.), quadratic and above, drop out because of the
limiting process. Such terms can thus be neglected in hindsight in all
similar derivations. Indeed, as an exercise, show that summation of forces in
the y-direction yields a similar equation:

Joyy | Ooyy _
3 3y 0. (3.6)

Together, Eqs. (3.5) and (3.6) are the governing differential equations of
equilibrium for a 2-D state of stress relative to an (o; x, y) coordinate system.
Note that the x equation contains only x-direction stresses and the y equation
contains only y-direction stresses. This is another reason to remember the
Simple aid, O (face)(direction)-

It is easy to show, of course, that relative to a (0; x’, y) coordinate system, we
have

! Jo. Jo.
ad{" X =0 and ad
Ox Oy

a I
50 T aoyy,y:o. (3.7)




112 3. Equilibrium, Universal Solutions, and Inflation

Finally, if we consider a fully 3-D state of stress, relative to (o; x, y, z),
summation of forces separately in x, y, and z yields our general 3-D
differential equations of equilibrium:

4 pg, =0, (3.8)

o,y oy, Doy

ox Oy 0z

+pg, =0, (3.9)

doi Doy Dow
ox 0y oz 'PETH

(3.10)

Note that we have added a possible body force vector g, which acts at point
p and is defined per unit mass (i.e., the force per volume is pg, where p is the
mass density, and the force vector is pgAxAyAz).

At this juncture, it is instructive to review the restrictions associated with the
derivation of Egs. (3.5)—(3.10). First, did we specify any particular material?
Actually, we did not; hence, these equations hold for all/ continua—solid or
fluid, man-made or biological. Thus these equations are very general and
powerful. Second, did we make any assumptions on the motion, such as the
magnitude of the strains? Again, the answer is no. The only requirement was
that the body be in equilibrium (i.e., not accelerating). In Chap. 8, we will relax
this restriction so that we can study (accelerating) fluid flows. Third, are these
equations restricted to a particular coordinate system? The answer here, of
course, is yes: These equilibrium equations are valid only for Cartesian coor-
dinate systems. Physical problems “exist” independent of coordinate systems,
however, which are introduced to engender convenience when we solve a
particular problem. In some cases, Cartesian coordinates will be the most
convenient, such as when finding bending stresses in a cantilevered straight
beam within a force transducer that is used to measure applied loads on a force
plate used in gait studies. In other cases, cylindrical coordinates (e.g., when
solving for stresses in an artificial artery) or spherical coordinates (e.g., when
solving for stresses in an intracranial saccular aneurysm) may be preferred.
Fortunately, it can be shown (although the algebra is more complex) that
similar equilibrium equations exist for cylindrical and spherical coordinates
(Humphrey 2002). We merely list them here. For cylindrical coordinates,
we have

a Opr l a Oor a Oz Orr — 000

or "7 o0 T o

+pg, =0, (3.11)
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aG,~9 1 aO'gg a(ﬁg 26r9
z ? = 12
or Ty o0 To: Ty T 0 (3.12)

06, 100y, 00. 0,
3 +; 30 + 3 +7+ =0, (3.13)

whereas for spherical coordinates, we have

00, 180'9,4_’_ 1 aa¢,
Or r 00 rsin@ O¢

(26,, Cog — Ogp + Op COL 45) +pg. =0,
(3.14)

80,9 1 8099 1 564,9 1
or +; 00 +rs1n0 aqﬁ

(26,9 + ogr + (0'.99 — 6¢¢) cot 9) +pgy =0,

(3.15)

aO',~¢ 1 869¢ 1 a()'¢¢
or +; 00  rsin@ O¢ t

(26745 + ogr + (0¢9 — 0945) cot 9) +pg, = 0.

(3.16)

It should be obvious that solving coupled partial differential equations in three
dimensions for any coordinate system is generally nontrivial and often requires
sophisticated numerical methods for solution, such as the finite element method.
Nonetheless, to learn the methodology of approach, we should first seek
solutions that are tractable analytically; fortunately, such solutions can also be
very useful, as seen in Sect. 3.6.

3.2 Navier—Space Equilibrium Equations

Whereas the equations of Sect. 3.1 are valid for all continua, it is often useful to
derive specialized forms of the equilibrium equations for particular material
behaviors or classes of material behaviors.” Here, let us do so for LEHI
(Sect. 2.6) behaviors {i.e., materials that exhibit a linear, elastic, homogeneous,

2 Indeed, note that Egs. (3.5) and (3.6) represent two equations in terms of three
unknown stresses, whereas Egs. (3.8)—(3.10) represent three equations in terms of six
unknown stresses. In each case, we need additional equations to render the mathematical
problem well posed, equations such as constitutive relations.
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and isotropic response under small strains—these materials are described by the
so-called Hooke’s Law [Eq. (2.69)]}.

Let us first consider the case for a purely 2-D state of stress and strain (which
is different from plane stress or plane strain, as noted in Chap. 2). From the
stress—strain equation in Exercise 2.18, we note that

Oy = A(sxx + eyy) + 2ue,, (3.17)
Oyy = 2UEyy = Oy, (3.18)
Oyy = Aexe + €yy) + 2ueyy, (3.19)

where A and p are material parameters (Lamé constants, with y = G, the shear
modulus). The linearized strains are given by Egs. (2.44) and (2.45):

_ Ouy _ Ouy _ 1(0u, Ou,
=G o=y e =[G ) 60

Hence, substituting Egs. (3.17) and (3.18) into Eq. (3.5), we have
0 0
o [A(ew + &yy) + 2uen] + 3 (2uery) =0 (3.21)

or, by using the strain—displacement relations in Eq. (3.20),

0 Ou,  Ouy| 0 1\ (Ou, Ouy,\]
a (/?,-FZ/J)E-F/‘La—y] +a—y[2ﬂ<§> <a—y+g>] =0. (3.22)

Simplifying, note that we have

0%u 0%u 0%u o%u 0%u
A=—=42 SR P a 2
y o Ox? + 5xay+'u 0y? +'uayax

= = 0. (3.23)

If we (based on hindsight, which means after first trying multiple other possi-
bilities to no avail) note that the second term can be split into two equal parts,
then by collecting like terms, we have

0’u,  0%u, 0 (Ou, Ou,
ﬂ(a)@+a)ﬂ>+(ﬂ+ﬂ)8x<ax+8y>—0. (324)
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Similarly (show it), Eq. (3.6) can be written as
azuy_’_azuy +(/1+ )i 8ux+% —0 (3 25)
M\ o2 " oy Way\ox " ay) =7 '

These two equations are the so-called 2-D Navier—Space equilibrium equations;
they represent two coupled partial differential equations in terms of two
unknowns, the displacements u, and u,, as well as the Lamé constants A and
u. Of course, relative to an (x, y) coordinate system, the displacement vector u

can be written as u = ud + u)]A This suggests, therefore, that these two
equations merely represent the x and y components of a more general vectorial
differential equation. Consequently, Eqgs. (3.24) and (3.25) can be written much
more compactly in vector form as

uNV2u+ A+ p)V(V -u) =0, (3.26)
where in two dimensions, relative to Cartesian coordinates, the del operator is®

o 0

V=ie—+tj=—.
lax+18y

(3.27)

The advantage of writing such equations in vector form is that the equation is
now very general: It can be shown that Eq. (3.26) holds for 3-D states of stress
and strain [which results in three coupled partial differential equations in terms

of the three components of the displacement vector (e.g.,u = ud + uy.;' + u.k )]
as well as for any coordinate system (Cartesian, cylindrical, spherical, etc.).
Because of our use of Hooke’s law for linear, elastic, homogeneous, and
isotropic behavior as well as the use of the linearized strains, the Navier—
Space equilibrium equations are thus limited as well. It will be seen in
Chap. 8 that a similar differential equation will be derived for a restricted
class of (linear) fluids, an equation that is called the Navier—Stokes equation.
As one might expect, solutions to coupled partial differential equations are
generally challenging. Hence, rather than attempting to solve even some special
cases, let us first examine a much simpler class of solutions—ones that have
wide applicability despite increased restrictions due to additional assumptions.
After having done so, we will return to the differential equations of equilibrium
in Sect. 3.6.

3 Vector operations are reviewed in the Appendix in Chap. 7.
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Observation 3.1. The extracellular matrix (ECM) consists of many physically
and chemically interacting structural proteins, glycoproteins, glycosaminogly-
cans, and of course resident cells. Although engineers often think of the ECM as
a composite material whose mechanical properties must be quantified similar to
all engineering materials, the ECM is unique in that it experiences continual
turnover and it is capable of cell mediated growth (change in mass) and
remodeling (change in structure). Hence, we as engineers must develop new
approaches to describe the potentially evolving mechanical properties of living
tissue; that is, we must develop and extend our mechanics, not just apply it in
traditional ways.

Fundamental to the turnover of ECM is the production (synthesis) and
removal (e.g., degradation) of individual structural constituents. Matrix
metalloproteinases (MMPs) represent an important family of enzymes that
degrade components of the ECM. There are over 25 members of this family,
denoted MMP-1, MMP-2, and so forth, each of which can be produced by
different cells and degrade different but particular constituents. For example,
fibroblasts produce MMP-1, which degrades fibrillar collagens (e.g., types I, 1I,
and III) as well as certain proteoglycans. In contrast, macrophages produce
MMP-9, which degrades elastin, type IV collagen, denatured collagens, and so
forth. Although many have long thought of the action of MMPs primarily from
the perspective of biochemistry, it is now widely recognized that the rate of
degradation of a structural constituent by an MMP can depend upon the
mechanical loading experienced by that constituent. In particular, in many
cases it appears that increased mechanical stress increases the resistance of
the constituent to degradation. Although the mechanisms responsible for this
observation are not understood fully, stress likely changes the configuration of
the molecules, which in turn changes the accessibility of the MMP to particular
binding sites on the molecule. Regardless, we see yet again that solving initial
and boundary value problems in biomechanics to determine stress and strain
fields is fundamental to understanding diverse biological processes, in this case
the mechanochemistry of proteolysis.

3.3 Axially Loaded Rods

Perhaps the simplest problem in solid mechanics is equilibrium associated with
a uniform, 1-D state of stress in an axially loaded member having one dimen-
sion much greater than the other two. For example, if the member is rectangular
in cross section and x corresponds to the axial direction, then we posit that ¢, is
constant but nonzero, whereas all other components of stress are zero. From
Egs. (3.8)—(3.10), we see that equilibrium is thereby satisfied trivially at every
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point. Below, we will see how the numerical value of the ¢, component of
stress is related to the applied axial force and the cross-sectional area and,
indeed, how the force must be applied to ensure an axial extension only (i.e., no
bending or twisting). First, however, let us consider some biomechanical
motivations for such problems.

3.3.1 Biological Motivation

Whereas many soft tissues in the body experience multiaxial states of stress
(e.g., skin, the cornea and sclera of the eye, arteries and veins, the heart, the
diaphragm and lungs), a few tissues experience primarily a uniaxial (or 1-D
state of) stress. Consider, for example, the chordae tendineae of the heart. This
thin, stringlike structure consists primarily of axially oriented type I collagen,
which endows it with significant stiffness (cf. Fig. 2.26). Functionally, the
chordae connects the valves in the heart to the papillary muscles, which appear
as fingerlike muscular projections from the endocardial surface (Fig. 3.2). In a
way then, the chordae can be thought of in an analogous way as the ropes that
connect a person (muscle) to a parachute (valves). Due to the action of the
pressure on the valve and the resisting force in the papillary muscle, the chordae
are subjected primarily to a 1-D tensile stress. The biomechanics of the chordae
tendineae is obviously important in understanding valvular diseases (which
affect some 96,000 Americans per year) as well as in the design of replacement
valves and associated surgical procedures.

Chordae Tendineae

Ventricular Wall

Papillary Muscle (myocardium)

Endocardial Membrane Epicardial Membrane

Ficure 3.2 Schematic cross section of the left ventricle of the heart, which reveals the
papillary muscle, chordae tendineae, and a heart valve. The chordae are thin, tendonlike
structures that consist primarily of oriented type I collagen (recall Fig. 2.26). They
function to prevent the valves from inverting as well as to augment the ejection of blood.
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Like the chordae tendineae, many papillary muscles (some being thin and
chordlike) are subjected to uniaxial loading, as are numerous tendons
and ligaments in major joints. Understanding joint biomechanics is similarly
important in the design of tissue repairs or replacements and, thus, surgical
procedures, as well as in the design of protective devices for athletes. For
example, some 170,000 athletes tear the anterior cruciate ligament (ACL)
each year in the United States.

Of course, to solve most problems in mechanics, we must know the geometry,
material properties, and applied loads. Whether it be traditional engineering
materials, biomaterials, or native tissue, uniaxial stress tests are the most
commonly performed test in the R&D laboratory. Figure 3.3 illustrates two
common test conditions. In the situation on the right, the specimen is machined
or cut into a so-called dumbbell shape so that the cross-sectional area in the
central region of the specimen is much less than that at the ends. This specimen
design ensures that the stresses will be highest in the central region, where
failure mechanisms such as fracture or yield may be studied. In the situation
illustrated on the left, the specimen is merely mounted in fixtures on each end to
permit it to be coupled to the loading device. This figure is typical of many
nonfailure tests on ligaments and tendons. In both cases, the state of stress can
be very complex near the ends (i.e., near the loading fixtures); hence, data are
collected away from the ends where the stresses are thought to be uniform
(Fig. 3.3, right). This “St. Venant’s Principle” can be proved mathematically
for certain materials and loading conditions by solving the full differential
equations of equilibrium. Below, we simply focus our attention on the uniform
1-D state of stress in the central region.

) / Uxx

P / nonuniform

A rﬂ] stress
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\
\\ uniform
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O'xx distribution
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Ficure 3.3 Schema of two typical types of specimens and mounting fixtures that are
used in uniaxial loading tests. Shown, too, are stresses in the dumbbell-shaped speci-
men, which reveal stress concentrations near the hole and a uniform distribution away
from the ends. It is for this reason that stress and strain are measured away from the
“ends” of the sample.
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3.3.2 Mathematical Formulation

To determine the value of 6, in a generic, axially loaded member in equilibrium,
a specific cutting plane is introduced to divide the member into two sections
(Fig. 3.4), thereby exposing the stress of interest. For example, a free-body
diagram of the left section can be drawn, where at any section, the force
(magnitude) f passes through the centroid [shown below in Egs. (3.34) and
(3.36)]. The reaction force f is balanced at the cut surface by uniformly distrib-
uted normal stresses o,,, which act over differential areas at each point in the
cross section; that is, the sum of each stress acting at each point, multiplied by
their respective differential areas to yield a quantity having a unit of force, must
balance the opposing force f to ensure equilibrium. Mathematically,

Fe=0— |ondA—f=0. (3.28)
Yr-o-|

Because the stress o, is distributed uniformly (i.e., it is constant in the cross
section but of arbitrary value as needed to balance whatever f is applied), it can
be taken outside the integral, which can then be evaluated as follows:

f

GL\~J dA=f — 0, = T (3.29)

from which we see that the units of stress are clearly force per area, commonly
Pa (N/m?) or psi (Ib/in.?). Recall that this simple result was used extensively in
Chap. 2.

Ficure 3.4 A free-body diagram constructed by making a fictitious cut in the central
region of a test sample for isolating the x-face stresses of interest. We assume that only
the normal stress o, acts on the cut face for shear stresses are not needed to balance the
applied axial load f. Moreover, although o,, is assumed to be uniform in the central
region, far enough away from the ends, we must remember that stresses act over
differential, not total, areas.
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Ficure 3.5 Cross section
of the x-face area in an
axially loaded member.
A Aictitious cut reveals
o, stresses, which act
over (cross-hatched)
differential areas dA
[centered at point (y, z)]
while the line of action of
the axial load is assumed
to go through the point
O, z%).

That the applied force must pass through the centroid of the member to
ensure that o, is uniformly distributed over the cross section is seen easily by
requiring that the sum of the moments vanish as well. Hence, let the applied
force fact through an arbitrary point (y*, z*), which locates the line of action of f
(Fig. 3.5). Considering the stress that acts over the differential area dA at (y, z),
equilibrium requires that the sum of the moments about the y axis must equal
zero; that is, using the right-hand rule to note the sign of each moment, we have

> M), =0— Jzaxdi — fz* =0, (3.30)

or if the stress is uniform,

GXXJZdA = fz¥, (3.31)
where
f_f
O =5 = (3.32)
A J dA

from Eq. (3.29). Hence, Eq. (3.31) can be written as
f

JdA

szA = fz*, (3.33)
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or

szA
% — — k=7 (3.34)
JdA

that is, the force must go through a point z* that coincides with the centroid z
[see the Appendix 3 for a discussion of first moments of area (centroids)].
Similarly, summing moments about the z axis,

> M), =0 —JyaudA +fyF =0, (335)
whereby it can be shown (do it) that

JydA

[ as

thus proving that the point (y*, z*) through which the applied force acts must
coincide with the centroid (y, z) to maintain equilibrium (ZM, =0 and M. =0)
in the presence of a uniform stress. We see, therefore, that a simple analysis can
help us design well a useful experiment (i.e., to determine how the load should
be applied). Finally, note that these equations hold for all cross sections—
rectangular, circular, or arbitrary. Indeed, because these results were also
obtained independent of the specification of particular material properties,
they are called universal solutions. Although not emphasized in most books
on the mechanics of materials, the generality of these universal solutions
[Egs. (3.29), (3.34), and (3.36)] allow them to be applied equally to problems
involving the uniaxial extension of tendons, rubber bands, metallic wires, or
concrete. These results are thus very important.

Example 3.1 A chordae tendineae specimen initially 10 mm long is to resist an
axial tensile load f of 100 g. The specimen initially has a 1.0-mm diameter.
What is the maximum axial stress that the chordae will experience?

Solution: We recall that axial stress is computed via the applied force acting
over the cross-sectional area. Hence, consider
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(100g)(9.807 x 107°N/g) (IOOOmm

2
5 ) — 1.25MPa.
#(0.5mm)

S
A, m

As seen, such calculations are very easy. A key question to ask, however, is
whether a chordae tendineae can sustain a 1.25-MPa stress without tearing,
which is to say, How does this value compare to the range of stresses that would
be expected to exist in vivo? Toward this end, see Exercise 3.3, which should be
attempted only after completion of the next two sections on inflation problems.

At this juncture, however, let us recognize another very important issue.
The value of stress of 1.25 MPa in this example was computed using the applied
load and the original cross-sectional area A,. Such stresses are called by various
names: the Piola—Kirchhoff stress (named after two nineteenth-century
investigators), the nominal stress, or, sometimes, the engineering stress. The
important observation though is that the derivation for 6., =f/A in Eq. (3.29) is
actually based on A, the current cross-sectional area over which the force
actually acts. This definition is often called a Cauchy stress, after the famous
mathematician/mechanicist A. Cauchy, or the true stress because one uses the
actual area over which the load acts. When the deformation (and thus strain) is
small, A ~ A, and the two definitions yield similar values. When the deformation
is large, however, as is the case for most soft tissues, the computed values can be
very different. To compute the Cauchy stress in Example 3.1, therefore, we
must measure A rather than A,,. Clearly, the latter is easier experimentally; thus,
the wide usage of the nominal stress X gyce)(direction) DY €Xperimentalists. We will
in general prefer the Cauchy stress o(gacedirectiony herein, however, which
appears naturally in the equilibrium equations. Fortunately, we shall see in
Chap. 6 that the various definitions of stress are related. Indeed, Exercise 3.4
shows how the Cauchy and nominal stress are related in the simple case of a 1-D
state of stress and incompressibility.

Observation 3.2. Figures 2.24 and 2.26 reveal the characteristic nonlinear
behavior exhibited by many soft tissues: initially compliant at lower strains
but very stiff at higher strains. It has been suggested by many that this nonlinear,
perhaps exponential, behavior is due to the composite nature of such tissues and
the presence of undulated collagen fibers (Fung 1993); that is, the initially
compliant, sometimes nearly linear, behavior is often ascribed to the stretching
of amorphous elastin, whereas the gradual-to-rapid stiffening is ascribed to
the progressive recruitment (i.e., straightening) of previously undulated colla-
gen fibers that may exhibit a nearly linear behavior when straight. Consistent
with this thinking, many early investigators in cell mechanics assumed that
cytoskeletal filaments may exhibit a nearly linear behavior. However, recent
technological advances now enable investigators to perform mechanical tests
on single molecules, which has revealed diverse and unexpected findings.
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Leckband (2000) briefly reviewed three techniques for studying the mechanics
of single molecules (e.g., proteins) as well as molecular interactions. Laser
tweezers enable force measurements over the range 1-200 pN, the atomic force
microscope (AFM) enables measurements over 10—1,000 pN, and micropipette
aspiration enables measurements over 0.01-1,000 pN (note: pico indicates 10*12,
whereas nano indicates 10~°). The AFM is discussed further in Chap. 5. Laser
tweezers, also known as optical traps, exploit the interaction of highly focused
laser light (e.g., from a Nd: YAG laser, at 1,065 nm) and small (1-3 pm) dielectric
particles. Briefly, light can exert a “pressure” on such particles, which when
directed against gravity can trap the particle in a suspended state. The net “trapping
force” depends on the laser power, the speed of light, and the properties of the
particle. For example, a biomolecule can be attached to and held between two
functionalized (to bind to the biomolecule) polystyrene microspheres, one of
which is trapped by laser light and the other is mounted on a movable micropipette.
The micropipette can thus be used as an actuator and the laser tweezers as a force
transducer (Fig. 3.6). Conversely, the micropipette aspiration technique allows
force to be inferred from global deformations of membranous capsules having a
known surface tension. The specimen is held by suction between two opposing
micropipettes.

Figure 3.7a, b illustrate laser tweezer measurements of the 1-D force—exten-
sion behavior of chromatin, a DNA attached to a protein (histone) base that is
the carrier of genes. Similar to data at the tissue level, one sees a nearly linearly

Laser Light

Objective

Polystyrene Bead
Objective

Laser Light

A

Polystyrene Bead

Chromatin Fiber

Glass Micropipette

FiGure 3.6 Schema of a laser tweezer (i.e., an optical trap) that can be used to capture
and thus manipulate small particles using laser light. Functionalized particles (with
appropriate ligands) can, in turn, be used to manipulate various biological molecules and
thereby enable force—extension tests similar to those advocated by Hooke at the
macroscale.
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FiGure 3.7 Schema of force—extension data for two different classes of molecules.
Panels a and b show the behavior of chromatin for continuous extensions and releases,
which reveal an elastic response or a pseudoelastic response depending on the degree of
extension. Panel ¢ shows the behavior of tenascin under continuous extension: a familiar
nonlinear loading response is followed by an abrupt loss of force and a compliant
response, only to be repeated multiple times. It is thought that this complex behavior
is due to two different types of deformation of the molecule: The nonlinear response is
due to a straightening of the undulated molecule (panel d), whereas the abrupt change is
due to the complete unfolding of a portion of the molecule. The small oscillations in
panel c¢ represent noise in the measurement of pico-Newton (pN) level forces.

elastic response over small extensions but a non-linearly pseudoelastic (i.e., a
repeatable rate-independent hysteresis) response over larger extensions. Above
~20 pN, however, the force—extension curves were no longer reversible or
repeatable (not shown).
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Figure 3.7c shows a very different behavior. AFM data on tenascin, an
extracellular matrix protein, reveals a “sawtooth” type of response with repeat-
ing compliant-to-stiffening curves at increasingly greater extensions. It has
been suggested that such responses are due to the breaking of bonds that
stabilize folded domains along the molecule; each abrupt loss of force corre-
sponds to an unfolding event (Fig. 3.7d). It should be noted that protein
unfolding exposes new chemical binding sites, thus explaining how mechanical
forces or deformations can change molecular activity. Hence, albeit with
sophisticated instrumentation like optical tweezers or the AFM, understanding
how to interpret simple 1-D extension tests is very important, even at the
molecular level. If we seek to compare behaviors from molecule to molecule,
however, there is a need to go beyond Hooke’s force-extension idea to concepts
like stress—strain, which has not been investigated in depth in molecular
biomechanics. For more on these studies, see Cui and Bustamante (2000) and
Oberhauser et al. (1998), and references therein.

Example 3.2 If f=100 pN at the maximum extension in the first cycle of
loading on tenascin and if the original diameter is on the order of 10 nm, how
does the stress compare with that in tissue?

Solution: Given

100 x 107 2N
S x > = 1.3 x 10°N/m’ = IMPa,
A, %7‘[(10 X 10_9m)

we see that this value is on the order of that expected for ligaments or tendons,
which are regarded as very strong tissues.

3.4 Pressurization and Extension of a Thin-Walled Tube

Let us now consider another universal solution—a solution in which we can find
a relationship between the stresses and the applied loads and geometry without
specifying a particular constitutive equation for the material [cf. Eq. (3.29)].
Not only are such universal solutions useful because they allow the analysis of
boundary value problems involving a wide variety of materials—soft tissues,
rubber-like materials, metals, and so forth—they are also extremely important
in experimental design, for they provide a means of interpretation independent
of the yet unknown material behavior, which is essential when one is designing
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an experiment to identify and quantify a yet unknown constitutive relation.
As noted by Fung in 1973 and reiterated in his text (Fung 1990), performing the
right experiments to quantify the constitutive equations of living tissue remains
one of the most important tasks in biomechanics.

3.4.1 Biological Motivation

Many soft tissues are pressurized cylindrical tubes. Examples include blood
vessels, airways, and ureters. Moreover, many clinical devices include various
tubes for the transport of fluids—from mechanical ventilators to heart—lung
machines, from kidney dialysis units to catheters for balloon angioplasty, and
even from oxygen lines to simple IV (intravenous) pumps, pressurized tubes are
widespread in the hospital. Hence, quantifying the stresses in a cylindrical tube
that arise from an internal pressure is fundamental to biomechanical R&D.

As a specific example, consider the saphenous vein. The great saphenous vein
is one of the primary veins in the leg (along with the femoral vein); it runs along
the medial aspect of the leg from the groin to the foot. Understanding well the
biomechanics of the saphenous vein is not only important for understanding the
normal physiology and pathophysiology of veins, the saphenous vein has long
been used as an autologous graft in coronary bypass surgery for the treatment of
obstructive atherosclerotic lesions that are the cause of heart attacks. Although
balloon angioplasty and intravascular stents have become widely accepted
alternatives to bypass surgery (~1,000,000 percutaneous coronary procedures
per year in the United States alone), saphenous vein bypass surgery continues to
be performed widely (~400,000 procedures per year in the United States). As
shown in Fig. 3.8, a bypass procedure generally involves the suturing of the
distal end of a vein segment to the ascending aorta and suturing the proximal
end of the vein to a coronary artery distal to the obstruction/stenosis. Question:
Why are the directions important? The treated coronary stenoses and, indeed,
the continued patency of the graft are evaluated fluoroscopically via heart
catheterization and dye injection into the artery. The latter requires an under-
standing of the biofluids, which we address in Chaps. 7-10.

Whereas the first transplants of veins into the arterial system date back to the
early twentieth century, coronary bypass surgery became commonplace only
after basic, clinical, and biomedical engineering advances (such as the heart—
lung machine) provided surgeons with sufficient time and ease to perform the
surgery. More recently, findings in cell biology have opened up two additional
areas in which biomedical engineering can contribute significantly to bypass
surgery. First, as noted in Chap. 1, we now know that many cells in the body
(the mechanocytes) alter their structure and function in response to changes in
their mechanical environment. Given that the endothelial, smooth muscle, and
fibroblast cells in the venous wall (Fig. 3.9) are all very sensitive to mechanical
signals and that when transplanted into the arterial system, a vein goes from a
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FiGUREe 3.8 Schema of possible bypass grafts for coronary arteries originating from the
ascending aorta. Coronary artery disease (i.e., the presence of an obstructive atheroscle-
rotic plaque) is a leading cause of morbidity and mortality. Although reduced flow to
distal tissue can cause ischemia and thus angina, rupture of the atherosclerotic plaque
and subsequent clotting at the site of rupture is responsible for most sudden cardiac
deaths. Understanding the solid mechanics (e.g., mechanisms of rupture) and fluid
mechanics (e.g., altered blood flow) are both essential to improving clinical care.

low-pressure (5-15 mmHg) steady-flow environment to a high-pressure
(120/80 mmHg) pulsatile environment, understanding well the biomechanics
and associated mechanobiology becomes fundamental to designing the surgical
procedure. Second, also as noted in Chap. 1, realizing the importance
of mechanotransduction mechanisms in controlling cell and matrix biology
suggests that we may be able to engineer tissue replacements by applying the
appropriate loads to vascular cells and their biodegradable scaffolds as we
control their in vitro building of a replacement vessel for surgical implantation.

Given this motivation—the need to understand better both normal physiology
and pathophysiology, the potential to design better surgical procedures, and the
potential to engineer better replacement tissues—Iet us now investigate the
associated stress analysis of an inflated tube.

3.4.2 Mathematical Formulation

We will see in Sect. 3.6 that the intramural stresses in a pressurized, thick-
walled circular cylinder vary from point to point in general. For example, as
illustrated in Fig. 3.10, the circumferential (or hoop) stresses oyy are often
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Ficure 3.9 Portion of the wall of a vein showing the major cellular (EC = endothelial,
SMC = smooth muscle, FB = fibroblast) and matrix (collagen and elastin) constituents;
a is the inner radius and b the outer radius. Although veins have the same three layers as
arteries (intima, media, adventitia), the thickness and composition of each layer are
different between the two classes of vessels, as would be expected based on their
different mechanical environments.
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Fiure 3.10 Schema of the radial distribution of the circumferential stress ogg in a
thick-walled cylinder under the action of an internal pressure P. Most importantly, note
that the stress is nonuniform, in contrast to that in Fig. 3.4 for the axially loaded member.
Over a thin portion of the wall, however, the circumferential stresses can be represented
well by the local mean value. This observation suggests that stresses in thin-walled
pressurized cylinders may be represented well by their mean values.
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FiGure 3.11 Free-body diagram of half of a thin cylindrical tube that is subjected to an
internal pressure. Although the cut face exposes three components of stress in general
(64, 099 and oy, given the face-direction nomenclature), ogg alone is needed to balance
the net vertical force due to the pressure (because we cut the tube exactly in half). Note,
too, that a force balance on a finite part will yield the same result as that on an
infinitesimal part because oy is assumed to be uniform.

higher in the inner wall than in the outer wall due to pressurization alone.” It is
easy to imagine, however, that if we consider only a thin segment of the thick-
walled structure or, better yet, if we have a thin-walled cylinder to begin with,
the normal Stresses O(iheta face, theta direction) (1-€., Ogg), Will still vary across the
wall, but the difference from the inner portion to the outer portion may be so
small that we can represent well this distribution by the mean value of the stress.
Hence, if the cylindrical tube is thin walled, it is reasonable to assume that the
stresses are approximately uniform across the thickness. Question: How thin is
thin enough? A general rule of thumb is that the ratio of the deformed wall
thickness / to the pressurized radius a should be 1/20 or less. In this case, by
making a judicious cut that separates the cylinder into halves (Fig. 3.11), we see
that a force balance in the vertical direction requires the following. The sum of
all internal uniform pressures acting at each point on the inner surface of the
tube multiplied by their respective differential areas dA generates a net vertical
force. This force is balanced by the vertical forces associated with the sum of
the circumferential stresses og9 (When we cut the tube in half) at each point
multiplied by their respective differential areas; that is,

* In biological tissues and organs, a growth and remodeling process tends to introduce a
so-called residual stress field that can homogenize the overall stresses (Humphrey
2002); this is discussed briefly in Chap. 6.
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Y Fo=0- JPVdA — 2J ooedA = 0. (3.37)

(Note: The factor 2 is necessary because we must add all of the stresses acting
on each of the two cut edges.) Moreover, the “effect” of pressure in the vertical
direction P, can be written in terms of the uniform internal pressure P via
sin @ =P, /P (Fig. 3.11). Thus, P, = P sin 6, which acts over the differential area
rdfdz, where r = a on the inner surface. Consequently, equilibrium requires

HP sin faddz — Zﬂ(rggdrdz =0. (3.38)

Because the internal pressure and circumferential stress are both distributed
uniformly, both can be taken outside the integrals, leaving

l o7 | pra+h
Paj J sin d0dz = 25(,4 J drdz, (3.39)
0J0 0Jo

where / is the length of the tube, or

/ 1
PaJ 2dz = 2aggj hdz — P(2a)(1) = 2049(h)(1). (3.40)
0 0

Thus, the basic equation for determining the circumferential (Cauchy) stress in
a thin-walled pressurized cylinder is

Pa
09y — 7, (3.41)

where P is the uniform internal pressure, « is the inner radius of the cylinder in
the pressurized configuration, and / is the thickness of the wall of the pressur-
ized (i.e., deformed) cylinder. That a and /4 are values in the pressurized
configuration cannot be overemphasized; numerous papers in the biomechanics
literature are in error because of a failure to recognize this.

Likewise, it is very important to appreciate the implications of Eq. (3.41),
which was derived independent of an explicit specification of the material
properties and thus is a universal solution. For example, this equation says
that if we have cylinders of different radii, but subjected to the same pressure
and having comparable wall thickness, then the larger cylinder will have a
higher stress. Although the thinness assumption may be questionable in the case
of many abdominal aortic aneurysms, portions of which may be cylindrical
(Fig. 3.12), many have argued based on Eq. (3.41) that the larger-diameter
aneurysms are more susceptible to rupture, given comparable blood pressures,
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Ficure 3.12 Schema of an abdominal aortic aneurysm (AAA). These lesions tend to be
more prevalent in men, they tend to be most problematic in the elderly population, and
the vast majority are fusiform in shape. AAAs may expand at different rates, often
ranging from 0.1 to 1.5 cm/year. Traditional thinking has been that the rupture potential
increases with overall size (~40 % for lesions less than 5 cm in diameter and ~75 % for
lesions greater than 10 cm) although biomechanical analyses suggest that curvature may
be a more important predictor than size. The primary risk factors for AAAs are cigarette
smoking, diastolic hypertension, and chronic obstructive pulmonary disease. Among
others, Albert Einstein died from a ruptured AAA.

because the stress is higher.” Hence, this simple equation can have important
clinical ramifications. One important caution, however, is that although the
pressure P is assumed to be uniform and thus constant at each equilibrium
state defined by each pair a and 4, Eq. (3.41) does not imply that 64y necessarily
increases linearly with increases in P; that is, the radius that a tube assumes
under the action of a given (equilibrium) pressure will depend on the material
properties. For veins, for example, there is a highly nonlinear relation P = P(a)
(see Fig. 3.13), where oy also depends directly on the value of a for each
pressure. Likewise, if the tube is subjected to an axial force f while pressurized,
an increasing f will tend to decrease a at a given P. Hence, to use Eq. (3.41)
correctly, we must use the correct values of a and /% in the loaded configuration
at each pressure P [i.e., each equilibrium state, whereby we recognize further
that Eq. (3.41) can be used to compute stresses in a sequence of equilibria or
increasing values of P, as long as the states are achieved quasistatically.
Conversely, an illustrative example of elastodynamics is considered in
Chap. 11].

Although we will determine, below, the stresses in a tube under the action of
axial loads, let us first make two additional observations. First, the integral
| [sinfad6dz in Eq. (3.39) equaled 2al, which is the projected area over which
the pressure acts in the vertical direction. Recognizing this, Eq. (3.41) can be

> Detailed analysis of AAAs is very complex and typically requires numerical methods
(Humphrey 2002).
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FiGure 3.13 Pressure—stretch data for veins. Excised cylindrical segments were
mounted vertically, plugged at the bottom, and inflated from the upper end. Panel a
compares results in the circumferential direction between human (dashed line) and
canines (solid line) vessels, whereas panel b compares data from canines in the axial
(dashed line) and circumferential (solid line) directions. Note the nonlinear responses,
similar to the stress—strain response of many soft tissues and of course, the species-
species differences. It is also important to note that because the current radius a (where
the circumferential stretch lyp=a/A, with A the original radius) is dictated by the
distending pressure, the pressure is thus a function of the radius [say P = P(radius)].
This simple realization aids greatly in the interpretation of the equilibrium result for
stress in veins if treated as a thin-walled tube. [Data from Wesley et al. (1975) Circ Res
37: 509-520].

rederived easily by balancing the pressure times its projected area with the
circumferential stresses times the area over which they act: P(2al) = 269(hl).
When the projected area is obvious, this permits a quicker derivation. Second, if
we recall that the uniform oy is actually the mean value that represents well the
distribution of stresses across the thin wall, note that by boundary conditions,
o,, equals —P at the inner surface and o,, equals O at the outer surface (in our
case although one could separately track an inner pressure P;, and outer pressure
P,). Not knowing how o,, varies from —P to 0 (e.g., linearly or nonlinearly with
radial location r € [a, a+ h]), the mean value can nonetheless be estimated
simply as

~P+0 —P

61‘)‘)mean = T — Op = 77 (342)
which is assumed to represent well the radial stresses within the wall of a thin-
walled cylinder. Because of the thinness assumption, however, a/h >>1 and
thus 649 will be much larger numerically than o,,. It is for this reason that o,, is
typically not considered in thin-walled inflated cylinders, although one must be
careful to ignore effects in mechanobiology based on order of magnitude
arguments alone.
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FiGure 3.14 Free-body diagram of a cylindrical tube that has been cut to expose z-face
stresses, only one of which (o,,) is needed to balance the axial force f. Question: Under
what type of loading would we also need a z-face, #-direction stress o.,y? Could such a
stress exist in the aorta, popliteal artery, or middle cerebral artery?

Finally, let us consider two cases with regard to the axial stress o,, in an
inflated thin-walled cylinder. Ask any vascular surgeon, for example, what
happens to an artery or vein when it is transected. The answer is that many
vessels retract considerably when cut (e.g., the murine carotid artery will
shorten ~80 % when cut), which reveals that significant axial loads are present
in vivo. These “preloads” probably arise during development, but this is
speculative. Regardless, the axial stress is computed easily using the methods
in Sect. 3.3, provided the line of action of the axial force f goes through the
centroid of the overall cross section (i.e., provided f induces extension but not
bending or twisting). From Fig. 3.14, therefore, we have

2n pa+h
-+ J J 6..rdrdd = 0. (3.43)
0 Ja

If, consistent with Egs. (3.41) and (3.42), we consider the mean value of o, to
represent well the distribution of stresses across a thin wall, then

o.. [2n((a TP - a2) (%)] =f— 0. 2;;}1 (3.44)

if h< a. Because the deformed cross-sectional area over which f acts is
A=2nah, Eq. (3.44) is thus consistent with Eq. (3.29) for axially loaded rods
of arbitrary cross section.

Conversely, if the ends of the cylinder are closed, then the internal pressure,
which acts normal to and into all surfaces, will exert a net axial load as well. In
this case (Fig. 3.15), we again sum the forces in the z direction. The sum of the
internal pressures acting at each point in the z direction multiplied by their
respective differential areas dA is balanced by the force developed by the sum of
the stresses o, acting at each point in the wall multiplied by their respective
differential areas. To satisfy equilibrium, therefore,

> F.=0- Ja_,sz — JPdA =0, (3.45)
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Ficure 3.15 Similar to Fig. 3.14 except for the case of an internal pressure acting on a
closed-ended tube. The cut exposes the stress of interest but does not depressurize the
tube because it is fictitious.

or
” 0, 1dOdr — ” PrdOdr = 0. (3.46)

Again, because the internal pressure and the axial stress are assumed to be
uniformly distributed, both can be taken outside the integral, thus leaving

2r pa+h 2 ra
UZZJ J rdrd@ = PJ J rdrd@,
o Jo

2r 1
J (a+h)? 2} 0 = PJ ~d2de,
0 2 (3.47)

0'{% {(a Fh)? - ] }(2;:) —p G@ﬂ) (27),
0.:(2ah + I*) = Pa®.

Again assuming that the term /” is small compared to 2ah and thus that it
contributes little to the overall solution, the basic equation for estimating the
pressure-induced axial stress in a thin-walled closed cylinder is

(3.48)

where P is the internal pressure, a is the inner radius when pressurized, and 4 is
the associated thickness of the wall. Note that this value is one-half that in the
circumferential direction [cf. Eq. (3.41)].

Finally, in the case in which the ends are closed and there is an applied axial
load,

__ Pa n f
%= = on T 2pal

(3.49)

Superposition of solutions is allowed because the governing equations are
linear. This, too, is a universal result.
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Example 3.3 If a thin-walled, closed-end pressure vessel is subjected to inter-
nal pressure P (with radius @ and thickness /), find the value of an additional end
load f such that 649 = o.. (cf. Fig. 3.16).

Solution: From the above results [Eqs. (3.49) and (3.41)], the associated axial
and circumferential stresses are

Pa f Pa

O and Oy = ——.
h

= =2 " 2mak
Now, set the two stresses equal (699 = 0,,) and solve for f:

Pa Pa f

ra _p2
W20 2ame TR

which is seen to equal the pressure times the internal projected area over
which it acts.

09 O

FiGure 3.16 Schema of a small portion of a tube that could be subjected to an internal
pressure and an axial force. Note that the 2-D state of stress at a point p depends on the
coordinate system of choice.

It is important to recognize that if we neglect o,,. in comparison to 649 and o,
then the state of stress in a thin-walled inflated tube is two-dimensional relative
to (0, z). As shown in Chap. 2, however, we know that 2-D stresses also exist
relative to other coordinates, as, for example, (¢, ). Indeed, it can be shown
that,® perfectly analogous to Egs. (2.13), (2.21), and (2.17),

© Note that z is like x and 6 is like y on a 2-D block of material.
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! . .
6, =0 cos’a + 26,9 sina cos a + ogg sin >a, (3.50)
! . .
Gy = Oz sina — 26.9 sin @ cos a + ogg cos *a, (3.51)
! . .
0,9 = (6gp — 0.;) sinacosa + azg(cos 2o — sin? ) (3.52)

Hence, we can again ask questions, such as: What is the maximum normal
stress? What is the maximum shear stress? At what angle a, relative to z, is the
principal direction? For example, for a closed-end pressurized tube in the
absence of an externally applied axial force,

/ / Cop — 022\
O-Zg)max/min = O-Zg(a = as) = \/(2) + (029)2

1/Pa Pa\’ Pa
= - — — — +0:—’
4\ h 2k 4h

which is to say that the maximum possible shear stress in two dimensions is
one-half the axial stress. This shear occurs at

(3.53)

1 — 0y 1
a; = E’[a_117l <G%ZTZ::A> = Etan*l(oo) — a, = +45°. (3.54)

Such calculations are extremely important in design and analysis and they serve
to remind us that stresses exist relative to particular coordinates.

Observation 3.3. According to Butler et al. (2000), “The goal of tissue engi-
neering is to repair or replace tissues and organs by delivering implanted cells,
scaffolds, DNA, proteins, and/or protein fragments at surgery.” Much of the
early research in this field was directed toward the design of bioreactors to keep
dividing cells alive ex vivo, the engineering of biodegradable synthetic scaf-
folds on which these cells could adhere, migrate, and grow, and the growing of
tissue in desirable shapes such as cylindrical plugs, flat sheets, or tubes.
For obvious reasons, biochemical engineering played a significant role in the
beginning of this exciting frontier. Fortunately, there have been many successes
in this regard; thus, attention is turning more toward issues of “functionality’;
that is, now that we can make tissuelike materials in desired shapes, we must
focus on making them functional. Some tissues, like the liver, have a primarily
biochemical function, but many tissues of interest (e.g., arteries, cartilage,
ligaments, heart, skin, and tendons) have mechanical as well as biological
functions. Hence, biomechanics will play a central role in functional tissue
engineering. For example, early work on arteries sought primarily to develop a
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nonthrombogenic tube that would withstand arterial pressures and have
sufficient suture-retention strength. Normally functioning arteries do much
more, however. For example, they vary their smooth muscle tone to control
the diameter of the lumen and, thus, regional blood flow and they grow and
remodel so as to function well under the inevitable changes in load experienced
throughout changes in life. Tissue-engineered arteries should thus do more than
pass simple “burst” and “suture-retention” tests.

Tissue-engineered tendons for the surgical repair of damaged joints play
primarily a mechanical role, thus their material properties must likewise
mimic well those of the native tissue. Butler and Awad (1999) reported that
mesenchymal stem-cell-based tissue-engineered repairs of tendon defects
exhibited load-carrying capabilities from only 1663 % of the maximum
force experienced by the tendon during normal activity (Fig. 3.17). The need
for continued improvement in structural integrity is thus clear. The use of
biomechanical analysis will be essential, of course, in the continued evaluation
of such tissue constructs.

12W

10 A MSC and collagen gel composite

~ 1 Collagen gel alone

Stress, MPa
[e;]

I I T T T ]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Strain, mm/mm

Ficure 3.17 Uniaxial stress—strain behavior of rabbit patellar tendons wherein surgi-
cally created defects were treated with either a collagen gel filler or a collagen gel filler
augmented with mesenchymal stem cells (MSCs). Data are shown 4 weeks after the
repair. Clearly, augmentation of the filler with MSCs improved the stiffness and strength
of the repair. Nonetheless, the repaired tendons could still support only 16 % of the
maximum stress borne by a native tendon. [From Butler and Awad (1999), with
permission from Lippincott Williams & Wilkins].
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3.5 Pressurization of a Thin Spherical Structure

Here, we consider a situation very similar to that in Sect. 3.4: the uniform,
quasistatic pressurization of a thin-walled spherical structure composed of an
arbitrary material. That is, we seek another universal solution that relates wall
stresses to the applied loads and geometry. Because of the spherical symmetry,
only two stresses will be independent. The radial stress o,, at the surfaces will,
by boundary conditions, be equal and opposite the pressure acting on either the
inner or the outer surface of the sphere. Hence, as in the case of the cylinder, the
mean value of radial stress o, will be —P/2 if P is the distending (inner)
pressure and the outer pressure is zero [cf. Eq. (3.42)]. Note, too, that if we
cut a sphere in half from top to bottom, we expose intramural stresses o,
whereas if we cut it in half from side to side, we expose the 649 component.
Because top to bottom and side to side are actually indistinguishable (i.e., you
cannot discern a true change in orientation if you rotate a sphere), 644 = 6¢9 in a
perfect sphere. Hence, our objective again is to relate this mean “hoop” stress to
the applied load (distension pressure) and geometry (deformed radius and wall
thickness).

3.5.1 Biological Motivation

In 1892, R. Woods presented an analysis of stresses in the wall of the heart
based on the assumptions that the left ventricle is nearly spherical and thin
walled. Although both of these assumptions are obviously crude, advances in
cardiac mechanics came slowly: First in the late 1960s, when analyses were
based on the assumption of a thick-walled sphere and material isotropy, to
studies in the late 1970s to mid-1980s that focused on the nearly circular, thick-
walled geometry of the equatorial region and transverse isotropy, to recent
numerical studies based on more realistic geometries and material behaviors
(see Humphrey 2002). Whereas the heart cannot be modeled as a thin-walled
spherical structure, many pressurized cells, tissues, and organs can be well
approximated within this context. Examples may include the eye, the sphering
of red blood cells, intracranial saccular aneurysms, and the urinary bladder.
Indeed, in 1909, W. Osborne reported pressure-volume data on excised, intact
urinary bladders that revealed the characteristic nonlinear behavior exhibited by
soft tissues over large strains (cf. Fig. 3.13); his data are interpreted easily
within the context of the spherical assumption. Here, however, let us consider a
pathologic condition that is responsible for significant morbidity and mortality.

Intracranial saccular aneurysms are focal balloonlike dilatations of the arterial
wall that often occur in or near bifurcations in the circle of Willis (the primary
network of arteries that supplies blood to the brain; see Fig. 1.1). Although these
lesions present in myriad sizes and shapes, a subclass of intracranial aneurysms
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a Intracranial e
—

Saccular Aneurysm.—

FiGurE 3.18 Schema of a subclass of intracranial saccular aneurysms (cf. Fig. 1.1) that
can be modeled, to a first approximation, as a thin-walled pressurized sphere of radius a.
Although pressure gradients are associated with the blood flow within the lesion
(Chap. 8), these gradients tend to be small in comparison to the mean blood pressure
(~93 mmHg); hence, we can often assume a uniform internal pressure P. Also shown is a
picture from the author’s laboratory of a human circle of Willis with bilateral aneu-
rysms, one ruptured and one not—the rupture being the cause of death. This reminds us
that biomechanics is not just intellectually challenging and fun, it has potential to affect
the lives of individuals and families.

can be treated reasonably well as thin-walled pressurized spherical structures
(Fig. 3.18). For example, wall thickness is often on the order of 25-250 pm,
whereas the pressurized inner radius is often on the order of 1.5-5 mm. Thus,
hja < 1. A dilemma faced by neurosurgeons is that the rupture potential of these
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aneurysms is very low, less than 0.1-1.0 % per year, but when they rupture, 50 %
of the patients die and 50 % of the survivors will have severe, lasting neurolog-
ical deficits. A key question then is: How can we better predict the rupture
potential of a given lesion, knowing that rupture appears to occur when wall
stress exceeds strength locally? There is, therefore, a real need for biomechanical
analysis in this case.

3.5.2 Mathematical Formulation

Similar to the analysis of the cylindrical tube, consider a free-body diagram in
which we cut the thin-walled sphere in half to expose the internal stresses
04 = Ogo, Which we will assume to be uniform (i.e., the mean values). Equi-
librium thus requires force balance in the vertical direction, which is to say, a
balance between all the pressures acting over their oriented differential areas
and all the stresses acting over their differential areas. Mathematically
(Fig. 3.19) and because the sphere is cut in half,

spherical
cap

pdd sinddo
Opo =0y psind

de

FiGure 3.19 Free-body diagram of half of a pressurized spherical membrane, the
associated coordinate system (p, 6, ¢), and a convenient differential area for force
balance. g9 = 64,4 simply because of spherical symmetry—in other words, because a
force balance and free-body diagram that separates the sphere into left and right halves
yields the same result as one that separates it into top and bottom halves.



3.5. Pressurization of a Thin Spherical Structure 141

> Fo=0- JPVdA — JdggdA =0, (3.55)

where the vertical component of the pressure is Pcos¢g, which acts over a
differential area dA = p d¢psin(¢)do, as seen in Fig. 3.19. Thus,

”P cos ¢p sin pdOpdgp = ” coopdOdp (3.56)

where, in the pressure integral, p = a, the inner radius in the pressurized state.
Thus,

/2 (2n a+h 2n
PaZJ J cos¢sin¢d9d¢—aggj J pdfdp,

0 0 a 0
a+h

/2
Pazj 27 cos ¢ sin pdp = O'ggj 2zpdp,
0 a

ath (3.57)

7[/2 1
PaZJ 3 sin 2¢d¢p = Gggj pdp,
0 a

P (%) (1) = o0 B(zah 4 h2)} :

Pa? = oy (Zah + hz),
or because the deformed wall thickness & << a,

Pd> Pa

:m—)O’gg:E:Gq}q}. (358)

090

At this point, it is useful to recall that the vertical effect of the pressure is given
by the pressure times the projected area over which it acts, Pza®, which must
balance the stress acting over its area, ~ogg2mah. Together, these yield
Eq. (3.58).

Example 3.4 Modeling a saccular aneurysm as a thin-walled sphere, assume
that it has an inner radius of 2.5 mm and a thickness of 15 pm at a mean blood
pressure of 120 mmHg. Calculate the stress oy or 6,4, and determine if rupture
is likely if the critical stress is on the order of 5 MPa.

Solution: Given P =120 mmHg = 16,000 N/m?, where 1 mmHg = 133.32 N/m?,
a=25 mm=25x10" m, and h=15 pm=15x10"° m, we have, by
Eq. (3.58),
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Pa _ (16000N/m?)(2.5 x 10°m) )
=gy = = =~ 1,333,333N
T 2(15 x 10 °m) /m

>~ 1.3MPa

which, albeit less than the critical stress, is of the same order of magnitude.
The factor of safety in prediction is thus only ~4. Given the 50 % mortality rate
associated with rupture and the sparseness of data on the mechanical behavior
of saccular aneurysms, this may not be a sufficient factor of safety—one may
well prefer a factor of at least 10. Note, therefore, that if the same size lesion
were 60 pm in thickness rather than 15 pm, the stress decreases proportionately
to 0.33 MPa, which is an order of magnitude less than the stated failure stress. In
this case, because of the morbidity associated with such delicate neurosurgery
(Humphrey 2002), one may feel that such a lesion could simply be monitored
over time rather than surgically treated right away. In this simple example,
therefore, we see the potential utility of biomechanical analyses in surgical
planning, the importance of high-resolution medical imaging (to resolve
between 15- and 60-pm-thick lesions), and perhaps, most importantly,
the need for better data and theories for studying saccular aneurysms
(Humphrey 2002).

3.6 Thick-Walled Cylinders

Before proceeding, let us reflect briefly on the results of the previous three
sections in which we obtained universal solutions for the stresses in (1) an
axially loaded member, (2) a thin-walled cylinder under axial load and pressure,
and (3) a thin-walled pressurized sphere. Specifically, in each case, we were
able to find relations for the stresses in terms of the applied loads and geometry,
namely [cf. Egs. (3.29), (3.41), (3.49), and (3.58)]:

Pa _ Pa f Pa

7, O;; = ﬁ + m; 0oy = ﬁ = O, (359)

Oxx = Ogy —

Z;
each independent of an explicit specification of the constitutive behavior.
Moreover, because each is a uniform stress (i.e., they do not vary with position),
the differential equations of equilibrium [Egs. (3.8)—(3.16)] are satisfied iden-
tically. Although these results are very general, despite the associated restric-
tions such as loading through the centroid or thinness of the wall, in no case did
we determine the associated strains or specific measures of the deformation
(e.g., displacement of the end of the rod). Of course, given the value of the
stress, one can use an appropriate constitutive (e.g., stress—strain) relation to
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find the corresponding strain. By using a constitutive relation, however, the
associated result will not be universal, but instead will apply only to the
particular class of material behaviors modeled by the constitutive relation. In
this section, therefore, let us consider a case in which we determine both stress
and strain for a particular material behavior by satisfying the differential
equation for equilibrium.

Some veins, aneurysms, and other tissues may be analyzed by assuming that
the thickness of the wall is much less than the inner radius; in other cases, the
thick-walled structure must be addressed. Examples include the aorta and the
equatorial region of the left ventricle of the heart. Because of the nonlinear
material behavior (cf. Fig. 2.24) and large deformations, however, solving the
thick-walled problem (for which universal solutions do not exist) is challenging
and generally beyond the scope of an introductory text. For details on such
problems, see Humphrey (2002), as well as the one example in Chap. 6.

Nonetheless, it is good to gain an appreciation of some of the complexities of
the thick-walled solution and, indeed, to draw comparisons between the thick-
wall and thin-wall approaches and results. Toward this end, therefore, let us
consider the simplest thick-walled inflation problem: pressurization of a cylin-
der that exhibits a linearly elastic, homogeneous, and isotropic (LEHI) behavior
under small strains. Moreover, let us assume complete axisymmetry and that
there are no axial variations in stress; that is,

0 0 (G(f'a('e)(directian))
30 0 and 3z

—0. (3.60)

By restricting our attention to a uniform pressure, plus possibly a single axial
load applied through the centroid, the only possible stresses relative to (r, 0, z)
are o,, 6gg, and o,,, which may vary with radial location at most. Hence, in the
absence of body forces, the cylindrical equilibrium equations [e.g., Eq. (3.11)]
reduce to

do,, 1
260y — 0g9) =0, 3.61
praRs r(ff oo0) (3.61)

which is a first-order, linear ordinary differential equation. Now, for LEHI
behavior [recall Eq. (2.79)],

1

Erp = E[O'rr - V(699 + Uzz)]’
1

€0 = E[Uae —v(oy +02)], (3.62)
1

€z = _[Uzz - V(O'rr + 699)]7

E
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where [Eq. (2.47)]

aur ur aMZ
rro=— s - 7z — . 363
€ or T € 0z (363)

Furthermore, let the axial strain €., be either zero or a constant. From the first
two of these strain—displacement relations, note that

d
oy reen) = en (3.64)

This equation is called an equation of “compatibility,” which is to say that
strains must be such that gaps or voids are not allowed to form (in other words,
the continuum theory must be augmented to described situations such as
fracture, which we do not consider, for which such incompatibilities do arise).
Now, from this compatibility equation, combined with Eq. (3.62), we have

d 1 1
o [r <E(6g9 — V6, — vozz))] = L—?(ar,- — Vg — VO;), (3.65)

which can be written as (using the product rule),

dr v dr - dr

= (grr — VOgy — vazz)7 (366)

d d rr d Zz
r< (oY) B O O, ) + (699 — Vo, — VGZ;_')

or

-V

ngg darr dazz
rl —= —
dr Y dr dr

) — (om — 009)(1 4 7). (3.67)

Now, if we constrain the ends to not move in the axial direction, then .. =0 for
all r and

de.; 1(do do,, dog
dr_O_E<dr “Var Y dr>’ (368)
or
do.. - do,  dogg
o —v( o + o ) (3.69)

Substitution of this equation as well as Eq. (3.61) (the radial equilibrium
equation) into Eq. (3.67) yields
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ddgg do'rr do'rr dGQG darr
_ — - =— 1 3.70
r{ ar ' dr v{v( ar " ar )}} "dr (1+v), (3.70)

or
(1 — vz)i(arr + og9) = 0. (3.71)
dr

Hence, dividing through by 1 —v? and integrating with respect to r, we find
g gh by g g P

0, + 099 = ¢ = constant. (3.72)

Now, recognizing (show it) that the equilibrium equation (3.61) can be written as

d
5(”%‘) = 0¢s, (3.73)

we can obtain a single differential equation in terms of one component of stress,
namely

d0',~,~
26,,, 3.74
dr +2o ( )

o, + E(rarr) =c=r

which reveals (show it) that we can write this equation as

1d
7_‘ E(rzarr) = C. (375)

Multiplying through by r and integrating, we have

d . .
Ja(rzarr)dr = Jcrdr — Oy = % + ;—;,

(3.76)
which requires two boundary conditions, say o,(r =a) = —P; and ¢,,(r =b) =
—P,. Solving the associated two algebraic equations for two unknowns,
we have

(P, — P))a®b* ¢ (Pi—P,)b’

= == P; 3.77
“ b — a? 2 p —a? ( )
and, thus,

(P; — P,)b* (P, — P;)a*h*

b — a? (b2 — az)r2 ’

Opr = _Pi + (378)
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which can also be written as

_ P> —P,b*  (Pi—P,)a*h?
R (b2 — a2)1‘2 '

(3.79)

Opr
Note that at r =a and r = b, we recover (show it) the boundary conditions as we
should. Finally, from Eq. (3.73), the circumferential stress is

Pia® — P,b* (P;—P,)a*b’
b — a? (b* —a?)r?

(3.80)

Og9 =

Together, Egs. (3.78) and (3.80) are known as Lamé solutions. Note that, as in
the previous sections, we have related the stresses to the applied loads (pres-
sures) and geometry (radii). Remembering this common goal in each of these
different problems—axially loaded rod, thin-walled cylinders and spheres, and
now thick-walled cylinder—is helpful as we attempt to formulate new problems
that may not be well defined. Note, too, that

Pa*> — P,b*
et (381)

O'rr"‘ﬂé‘é :2< b2 _a2

which is constant given uniform static pressures P; and P,. Moreover, if P, =0,
which is often the case, then

PI'GZ bz P,’ClZ b2

which reveals that ¢,, increases monotonically from —P; to O (i.e., it is always
compressive) and oy decreases monotonically as 1/r? from its maximum value
at r =a. See Fig. 3.20 and compare to Fig. 3.10 while remembering the earlier
assumption of thinness to eliminate this radial dependence. It is interesting to
compute (do it) the mean value of 649, namely

1 b P,‘Cl2 b2 Pia
=—| ——(1+=)dr= 3.83
(600) b—aL bz—a2< +r2> r b—a’ ( )

Opp =

which is seen to equal exactly (with wall thickness 7 =b — a) the universal
result for the inflation of a thin-walled cylinder; that is, the thin-walled assump-
tion yields the correct mean value of the stress regardless of the material
properties or the thickness. Nonetheless, how well the mean value approximates
the radial distribution of stresses must be assessed in each problem.



3.6. Thick-Walled Cylinders 147

a c
2 T 15 T
@a 7
% ﬁ 10~ =
w I~ 14 5
Q a
L —
N S
g 3 i
s of R e P
e IRt =N S —
e seeeT B TEEREE LR R
Z LaemT Z
N ] - ]
! 1 1.5 2 5 1 1.05
RADIUS RADIUS
4 T T 150 T
2 a
@ 2 100
w 2[ - 5
2 a
N N sof- —
2 2
or Jemme e
2 - IR N
° cemmmmT S
=z z
- | | _ |
2 1 1.2 1.4 50 1 1.005
RADIUS RADIUS

Ficure 3.20 Computed transmural distributions of stress in a potentially thick-walled
cylinder based on the Lamé solution with P, =0 [i.e., Egs. (3.82)]. To evaluate the role
of wall thickness, we normalize the circumferential and radial stresses by the inner
pressure P; and thus plot 646/P; (solid curves) and 6,,/P; (dashed curves) as a function of
r. Consider results for four different sets of inner and outer radii: panel a for a = 1.0 and
b=2.0; panel b for a=1.0 and b = 1.5; panel ¢ for a= 1.0 and b =1.1; and panel d for
a=1.0and b=1.01. Observe the following. First, we see that the thicker the wall (e.g.,
panel a), the more dramatic the radial gradient in the wall stress; a corollary, therefore, is
that a truly thin-walled cylinder has a nearly uniform wall stress, which is represented
well by its mean value (e.g., panel d). Second, although the radial stress must always
satisfy the boundary condition at the inner wall, 6,,(a) = —P;, its value becomes smaller
in comparison to that of the circumferential stress as the wall gets thinner [recall the
discussion near Eq. (3.42)]. Third, given the same pressure and inner radius, the
thinnest-walled cylinder will have the highest stress, which is intuitive for it has less
material to resist the same load. Nondimensional parametric studies such as this can
often provide considerable insight and thus should be examined when possible.

Finally, note that the stress o, required to maintain the inflated cylinder at a
fixed length [cf. Eq. (3.43)] is given by

b
24 o..rdr = Pima* — P,ab* + f, (3.84)

a
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where
1
&, =0— E[O'ZZ — V(64 +009)] =0, (3.85)
or
6. = V(o) + o0p), (3.86)

a constant from Eq. (3.72). Specifically, from Eqs. (3.82), we have for the case
of internal pressure only:

P;a* b? P;d? b?
622:v<7b2—a2 (1 _I”_2> +7b2—a2 <1+I"_2)> (387)

2vP;a? _ 2vP;a?
O;; — = .
b —a®  2ah+

or

(3.88)

This relation, which depends on the material property v, is in contrast to
Eq. (3.48) for the thin-walled case. In particular, if the wall is incompressible,
V= % and if 7 << a, then Eq. (3.88) recovers the earlier result, which did not
require incompressibility. Regardless, the axial stress is uniform even though
the radial and circumferential components are not.

In summary, we see that the solution of the thick-walled pressurized cylinder,
even for a simple LEHI material behavior, is much more involved
[Egs. (3.61)—(3.88)] than the universal solution for the thin-walled cylinder
[Egs. (3.37)—-(3.49)]. This is not surprising, of course, for we had to solve
differential equations to find the pointwise distribution of stress in the thick-
walled cylinder, whereas we solved simple gross force balance equations to find
the uniform (mean) stresses in the thin-walled case. The decision to determine
pointwise distributions versus mean values must be addressed individually in
each problem, based on the desired or required detail needed to study the
biomechanics or the mechanobiology. As we noted earlier, in the case of
nonlinear material behavior over large strains (which is typically the case for
soft tissues), solving the differential equations is nontrivial and we must often
resort to numerical methods that are beyond the present scope. Moreover,
because of the sensitivity of mechanocytes to changes in their mechanical
environment, determination of the distribution of stress (i.e., the stress field)
is most likely much more important than estimating the mean values.
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Finally, we noted in the beginning of this section that we often desire to know
the strains as well as the stresses. Having computed the values of stress, we can
use the constitutive relations to determine the strains. For example,

1
€09 = E[O'ee — V(0 +02)] (3.89)

is easily computed and so too the radial displacement because u, = regg from
Eq. (3.63). The radial strain is similarly calculated easily via

1
Epp = E[Grr - V(Ué‘ﬁ + ozz)]- (390)

Of course, if the displacements were of primary interest, one could have

alternatively solved the Navier—Space equilibrium equation [Eq. (3.26)] given
displacement boundary conditions.

Chapter Summary

Whereas Chap. 2 introduced the general concepts of stress and strain as well as
an illustrative stress—strain relation (Hooke’s law) that relates them constitu-
tively in small strain solidlike responses, the focus of Chaps. 3-5 is very
different. In these three chapters, we introduce five canonical problems of
introductory biosolid mechanics that are useful theoretically and experimentally
in analysis and design. They are,

¢ Axial Loading of Structures often referred to as Rods (Chap. 3);
e Pressurization of Hollow Cylindrical and Spherical Structures (Chap. 3);

¢ Extension of Rods and Torsion of Cylindrical Structures (Chap. 4);

¢ Bending of Structures often referred to as Beams (Chap. 5); and

¢ Buckling of Structures often referred to as Columns (Chap. 5).

In particular, note two things. First, in each of these five classes of problems
we select coordinate systems that enable components of stress to be determined
easily by satisfying linear and/or angular momentum balance in the absence of
inertial effects, which is to say the equilibrium equations. Moreover, we typi-
cally seek to find stress in terms of the applied load and geometry. Only in a few
cases do we find that material properties appear explicitly in the solution for
stress in these canonical problems. In cases wherein we seek to find strain, or the
associated deformation, we find that the deformation depends on the applied
load, geometry, and material properties. Hence, as noted before, be attentive to
parallels for they reinforce common methods of approach, which ultimately are
needed when seeking solutions to new problems.
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Second, note that three situations in this chapter give rise to very special
solutions, called universal. Stresses resulting from the axial loading of a
uniform rod, the inflation and extension of a thin-walled cylindrical tube, or
the inflation of a thin-walled hollow sphere can each be determined by solving
equilibrium equations alone, that is, without introducing a constitutive equation.
These statically-determinate solutions, referred to as universal solutions herein,
are thus applicable to any material independent of its constitutive response. That
is, these solutions are equally good for metals, elastomers, soft or hard biolog-
ical tissues, or other materials exhibiting a solidlike behavior under particular
conditions. Universal solutions are thus very useful experimentally; they are
guaranteed to exist and are known a priori independent of the material tested.
They are, therefore, particularly useful in the formulation of a stress—strain
relation provided that the strain can be measured (cf. Chap. 2).

It is also important to note that simply increasing the thickness of a hollow
tube (Sect. 3.6), or similarly a hollow spherical structure (see Humphrey 2002),
can change dramatically the method of solution and applicability of the find-
ings. As illustrated in Fig. 3.20, the transmural distribution of stress can change
progressively from nearly uniform for a thin-walled structure to highly
non-uniform for a thick-walled structure, the latter of which cannot be solved
by equilibrium independent of a constitutive relation. Again, therefore, it is
essential to remember the range of applicability of the solution of an initial or
boundary value problem just as it is essential to remember the conditions of
interest over which a constitutive relation holds. Of course, the average wall
stress can be determined similarly for thin- or thick-walled tubes, independent
of a constitutive relation, it is just that the average value better represents the
transmural distribution in the thin-walled tube. There is a need, therefore, to
motivate solutions based on the need.

By way of foreshadowing, it is remarkable that biology appears to have
addressed the problem of highly non-uniform transmural stresses that tend to
develop in pressurized hollow organs such as arteries and the heart. That is, via
differential growth and remodeling processes, it appears that cells can establish
a residual stress field (i.e., stresses that exist independent of external loading)
within hollow organs, which tends to homogenize the transmural stress field as
illustrated in Figs. 6.21 and 6.22. Homogenizing this stress field would effec-
tively render the local cellular mechanical environment independent of position
within the wall, which seems advantageous mechanobiologically because many
cells seek to establish, maintain, or restore a homeostatic target mechanical
environment (cf. Humphrey 2008). This example is another reminder that
biomechanics is much more than simply applying mechanics to biology; it
must include the development, extension, and then application of mechanics
in a way that both combines established and reveals new mechanical and
biological principles.
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Appendix 3: First Moments of Area

Consider the cross section shown in Fig. 3.21 and the associated (¥, z') and (y, z)
coordinate axes. The first moments of area with respect to the y' and z’ axes are
defined as

0, = ﬂy’dA, 0, = ﬂz’dA. (A3.1)

These quantities may be positive, negative, or zero depending on the position of
the coordinate system relative to the cross section. The centroid of the cross

section is determined as
ﬂyldA Hz/dA
/ z (A3.2)

N T

Once the centroid is located relative to (y', Z'), it is often useful to introduce a
centroidal coordinate system (0; x, y, z) located at the centroid. Relative to this
coordinate system, (¥, Z) = (0,0); that is

0= ﬂydA, 0= ﬂsz. (A3.3)

To illustrate, consider the rectangular cross section in Fig. 3.22. First, let us find
(y’, E/). Note, therefore, that

A_/_Jb Jh /d, d/_b 1( /)2|h _lbhz (A34)
y_ 0 Oy y z = 2 y 0 _2 I .

FIGURE 3.21 General y
cross section for the y
determination of the first

moment of area.
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Ficure 3.22 Determine [\ y'
a general formula for the
first moment of area for
this rectangular cross
section.
h
z' . b "
where
boeh
A= J J dy dz = bh. (A3.5)
0 Jo
Hence, the centroid relative to (y/, Z) is
Y . Ip*h 1
y=%—=_h zZ=2—=_h (A3.6)

bh 2" T ph 2

Moreover, relative to (y, z), we have

e h/2 1y
Ay = J J ydy |dz = b(iy ‘h/2> =0, (A3.7)
—bj2 \J-n/2

and, similarly, AZ = 0, as expected. With regard to first moments of area,
therefore, the coordinate system of interest must be chosen carefully.

Example A3.1 Determine the centroid (X, y) for the triangle shown in
Fig. 3.23.

Solution: Although there are multiple ways to perform the requisite integration,
let us first do so with a differential area dA = dxdy noting that y = (h/b)x (i.e., the
slope, or rise over run, is /b and the intercept is zero). Hence,
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Ficure 3.23 Determine y
a general formula for the

first moment of area for
this  triangular  cross ‘
T

section.

b hx/b bhx h X2
A—J J dy dx—J —dx=-|—
0<0 ) o b Th\2

as expected. Similarly,

o= [

1
—b*h
3

hx/b thZ h b3
L y) ) Jo b b<3>

and

b hx/b bl h2X2 1]’12 b3 1
dA = dy ldx=| === |dx=== =) = -bi*.
foon= [ ()" Y= [ 5055 Yo 3im (5) =4

Consequently,

xdA 2 JJdA 2
ﬂ w2 e A

X == == = =

ﬂdA_%bh_g’ -

l— - 9
JJ dA sbh 3
as expected. Show that the same result is obtained by considering a differential
area dA = ydx = (h/b)x dx.

Example A3.2 Show that the centroid (X, y) for the circular region shown in
Fig. 3.24 is (0, 0).

Solution: Knowing that x* +y* =a?, or y = v/a?> — x2, we can compute
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Ficure 3.24 Determine y
the first moment of area

for this circular cross

section relative to two

different coordinate

systems.

2 2
a amx 1 T -7
A= :2—2 (———): 2.
J‘a (Jvzszaw>‘ix <2a ) 2 2 T

Note from integral tables that
X @ . x
J\/az—xzdx:?/az—xz—i—ism )
a
Alternatively, knowing that x =r cos 6 and y =r sin 6, we can compute

a 21 ’.2 a
A= J (J rd@) dr =2r (— ) = nd’.
o \Jo 2o

Likewise, we can compute the centroid (¥, ¥) in either Cartesian or cylindrical
coordinates. In cylindricals,

=100

and, similarly,

a 27 a 2r 3
ﬂydA = J (J rsin QrdG) dr = J rzer sin 6d0 = (a_) (—cos2z — cos0) = 0;
0o \Jo 0 0 3

therefore,

2r a 2n 3
J r Ccos 9/‘d€> dr = J rzer cos 8df = <C;) (sin2z — sin0) =0
0 0 0

¥=0, y=0,

as expected. Repeat using Cartesians alone.
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First moments of area are additive; thus, they can be used to find the centroids
of composite areas. A composite area is simply defined as an area that can be
well described via the addition or subtraction of well-defined geometric shapes
(squares, rectangles, triangles, circles, ellipses, etc.).

It can be shown that the centroid for a composite area is given by

NED LR Wi (A33)
> A DA
where X; and y; are the centroids of the individual parts i =1, 2,..., N, all

relative to the same coordinate system. These simple formulas are best appre-
ciated via numerical examples.

Example A3.3 Find the centroid, relative to x and y, for the cross section
shown in Fig. 3.25.

Solution: It is easiest to formulate these solutions in tabular form. Hence, note
that

Area XiA; YA
Part 1 20 (6) =120 10 (120) 13 (120)
Part 2 2 (10) =20 10 (20) 5 (20)

Therefore,

y vi (10, 13)
20 /
/ L1
6 ®
® _L—(10,5)
10 &
2
X X

2

Ficure 3.25 Compute the first moment of area of this composite section.
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D %A, 10(120) + 10(20) "
Z - - ’

= 120 + 20
A 13(12 2

S DTA_13(120)£500)
ZA,. 120 + 20

Note, too, that we could obtain the same result by computing values for a
rectangular area 20 x 16 and then subtracting out small rectangular areas to
yield the T-shape, namely

Area X;A[ yiA[

Part 1 20 (16) =320 10 (320) 8 (320)
Part 2 9 (10)=90 4.5 (90) 5 (90)
Part 3 9 (10)=90 15.5 (90) 5 (90)
whereby

) mA; 10(320) — 4.5(90) — 15.5(90) 0

X = = = N

S A 320 — 90 — 90
DA 8(320) — 5(90) — 5(90)
_ = 11.86.
YTSTa T 320-90-%

which is the same as found above.

Exercises

3.1 Do aliterature review to find the failure strength of the anterior cruciate
ligament (ACL), which is commonly torn by athletes. Given typical
dimensions (e.g., cross-sectional area) of an ACL in a male college
athlete, what is the maximum safe axial force that the ACL can sustain?
With increased numbers of women competing in NCAA sports, however,
there are increasingly more reports of ACL injuries in females than
males. Why is this the case and how can this problem be addressed?

3.2 Repeat the derivation of Egs. (3.34) and (3.36) by assuming that the line
of action of the force f goes through the point (—y*, —z*); that is, show
that the final result is independent of the starting point.
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Design an experiment to determine the failure strength of a chordae
tendineae. Additionally, outline a method of analysis to estimate the
range of stresses experienced by the chordae in vivo under physiologic
values of intraventricular pressures.

Recall from Example 3.1 and the subsequent discussion that there are at
least two “types” of stress: the true (Cauchy) stress, which is a measure
of forces acting over a deformed oriented area A, and the nominal (Piola—
Kirchhoff) stress, which is a measure of forces acting over the
undeformed oriented area A,. Note, too, that the chordae, like many
soft tissues, often conserves its volume when deforming (i.e., it behaves
incompressibly, which because of the large strains cannot be accounted
for viav = ). If the original length is L and the current length is /, volume
conservation requires LA, =1IA — A =A,(L/l) assuming uniform stress

and strain. Hence,
o r(l
Oxx = X = A_o Z = AZX.\'?

where A = I/L is a stretch ratio and X, is the nominal stress. If L = 10 mm,
compare the values of o, and 2, for all / from 10.001 to 10.7 mm.
Repeat Exercise 3.4 for a rubber band, which also conserves its volume
as it is extended by up to 50 % of its original length. Note, therefore, the
potential difference between the Cauchy and Piola—Kirchhoff stresses.
‘What is the maximum shear stress, in terms of the applied load f and cross-
sectional area A, in a uniaxially stressed structure [Egs. (3.29)—(3.36)] and
what is the associated angle ay, relative to an axial direction x?

Based on the type of analysis in Exercise 3.6, if an investigator correlates
the proliferation and migration of fibroblasts in an injured tendon with the
value of axial stress during the test (e.g., no stress, nonzero but
subphysiological stress, physiological stress, or supraphysiologic stress),
how can one know that the mechanotransduction is induced by the exper-
imentally convenient axial stress rather than the maximum shear stress
given that both exist simultaneously (i.e., their calculation depends only on
the choice of the coordinate system introduced by the investigator)?
Write a three-page summary on the history of saphenous vein bypass
surgery, noting, in particular, the histological changes in the wall of the
vein graft due to the biomechanics-mediated growth and remodeling.
Find the dimensions of and pressures within the human inferior vena
cava. Estimate the mean wall stress ogg. Even though the aorta is not thin
walled, estimate its mean wall stress 6y in the human abdominal aorta.
Discuss structural differences between the vena cava and aorta given
their different functions and mechanical environments.
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Compare the maximum shear stress ¢’.y in a smooth muscle cell in the
wall of an arteriole (a~75 pm and P ~ 45 mmHg) of the thickness of one
smooth muscle cell if the mean radial stress is ignored or included.
Neglect possible 6,9 and o,, shear stresses.

Referring to Example 3.3, show that the maximum shear stress ¢’.y
(a=ay) is zero in a closed-end pressurized tube when 69 = o, due to
the judicious choice of the applied load f and because ¢,9=0. Indeed,
note the significant ramifications of this; if the maximum shear stress,
relative to (Z, @' with a = ), is zero, then all shear stresses ¢, are zero
for any a. This is seen easily from the formula

6;9((1 =aq) = \/(%)2 + (629)2,

which reveals that if the stresses are principal and equal, then there is no
shear stress relative to any 2-D coordinates.
If a vascular surgeon wishes to implant an arterial graft such that there
will exist no shear stress ¢’.y relative to any 2-D coordinate directions
(7, @), find the required axial load f. Hint: See Exercise 3.11.
Let the pressure in a normal vein be denoted by P, and likewise its
normal geometry by a, and A,. If this vein is used as an arterial graft, its
pressure will increase to value P and its radius to value a; associated
thinning of the distended wall to % is expected as well. Hence, with
P> P, and a > a, with h < h, we expect that 6gg)grafi >> 6g6)vein SIMPly
due to the transplantation. Extensive laboratory evidence suggests that
the vascular wall seeks to maintain the circumferential stress nearly
constant. If this is so and the mechanotransduction mechanisms opera-
tive in the endothelial, smooth muscle, and fibroblast cells allow the wall
to respond to the increased stress, what do you expect the vein to do?
If you said that you expect the wall to thicken, you are exactly right.
In fact, consider the following data from Zwolak et al. (1987):

Tissue EC activity SMC activity h (um) a (mm)
Artery 0.02 0.05 50 0.89
Vein 0.02 0.05 19 1.69
VG—1 week 8.10 10.30 23 1.55
VG—2 weeks 2.90 1.70 44 1.91
VG—4 weeks 1.50 0.80 77 2.36
VG—12 weeks 0.02 0.20 116 2.90
VG—24 weeks 0.10 0.20 123 2.65

where VG = vein graft at the various times post-transplantation and cell
activity reflects the percent turnover in cells. Plot Pa/h for the adaptation
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of the vein and compare it to that for the homeostatic value for the artery.
Plot the cell turnover rates and discuss.

Similar to the discussion in Exercise 3.13, the arterial wall will also
thicken in response to chronic hypertension: systolic/diastolic pressures
such as 160/90 mmHg versus the normal values of 120/90 mmHg. See
data on wall thickening in Fung and Liu (1991). Discuss in terms of g9
noting that their discussion of stress is wrong; that is, the formula
699 = Pa/h must be based on values of ¢ and 4 in the deformed (pressur-
ized) configuration. You may note, in addition, that this formula is
strictly valid only for h/a << 1. It can be shown, however, that the
mean wall stress in even a thick-walled tube is estimated reasonably
well by the simple formulas (cf. result in Sect. 3.6), which is why this
relation is widely used in vascular mechanics.

The balloons used on angioplasty catheters tend to be long and cylindri-
cal. If one performed an experiment in the laboratory in which a balloon
catheter is inflated within a healthy cylindrical artery, what measure-
ments would be needed to determine the radial stress exerted on the
endothelium by the balloon?

Referring to Example 3.3, compute the maximum shear stress o',y if
f=0; that is,

Pa Pa

Oy = 7» O0;; = E

Compare it to the case when
f = Pad’x.

What is the maximum shear stress in a thin-walled pressurized sphere?
What does this imply with regard to the potential rupture criterion for
intracranial saccular aneurysms?

Similar to the analysis of the thick-walled pressurized Hookean cylinder
in Sect. 3.6, formulate and solve for the stresses in a thick-walled sphere.
This may require library research on spherical coordinates. Note, too,
that this is a non-trivial problem.

Given the solution in the previous exercise, find the average wall stress in
the thick-walled Hookean sphere and compare to the results from the
thin-walled analysis.

Although Eq. (3.41) was derived for a thin-walled cylinder, it can be
shown that it provides a reasonable estimate of the mean circumferential
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stress in a thick-walled tube as well. Note, therefore, that in hypertension
(i.e., a persistent increase in blood pressure), the aorta distends (i.e.,
a increases) and the wall thins (i.e., & decreases). Hence, oy increases
tremendously. If the hypertensive pressure Py = nP, where n is a number
and the luminal radius returns to oy due to smooth muscle contraction
and a shear-stress-mediated vaso-constriction (see Chap. 9), how much
does the aorta need to thicken to restore oy back to its original value?
Find data in the literature on aortic morphology in hypertension to see if
this is borne out by data.

3.21 In the thick-walled cylinder problem, we found that o,, =v(6,,+0gg).
If we use this result in Hooke’s law, then

1

& = lon —v[oas + (o +o0)]},
1

e00 = 000 — Vlow +v(on + o))}

Show that these two equations can be inverted to yield

E

O = m[(l - V)Srr + VSee],
E

O = m["é‘n- + (1 = v)ege].

3.22 Given the result from the previous exercise that o,,.=f(¢,,, €99) and
009 = g(&,, Egp), Where €, = du,/dr and €99 = u,/r, show that equilibrium
requires

do, 1 *u, 10w, u,
(o —0g9) =0 — Zr S M
dr + r((7 o00) - or? + ror r?

3.23 Verify via substitution that u, = Cr + C,/r is a solution for the differen-
tial equation in the previous exercise. Moreover, show that

c _ (L4v)(1 —2v) (Pia*> — P,b?
1 = E bz—az )

C(L4v) (Pi=P,\ 5,5

Cy, = £ R a*b’.

Hint: Use the boundary conditions that
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U]Ar(r = a) = —Pl', U”.(r — b) — _})07

with o,, and oy written in terms of u,. (= Cr+ C,/r) via the constitutive
relation (cf. Exercise 3.21) and strain—displacement relation (cf. Exercise
3.22). Verify that the final result for stress is consistent with that found in
Sect. 3.6.

3.24 Consider the two following experimental setups (Fig. 3.26), both of
which are designed to impose an axial load on a thin tendon (from a
laboratory rat) for purposes of studying the stress—strain behavior.
Assuming a coefficient of friction yu, between the wire and the rough
cylinder, determine the axial load f that is applied to the tendon, in terms
of W, in each case. Hint: recall Appendix 1.

3.25 [If the axial first Piola—Kirchhoff stress £ =f/A,, in Exercise 3.24, what is
the axial Cauchy stress ¢ if the tendon has an original cross-sectional
area A, and length L and the tendon is incompressible? Let the current
area and length be A and /, respectively (Fig. 3.26).

friction-less
flexible/inextensible " pulley
/ wire \
tendon W
weight
wire
tendon
rough
cylinder \'

weight

FIGURE 3.26
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3.26 If a single protein molecule is tested in tension, what complications may
arise with regard to assuming a continuum to compute the stress. See
Fig. 3.27.

[ = R R ®— f  actual

FiGure 3.27

3.27 Find the centroid using the method of composite sections for the cross-
sectional area in Fig. 3.28.

FiGure 3.28 y /\
e

]

2a X
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Extension and Torsion

The deformations experienced by some biological tissues and biomaterials can
be very complex. For example, we have seen that all six components of the
Green strain [cf. Eq. (2.42), but relative to cylindrical coordinates] are nonzero
in the wall of the heart, and each varies with position and time throughout the
cardiac cycle (cf. Fig. 2.20). In such cases, we must often resort to sophisticated
numerical methods to measure or compute the strain fields. Nevertheless, there
are many cases in which the deformations are much simpler, as, for example, in
chordae tendineae within the heart, which experience primarily an axial exten-
sion with associated lateral thinning (cf. Fig. 3.2). Indeed, as an introduction to
biomechanics, it is often best to study simple motions such as extension,
compression, distension, twisting, or bending, which allow us to increase our
understanding of the basic approaches and which also apply to many problems
of basic science or clinical and industrial importance. Whereas we considered
small strains that occur during a simple inflation of a thick-walled tube in the
last section of Chap. 3, here we consider in some detail small strains associated
with axial extension and torsion, with an associated complete stress analysis for
the latter for a linear, elastic, homogenous, and isotropic (LEHI) behavior of a
circular member. Such analyses will be particularly relevant in bone mechanics.

Observation 4.1. The reader is encouraged to consult Carter and Beaupré (2001)
for a description of the mechanobiology of skeletal development. Here, we
simply recount some of their observations. For example, they write: “The flat
bones of the skull and face are formed by intramembranous ossification within a
condensation of cells derived from the neural crest. In the limb bones and most
of the postcranial skeleton, however, mesenchymal cell condensations
chondrify, creating the endoskeletal cartilage anlagen. These cartilage
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rudiments form the templates for the future skeleton and subsequently, in the
process of growth, undergo a bony transformation.” In particular, “The cartilage
cells within the rudiments therefore undergo a characteristic process of cell
proliferation, maturation, hypertrophy, and death, followed by matrix calcifica-
tion and ossification. Variations within the cartilage growth and ossification
rates in different directions within the anlage result in shape changes of devel-
oping bones . .. Once a region of cartilage mineralizes and it is either resorbed
or replaced by bone, further bone growth occurs by osteoblastic apposition on
mineralized surfaces.” As noted in Chap. 12, Developmental Biomechanics is
one of the exciting frontiers of our field, one that is clearly complex.

Many factors affect the development as well as the subsequent maintenance
and adaptation of bone. For example, biological factors that affect the metabo-
lism of chondrocytes include bone-derived growth factor (BDGF), bone
morphogenetic proteins (BMP), cartilage-derived morphogenetic protein
(CDMP), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs),
interleukins (ILs), sex hormones, prostaglandins, matrix metalloproteinases
(MMPs) and their inhibitors (TIMPs), and even vitamins A, C, and D. In
addition, of course, mechanical stimuli also play a major role in the develop-
ment, maintenance, and adaptation of bone. In many cases, strains have proven
convenient to correlate with the mechanotransduction. Let us now consider
measures of the deformation in the simple case of axial loading.

4.1 Deformations Due to Extension

4.1.1 Biological Motivation

Figure 4.1 illustrates some of the important structural and biological features of
a representative mature long bone. Grossly, the three primary regions are the
central long hollow shaft, the end caps, and the transitional regions between the
two. These three regions are referred to respectively as the diaphysial, epiphys-
ial, and metaphysial regions. The central core of the diaphysial region is called
the medullary canal; it contains the bone marrow, which produces different
types of blood cells and their precursors. Of primary concern here, however, is
that there are two primary classes of bone tissue: cortical (or compact) and
cancellous (or trabecular). Cortical bone constitutes most of the outer portion of
a whole bone, including the majority of the wall of the diaphysis. Except in a
few regions, the cortical bone is invested by a specialized covering, the perios-
teum, which is rich in collagen and fibroblasts and has an underlying osteogenic
layer that contains active bone cells. During development and in periods of
trauma and repair, cortical and cancellous bone can be of the woven type, which
is often poorly structured, highly mineralized, and appears to serve as a
temporary scaffolding for the development of another type of bone tissue.


http://dx.doi.org/10.1007/978-1-4939-2623-7_12
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FiGure 4.1 Schema of the structure of a typical long bone, which consists of the
diaphysial (shaft) region, the metaphysial (transition) region, and the epiphysial (end)
regions. Note, too, the two primary types of bone tissue: cortical, which is found along
the outer surface, and cancellous, which is found in the inner portion of the end regions.
The cartilage forms as a protective covering at the end of the articulating bones;
cartilage is discussed in Chap. 11.

In maturity and following healing, cortical bone consists primarily of two types
of bone: Lamellar bone is characterized by concentrically arranged layers
(or laminae), each about 20 pm thick, with networks of blood vessels between
layers; osteonal, or Haversian, bone is characterized by nearly cylindrical units
(or osteons) ~200 pm in diameter and ~2 cm long, which contain centrally located
blood vessels connected to radial channels called Volksmann’s channels. Each of
these channels, which allow the transport of blood and bone fluid within compact
bone, contribute to an overall porosity despite the otherwise dense constitution of
cortical bone (specific gravity ~2). Uniformly distributed throughout the intersti-
tial substance of cortical bone are lenticular cavities, called lacunae, each
containing a bone cell called an osteocyte. Radiating in all directions from
each lacunae are anastomosing tubular passages, called canaliculi, which further
contribute to the porosity and are essential to nutrient exchange.


http://dx.doi.org/10.1007/978-1-4939-2623-7_11
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Cancellous bone has a very different microstructure. It is much more porous,
consisting of a three-dimensional lattice of branching trabeculae, which are
thin-walled and of lamellar type. Cancellous bone is found, for example, near
the ends of long bones. Recall from Chap. 1 that research in the late nineteenth
century by von Meyer, Culmann, and Wolff suggested that the orientation of the
trabeculae in the femur appeared to follow the directions of the principal
stresses (Fig. 4.2). This ultimately led to “Wolff’s law of bone remodeling,”

FiGure 4.2 Correspondence between the trabecular structure in the femur and Wolff’s
envisioned lines of tension. [From Wolff (1986), with permission from Springer].


http://dx.doi.org/10.1007/978-1-4939-2623-7_1
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a topic that continues to be of interest, particularly with recent advances in
mechanobiology.

In contrast to other tissues, which experience interstitial growth, bone growth
occurs only via deposition on cell-laden surfaces. Such appositional growth
thus occurs at the periosteal surface, the endosteal surface that lines the med-
ullary canal, and on all surfaces of the tubular cavities as well as the surfaces of
the trabeculae. Note, too, that trabecular growth is evidenced by an increased
number of trabeculae or an increase in their thickness. Whereas skeletal devel-
opment occurs over periods of years, stress- or strain-mediated adaptation
occurs over months to years; fortunately, in cases of injury, such as a fracture,
bone growth and thus repair can occur in weeks to months.

Although bone consists primarily of type I collagen impregnated with
hydroxyapatite, Ca;o(PO4)s(OH),, an inorganic compound that endows bone
with its high compressive strength, it is the bone cells that govern overall
growth and remodeling. There are four primary types of cells in bone:
osteoprogenitor cells, osteoblasts, osteoclasts, and osteocytes. As noted earlier,
like other connective tissues, most bone derives from the mesenchyme.
Osteoprogenitor cells are relatively undifferentiated cells found on many of
the free surfaces; they are particularly active during normal development and in
times of repair. Osteoblasts are responsible for forming bone, which is to say
that they actively synthesize the collagen and appear to regulate the uptake and
organization of the mineral component. Osteoclasts, in contrast, are responsible
for the resorption of bone; they are giant cells 20100 pm in diameter that
contain many nuclei. The primary cells of fully formed bone are the osteocytes,
which derive from the osteoblasts and reside in the lacunae within the interstitial
space (Fig. 4.3). Once encased in calcified bone matrix, the osteocytes no longer
divide; rather, they form gap junctions with neighboring osteocytes via the
canaliculi, and probably participate in the control of the osteoblasts and osteo-
clasts. For more on the biology of bone, see Alberts et al. (2008) and
Fawcett (1986).

One of the key questions in bone mechanobiology is how the embedded
osteocytes or surface osteoblasts/osteoclasts sense and respond to changes in
mechanical stimuli. We know, for example, that there is tremendous bone loss
in load-bearing bones (particularly in the legs) in bedridden patients and
astronauts in a microgravity environment. Conversely, there is significant
increase in bone mass in athletes such as weight lifters and even tennis players
(e.g., the humerus can have a 30 % greater cross-sectional area in the playing
versus the nonplaying arm). Such examples of decreased and increased bone
mass are likewise common when applied loads are altered clinically, such as
due to bone screws, plates, or implanted prostheses. For more examples, see
Carter and Beaupré (2001). It is not clear, however, if the causative cellular
activity correlates best with changes in stress, strain, strain rate, strain energy, or
similar metric. Again, we emphasize that cells cannot directly sense these
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Ficure 4.3 Schema of three of the four primary bone cells. The osteogenic cell, the
osteoblast (or bone-forming cell), and the osteocytes, which are former osteoblasts that
are trapped within calcified bone matrix. Not shown are the osteoclasts, which remove
bone tissue.

volume-averaged continuum quantities, yet they will likely be very useful for
identifying such empirical correlations (Humphrey 2001). Although strains can
be measured on the outer surface of some bones, it is not possible to measure
internal strains or any stresses. Hence, we must resort to the methods of
mechanics to calculate the stress or strain fields experienced by the bone of
interest, which, in turn, requires knowledge of the geometry, material proper-
ties, and applied loads. As noted in Chap. 2, bones can be described by Hooke’s
law for stress analysis in many circumstances, yet a detailed study of the
mechanobiology may require structural models that account for the fine trabec-
ular architecture or material models that account for the porosity and, indeed,
the internal flow of blood or bone fluid due to applied loads. The latter
necessitates modeling of the solid—fluid coupling, which is addressed briefly
in Chap. 11 in a different context. Solid—fluid coupling in bone is an advanced
topic of current research. Here, therefore, let us consider the simplest approach,
assuming on average that bone exhibits a linear, elastic, locally homogenous,
and isotropic (i.e., LEHI) behavior under some circumstances. In this case,
effective bone properties can be assumed to be £ ~ 15 GPa and v ~ 0.33. Indeed,
let us consider the stress and strain fields in the diaphysial region of a long bone,
consisting of cortical bone only and subject, first, to an axial compressive load
and, second, to a twisting moment as suggested by Fig. 4.4; of course, the bone
could also experience bending loads, but these are considered in Chap. 5.


http://dx.doi.org/10.1007/978-1-4939-2623-7_5
http://dx.doi.org/10.1007/978-1-4939-2623-7_11
http://dx.doi.org/10.1007/978-1-4939-2623-7_2
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portion of the femur
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4.1.2 Theoretical Framework

Envision a case in which a rod of negligible weight is suspended vertically from
a fixed support and loaded from the lower end by a constant force that is applied
through its centroid and uniformly over the cross-sectional area. Intuitively, the
axial displacement (say, u,) will be zero at the fixed support, nonzero in the
middle, and maximum at the lower end (Fig. 2.18); that is, the displacement will
vary along the length of the rod (even though the stress is assumed to be
constant throughout), from which we can compute the axial strain, namely

%
ox

Uy = ux(x) — Ex =

(4.1)

Reminder: This formula for strain is restricted to small values, consistent with
our desired use of Hooke’s law as a descriptor of LEHI behavior. Clearly,
integration of ., with respect to x can provide the displacement at any point x,
including that at the lower end x =L; that is,

JX pudx = J O e — () — 10y (0), (4.2)

0 Oax

where u#,(0) =0 is the displacement boundary condition (for this case) at the
fixed end. Now, ¢,, can be related to the stress via Hooke’s law [Eq. (2.69)],


http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ69_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig18_2
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where the uniform 1-D state of stress in an axially loaded rod is o, =f/A from
Eq. (3.29). Hence, we have

1 X
o= Hlow —v(0+0)] = L () = L Lax (43)
where, in general, the force, cross-sectional area, and even Young’s modulus
could vary with x. In the special case in which all three quantities are indepen-
dent of x and we seek only the value of u, at the lower end (the so-called end
deflection &), we have the simple result

fL
=L)=6="—. 4.4

In general, however, it is best to remember the primary result of Eq. (4.3), which
determines a deformation in terms of the applied loads, geometry, and material
properties. It can be written generally as

u(x=c) —u(x=a)= JC fix)dx, (4.5)

which emphasizes that the applied axial force, cross-sectional area, and Young’s
modulus may each vary with x. Of course, the integral is a linear operator
and, thus,

c b d c
J Lx)dx:J ﬂdx%—] Lx)a,’)c (4.6)
a AX)E(x) o AWE(x) b AX)E(x)
and so forth. This division of the integral over separate domains can be very
helpful in cases in which f(x), A(x), or E(x) are constant over such subdomains.
Let us illustrate via a few examples how this might be useful. First, however,
note some terminology: If a rod is homogeneous, then E # E(x); if a rod has a
constant cross section, then A # A(x); and if the rod is under a constant load,

then f# f(x).

Example 4.1 Consider a vertically mounted, axially loaded member subject
to its own distributed weight w N/m (see Fig. 4.5a). Assume that the member
has a constant cross-sectional area A and a constant elastic modulus E. The total
weight of the member of length L is thus W =wL. Find the displacement u, at
the free end [i.e., 6=u, (x=L)].


http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ29_3
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FiGure 4.5 A vertically loaded member subject to its own weight, given as w (force per
unit length) and thus a total weight W =wL, which acts at the center of gravity. Shown is
the physical problem, a free-body diagram of the whole to isolate reaction R, at the fixed
support, and a free-body diagram of a part to isolate the internal force f(x).

Solution: First, let us construct a free-body diagram of the whole structure and
ensure equilibrium to find the reactions (Fig. 4.5b):

> Fe=0,—R+W=0—>R,=W=wL,

> Fy=0, R, =0,
> M. =0, My =0.

Next, construct a free-body diagram of the parts (Fig. 4.5¢) recalling that if a
structure is in equilibrium, then each of its parts is in equilibrium. The force f(x)
due to the weight of the member is w(L — x) at any cross section cut at a distance
x from the support; at x=0, f{0)=R,=wL, the entire weight, as it should.
Alternatively, in terms of the total weight of the member, the force becomes
W(1 — x/L) and thus

fow
4= (1 =x/L).

ZFX—OHJUXXdA—f—O—»GM—

Note that the stress is largest at x =0, where all of the weight must be borne by
the material, and the stress is zero at the free end, which is free of applied loads
(i.e., traction-free). Given the stress, the strain and the axial displacement can
now be computed using Hooke’s law and Eq. (4.5); namely

1

Exx = E[Gxx - V(Uyy + UZZ)}
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with oy, and o, each zero. Thus,

Lwa —x/L)

oo L
Ex = % — J exdx = uy(x =L) —u,(x =0) = J dx,

where u, =0 at x=0 (a displacement boundary condition) and the end dis-
placement is

B owe

o] 24E°

Of course, the displacement at any value of x is found by integrating from O to
x rather than from 0 to L.

w x?
d=u(x=1L) :E<X_Z

Example 4.2 Find the end displacement & in each of the members illustrated in
Fig. 4.6.

Solution: The first structure (Fig. 4.6a) is homogenous and subject to a constant
axial load P, but it does not have a constant cross-sectional area. The area
changes abruptly from A; to A, at x =L/2. Thus, A = A(x) and the end displace-
ment is determined via

Y P PJL dx
0 Alx)

(%) — 10,(0) = JO TE = 0+

The integral must be separated at the point of discontinuity in the cross-
sectional area to give the following results [with #(0)=0 via a boundary
condition]:

P(*?dx Pt dx p (L2 P (*
5-—] —+_J __>5__J‘ dx+—J dx7
o At EJrpAs AE)g AE

or

5 PL+PL _PL 1+1
T 2AE  2A,E 2E\A, A,

The second structure (Fig. 4.6b) has a constant cross-sectional area and is
subjected to a constant axial load P, but it is not homogenous. The material
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Ficure 4.6 Axially loaded rods having a nonconstant cross section (panel a), a
nonconstant material composition (panel b), and multiple applied loads (panel c).
Although we need to draw free-body diagrams of the whole and multiple parts for
each case, we show only the free-body diagram of the whole structure and one free-body
diagram for a part of the rod of panel c.

properties change at x=L/3 from the wall. Therefore, £ =FE(x) and the
displacement becomes
P(* dx Pt dx
u(x) — u(0) = —J —— — 5 = u,(0) +—J
0 E(x)
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Again dividing the integration over judicious domains, we have

PJL/3 dx PJL dx

s=o| Eii &
Ay E1 A)ys Bz

where u,(x =0) =0 again. Hence, we find

5 PL +2PL_PL 1+2
" 3AE, 3AE, 3A\E, E,)

For the third problem (Fig. 4.6c), we must first solve the statics problem.
Equilibrium of the whole requires that the reaction force R, be given by

R, —P+2P+P=0—R, =2P,

whereas equilibrium of parts requires that we consider three separate cuts. For
the first part,

“Ri+ f(¥) = 0 — f(x) = 2P, 0§x<§.

Similarly, for the second part,

L 2L
R =P+ f(x) =0— f) =3P, Z<x<—.

Finally, for the third required part,
2L
—R, —P+2P+ f(x)=0— f(x) =P, ?<x§L.

Indeed, the last result can be seen easily given a small part near the end.
Regardless, given constants £ and A and u,(x = 0), we have

1 L/3 2L/3 L PL
6=— J 2de—|—J 3de+J Pdx | =2—.
AE\ Jo L/3 2L/3 AE
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4.1.3 Clinical Application

Now that we have some experience with the full axial load problem for LEHI
behavior, let us consider an important clinical problem. Each year in the United
States, ~120,000 artificial hips are implanted surgically to relieve pain and
restore ambulatory motion. Figure 4.7 shows a typical prosthesis and its inser-
tion into the host femur. As seen at Section D-D, we have nearly concentric
cylindrical cross sections over part of the bone-metal interface. Although the
femoral head experiences complex loads that may subject the prosthesis to
compression, torsion, and bending, here let us focus on the axial load alone
(other loads will be considered subsequently). This special case could be
produced in the laboratory. Moreover, although the actual loads, geometry,
and material properties demand a numerical (e.g., finite element) method
(Fig. 4.8), let us consider a simple analysis to gain some insight into the overall
problem. In particular, as a first approximation, let us assume that the bone and
prosthesis each exhibit LEHI behaviors. Bone is, of course, better characterized
as nonhomogeneous and anisotropic, but these simplifying assumptions have
been used by many and they allow us to begin to explore the problem.

Our model problem, therefore, is simply the axial loading (through the
overall centroid) of a circular cylinder consisting of two LEHI materials
(Fig. 4.7b). Like most biological tissues, bone will grow and remodel in
response to changes in mechanical stimuli. Therefore, one of the key questions

a b Oxx
femora i: 1Ly
oy

FIGURE 4.7 Schema of a metallic prosthetic hip that has been implanted to replace a
damaged femoral head. One of the most common causes of femoral damage is fracture
associated with osteoporosis. Defined as a reduction in bone mass, osteoporosis is a
particularly debilitating disease in elderly women. If we focus on the region near
Section D-D in the figure and consider the action of an axial load only, then panel b
shows an appropriate free-body diagram for analysis to relate the axial stress to the
applied loads and geometry. Although the stress may (as a first approximation) be
assumed to be uniform within each constituent, metal and bone, these mean values
need not be the same.
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Ficure 4.8 Illustrative finite element mesh used to analyze stresses in the femur for
determining the state of stress in health, which should be mimicked as well as possible
following an implant surgery. Each triangle represents a local computational domain, or
element, in which equilibrium is enforced. Certain continuities, such as displacement,
are also enforced from element to element. Albeit for a 2-D analysis of a normal femur,
finite element studies can be conducted similarly in three dimensions, and for the case of
a prosthesis, a poly(methyl methacrylate), or PMMA, bone cement, and bone. Finite
element analyses are extremely powerful, and the student is encouraged to take at least
one course in this area. With permission, from Prof. B. Simon.

with regard to prosthesis design is: How will the implant redistribute the
stresses within the bone? Again, this is a complex question; we will consider
the much simpler question here. On average, how does the applied load f in
Fig. 4.7b distribute (i.e., partition) between the metal implant and the remaining
bone? Toward this end, let the radius of the prosthesis be a and the outer radius
of the bone be c. If we let that part of the load carried by the prosthesis and bone
be denoted as f, and f,, respectively, then axial equilibrium requires that
Jp+fo=f. The associated mean axial stresses are thus o = f,/A, for the
prosthesis and afx = f,/Ap for the bone. The key question then is: What are
Jpand f3,?

With f, + f, = f, we have one equation and two unknowns, thus rendering this
problem statically indeterminate; that is, we cannot determine how the load or
the stress partitions using statics alone—we must seek a second equation. This
can be accomplished from kinematics if we simply assume that the axial
displacements are the same in each component [i.e., that there is no relative
movement (e.g., delamination as discussed in Observation 2.2) between the
prostheses and bone as desired of a painless implant]. Hence, if ¢/ = f\ with
uniform properties along the length of the prosthesis, then we have
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L L gp L of fL
u(x=L) —u,(x=0) = J eldx = J Xy = J P dx=-""—" (4.7)
o o Ep 0 ApEp ApEp
or, with u,(x=0)=0,
f,L
8y =—~L—. 4.8
14 ApEp ( )

Similarly, for the bone,

or

_ AL

Op = . 4.10
= (4.10)
Hence, to ensure compatible displacements, 6, = o), requires that
L L AE
Wt _ b =T (4.11)

AE, AE, 7T AE,

’

Thus, we have a second equation in terms of the unknown “partitioned forces.’
From equilibrium, we have

AE, AE,
— — 1 4.12
I AbEbfb+fb fb( +AhEh ) (4.12)
or
SfAE
= 4.13
W (4.13)
and, similarly,
AE ApE ApE
f,,:“’( JAED ): JAEy (4.14)
ApEp \ALE, +ApEp ApEp, + AI,E,,
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Finally, the stresses in the prosthesis and bone are

p_1( AE,f )_ E,f

75 = A N\AE, + AE,) ~ AE, + A)E, s
oh — L[ AES _ Eyf .
O AP\AE, +ALE, AE, + AyE),

We see, therefore, that the load partitions according to the respective cross-
sectional areas and the material properties. In the special case that £, =E,=E
and A, +A,=A, we recover the original homogeneous solution (o, =f/A), as
we should. Whether the bone will resorb (atrophy) or grow will depend on
whether its stress (or strain) following implantation is less than or greater than
the normal physiological values. Early on, artificial implants were designed
primarily to be geometrically mimicking of the native femoral head and to be
strong enough that they would not fail (i.e., yield, deform plastically, or
fracture; cf. Fig. 2.25) under the demands of physiological loading. Yet, the
associated designs failed to consider how the stress or strain in the bone
redistributed and how functional adaptation might lead to a weakening of the
remaining bone over time. This flaw in the analysis and design resulted in many
prosthetic failures in the early days, thus necessitating much more careful
biomechanical study. The interested reader is encouraged to review the current
literature on prosthesis design to appreciate the development of the field. With
regard to the present (simple) analysis, a take-home message is that although we
were only interested in the stresses, equilibrium alone did not permit a complete
solution. This is in stark contrast to the (statically determinate) universal
solutions in Chap. 3. Rather, to obtain a sufficient number of equations in this
statically indeterminate problem, we sought additional equations via use of
strain—displacement and stress—strain relations. We will see below and in
Chap. 5 that this general approach is helpful in many different statically
indeterminate problems.

4.2 Shear Stress Due to Torsion

4.2.1 Introduction

Although the analysis in Sect. 4.1.2 was restricted to LEHI material behaviors
and thus small strain, there was no restriction on the cross-sectional area; that is,
the developed equations held equally well for rectangular, circular, elliptical,
indeed general cross sections. As we begin our study of torsion, however, the
situation is very different. It has long been known that if you subject a straight
member of circular cross section to a small twist, the originally parallel cross
sections remain parallel. In other words, small twisting of a circular member


http://dx.doi.org/10.1007/978-1-4939-2623-7_5
http://dx.doi.org/10.1007/978-1-4939-2623-7_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig25_2
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(shaft) does not warp the cross section. For any other cross section, such
as elliptical or rectangular cross sections, torsion induces both a twist (i.e.,
material particles have a uy displacement) and a warping motion (e.g., u,
displacements that are nonuniform). In the next two subsections, we focus
solely on small twisting motions in solid or hollow members that have a circular
cross section and exhibit a LEHI behavior. As in the other problems, we will
seek to relate the developed stress(es) to the applied loads and geometry
[cf. Eq. (3.59)] and the deformations to the applied loads, geometry, and
material properties [cf. Egs. (3.89) or (4.5)].

4.2.2 Biological Motivation

Many biological tissues and implants are subjected to twisting loads
(or torsion). Most notably, the twisting action of the heart is fundamental to
the ejection of blood during each cardiac cycle; that is, consistent with Fig. 2.20,
the heart shortens, constricts, twists, and shears as the muscle fibers contract
during the ejection phase. In particular, the twisting action comes from a unique
arrangement of the cardiac muscle fibers (Fig. 4.9), which was noticed many
years ago by anatomists, but not fully appreciated until the 1970s and 1980s
based on biomechanical models. It is now clear that the twisting action of the
heart is not only effective in aiding the ejection of blood, it also tends to
homogenize the distribution of stress across the wall of the ventricle. The latter
is very important within the context of mechanobiology because a homogenized
stress (or strain) field would allow the cardiac myocytes and fibroblasts to
experience similar (perhaps optimal) mechanical stimuli regardless of their
position within the wall of the heart. Because of the large strains and nonlinear
material behavior in the heart, however, the reader is referred to Humphrey
(2002) for a discussion of cardiac mechanics. Here, let us simply consider a
small strain example. Figure 4.10 shows the geometry of and loads acting on the
hip. Complex (compressive, bending, and twisting) loads occur naturally during
daily activities as well as in the laboratory during material testing.

4.2.3 Mathematical Formulation

Recall from Sects. 3.3-3.5 that we began each stress analysis by introducing a
Jjudicious cut to isolate (or expose) the Stress o(face)directiony Of interest in the
free-body diagram. Once done, we enforced equilibrium and related the com-
ponent of stress of interest to the applied loads and geometry. Let us take the
same approach here. Consider, a solid circular cylinder that is fixed on one end
and free on the other; moreover, let the free end be subjected to a positive
twisting moment M, =T (or torque). Equilibrium of the whole (Fig. 4.11)
requires an equal and opposite reaction torque 7T at the fixed wall, remembering,


http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec9_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec3_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig20_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ89_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ59_3
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FIGURE 4.9 Schema of the heart with a cutout section from the ventricular wall showing
the alternating directions of the muscle fibers (which vary smoothly throughout the wall)
within the myocardium plus the delimiting connective tissue membranes on the inner
(endocardial) and outer (epicardial) surfaces. The transmural splay in the muscle fibers
gives rise to the twisting action of the heart upon contraction. Also shown is a scanning
electron micrograph (magnification 3,000x) of two connected muscle fibers that
emphasize the locally parallel structure. [From Humphrey (2002), with permission].
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FiGure 4.10 Schema of the femur and acetabulum, a cup-shaped cavity in which the
head of the femur articulates. Because the line of action of the loads applied on the
femoral head do not coincide with the long axis of the mid-shaft of the femur, these
forces can cause both bending and twisting moments in addition to axial compression.
Bending is addressed in Chap. 5 so we simply focus on the combined axial load and
associated torque. Because of the linearity of the problem in small strain, we can use the
principle of superposition and thus solve each aspect separately (compression, torsion,
and bending).

of course, the right-hand rule for the positive sign convention. Next, consider
equilibrium of the parts. In particular, from Fig. 4.12, we see that z-face,
O-direction stresses o, act on the cut face to balance the net applied torque 7.
Knowing that each 6,9 acts over its respective differential area, with dA = rdfdr
in the circular cross section and that a torque is a force acting at a distance (i.e., a
twisting moment), we must add up the effects of all stresses acting on their
differential areas. Hence,

c (2r
§ M.)o=0— —T +J r 69dA =0—T= J J o.or’dfdr.  (4.16)
ATMN N !

0Jo
daf

Because stress can vary from point to point, in general, we must know o4 as a
function of position before we can evaluate the integral. Recall that we avoided
this “issue” in the axially loaded rod in Sect. 3.3 by assuming that far enough
from the ends, the stress o, was uniform (i.e., constant) over the cross section;
likewise, we avoided this issue in Sects. 3.4 and 3.5 for the inflated cylinders


http://dx.doi.org/10.1007/978-1-4939-2623-7_5
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec9_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec6_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec3_3
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FiGure 4.11 Schema of a solid circular cylinder (i.e., shaft) subjected to an applied
torque T on the otherwise free end. (Note: The positive sign convention is consistent
with the right-hand rule whereby the thumb points in the positive coordinate direction
and the fingers wrap around the associated coordinate axis). Shown, too, is a free-body
diagram of the whole structure to isolate the reaction at the fixed end, and a free-body
diagram of two parts to isolate the internal torques. Equilibrium requires that the internal
torques balance the applied and reaction torques.
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Ficure 4.12 Alternate free-body diagram for the circular cylinder shown in Fig. 4.11,
this time isolating a 0. stress, on a cut z face, which serves to balance the applied torque.
This balance is achieved, of course, via the net effect of all such stresses acting on their
respective cross-sectional differential areas dA and at a distance from the axis called the
moment arm.
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and spheres by assuming thin walls and, consequently, that the stress was well
represented by its mean (i.e., constant) value. Here, however, we will soon find
that o, varies with radial location and that this spatial dependence cannot be
ignored. Although we addressed this issue of nonuniform stress in the thick-
walled cylinder in Sect. 3.6 by solving the full differential equations, here we
seek an alternate, easier “strength of materials” approach. In hindsight (which
means, after trying multiple approaches to no avail), it will prove convenient to
employ the kinematics and constitutive relation directly.

Hence, consider the general element in Fig. 4.13 in which the angle y is
introduced to measure the circumferential motion of all material particles along
a line drawn along the length of the cylinder. Moreover, let y(r = c¢) be denoted
by 7. for a line drawn on the outer surface. From trigonometry,

tany, = cAd (atr =c)
e = Az B
where
cAf do

Jim ——=c— (atr =c). (4.17)

T

Az »]

Iy
\_ T
undeformed ] [ d.eformed

line line

FiGure 4.13 Schema of a circular cylinder subjected to equal and opposite end torques
(assume that the torque is applied on the right end and that the torque at the left end is a
reaction at a fixed boundary condition). Imagine that a straight line is drawn on the outer
surface in the axial direction in the unloaded configuration. Upon the application of the
torque, this line would rotate (i.e., points would displace uy) differently at different axial
locations (cf. Fig. 2.18 for the axial load). If either the angle y is small or the length Az is
small, then the line may be assumed to remain nearly straight and thus be describable via
a single angle y.


http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig18_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec12_3
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Next, let us restrict our attention to small changes in angles whereby the
following small-angle approximation holds:

d—f (atr =c). (4.18)

tany, =y, —y.=¢
Likewise, it can be shown by the same assumptions that a similar relation holds
at any radius, namely

do
@any, 2y, =y, =r— (at any r). (4.19)
z

Having these relations, obtained from simple trigonometric arguments, we
should ask: What are y. and y,? As it turns out, because of the linearization of
the Green strain (Sect. 2.5), the linearized strains are related directly to small
changes in length or angle; thus, y. and y, are related to a linearized shear strain.
Here, ¢,,, .9, and €,¢ are candidate measures of shear or angle change. Of these,
the strain €, is the measure of interest because it alone is induced by the stress
0.9, which is needed to resist the torque 7. Recall, therefore, from Hooke’s Law
for LEHI behavior [Eq. (2.79)] that

1
E9 — EGZQ, (420)

where G is the shear modulus. Moreover, it can be shown that (cf. Exercise
2.27)

1
£.9 = E(}/ +0) =y =2¢y (4.21)

for any r; that is,
Ye =2¢€9(r =c) and y, = 2¢,(r). (4.22)

These results can be substituted into Eq. (4.20), and using Eqgs. (4.18) and
(4.19), we obtain

de
0.9(r) = 2Gey(r) = Gy, = Gr o

dz
de
0.9(c) =2Gey(c) = Gy, = GCE.

(4.23)


http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ79_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Sec5_2
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Hindsight reveals that it is useful to take the ratio of these two stresses:

ow(r) _ Grdf/dz 1 olr) = o:0(c) (4.24)

o.0(c)  Gedf/dz ¢ ¢

Whereas 6,4(r) is still an unknown function of radius, in general, o,9(c) is just
the value of this function at one point, 7 = c¢; hence, it is just a number. Likewise,
¢ is just a number, the value of the outer radius; hence, via kinematics and
constitutive relations, we can now evaluate the equilibrium equation (4.16):

T — JGZHT@F%ZA = GZHT(C)Jrsz. (4.25)

By recognizing the second polar moment of area (see Appendix 4) J = frz dA,
where dA = rd@dr, we can write,

. T
T = 0497(6)‘[ < 629(6‘) = 76 . (4.26)
c J
By Eq. (4.24), however, we have
rTc Tr
529<r) = 27 — 526’(”) = 7 (427)

Note, therefore, that we have succeeded in finding the stress (relative to r, 0, z)
in terms of applied load (torque T') and a measure of the geometry (second polar
moment of area J). This is similar to our previous (universal) results for stress in

axial loading and pressurization of a thin-walled cylinder or sphere [summary in
Eq. (3.59)]:

Pa Pa n f Pa
= Ogg=—, Op=——+—"—; O0g9=—=0psp-
ATy =720 2mah % o O

Oxx =
There are two significant differences between the present and prior findings,
however. Whereas these prior relations for stress were universal results, good
for all materials, Eq. (4.27) holds only for a small-strain LEHI behavior.
Moreover, in contrast to these prior results whereby the stress was uniform
(i.e., independent of position within the body), Eq. (4.27) reveals a nonuniform
distribution of stress; that is, the shear stress varies linearly with radial position
within a circular cylinder under torsion, the stress being zero at r =0 and largest
at the outer radius r = c. Hence, if the particular “LEHI material” of interest
fails due to shear, it would be expected that failure would initiate on the outer
surface.


http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ59_3
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4.3 Principal Stresses and Strains in Torsion

As in Chap. 2, the components of stress at any point relative to one coordinate
system can be related to those relative to another coordinate system via trans-
formation relations like those in Eq. (2.13):

!

2 : )
0, = OxCOS “a + 20,y sinacos a + oy, sin “a.

To rewrite this equation in terms of the cylindrical-polar coordinates, let x — z
and y — 0, thus,

’

0,, = 0,;C08 20 + 20.9 sina cos a + ogp sin 2a, (4.28)

where a is the now the angle between z and z’ and likewise between 6 and &
(recall Eq. 3.53). For members subjected to pure torsion, ¢,, and 64 equal zero,
thus giving the following:

al,z = 20,9 cosasina. (4.29)

By substituting Eq. (4.27) into this transformation relation, we obtain

!

6,=2 7r cos asina. (4.30)

Similarly, from Chap. 2, Eq. (2.21),

I . .
O,y = Oxc SIN 2 — 20,y SINQ COS a + 0y, COS 2a
can be rewritten as
! . .
Oyp = 0z sin 20 — 26,9 sina cos a + 6y cos *a (4.31)
or for our case,
, . ’ Tr .
Opg = —209sinacosa — cyy = —2  sinacosa. (4.32)

Finally, Eq. (2.17) can be written as

! 2

0,y = sinacosa(ogy — 0..) + (cos — sinza)azg, (4.33)


http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ17_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ21_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ53_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ13_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2
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FiGURE 4.14 For pure torsion of a circular LEHI cylinder, the only nonzero component
of stress at a point p is ¢.¢ relative to z and 6. Relative to z and & however, we may have
additional components of stress, including normal and shear. We are reminded, there-
fore, that components of stress at a point depend on the coordinate system that is
employed; they are not unique physical measurables or quantities that are “felt” directly
by a cell or tissue.

or

, T
Gy = 7r (cos?®a — sin’a). (4.34)

See Fig. 4.14. As in Chap. 2, the principal stresses can be computed as

/ 0:; + Ogo Oz — 0¢9 z
Uzz)max/min = ) + \/( ) ) + 6?0

01,2 = (4.35)
' 0z: + 0go 62 — 0o\ 2 2
Ugg)max/min = 2 + ( 2 ) + Oz
but for members subject to pure torsion, o,, and o4y are zero; thus,
Gzz)max/min = iazﬁ’ Gag)max/min = :I:GZB, (436)

which is to say that the maximum/minimum normal stresses are numerically
equal to the original value of the shear stress o,4:

Tr

- (4.37)

Tr
0'1=—|-7 and 0y = —

as seen in Fig. 4.15. The plane on which the maximum normal stress acts is
given by an equation similar to Eq. (2.25):

o —1 020
20, = tan (4(0}: — 090)/2) (4.38)


http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ25_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2
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Tr

J

Ficure 4.15 Principal stresses o; and o, at point p for the state of stress shown in
Fig. 4.14. Note that the principal values are equal in magnitude but opposite in direction
(i.e., one is compressive and one is tensile). Moreover, note that their magnitude is equal
to the magnitude of the o4 shear stress. This reminds us that components of stresses can
be of the same magnitude, but different because of either the different faces on which
they act or the different directions in which they act.

where 0., and oy are zero; hence,

1
ay = Stan~! (o) = Z = 45° (4.39)

(i.e., the maximum/minimum normal stresses will act in a direction 45° from the
original z or 0 axis).
Similarly, the maximum shear stress can be rewritten as (from Chap. 2)

’ 09y — Oy 2 ’ Tr
Uzg)max/min = \/(T) + 6_39 - ng)max/min = :t7) (440)

which occurs at

1 — 0, 1
s = Etan*1 (wngZ:“) —ay = Etanfl(o) =0; (4.41)

that is, the shear stress is a maximum relative to the original (z, #) coordinate
system. Finally, note that Egs. (4.37) and (4.40) show the maximum/minimum
values relative to (z, ) and (Z/, @) coordinate systems; because the stress varies
with radial direction, the largest max/min values occur at » = c¢. Hence, whether
the material fails first due to shear or normal stresses, we would expect failure to
initiate on the outer surface (r = ¢), in the absence of internal defects of course.

Example 4.3 A hollow LEHI cylinder has an inner radius @ = 15 mm, an outer
radius ¢ =20 mm, and a length L = 0.5 m. The applied torque T is 600 Nm with

an angle of twist Af(z=L) =3.57°. Calculate a;g)maX and G;Z)max, find the value
of the shear modulus G, and calculate e;g)max and ¢,..


http://dx.doi.org/10.1007/978-1-4939-2623-7_2
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Solution: From Egs. (4.37) and (4.40),

/ Tr / Tr
-9 )max — d o, max —
649) J an 0-4.4) J
where
2 pc P
J = Jrsz = ” r2rd0dr = J J Pdrdd = 5(64 — a4).
0 a
Given

a=15mm=0.015m
c=20mm=0.02 m
L=05m

T =600 Nm
AO=3.57°=0.0623 rad

first calculate olzg)max and a;z)maxz

Tc 2(600N m)(0.02m)

G;Q)max and G;Z)max = =

A —a)/2 2[0.02m)* ~ 0015m)]

N
=~ 6.98 x 107—2 = 69.8 MPa.
m

Second, calculate G. Assuming y. << 1, we have

d0 _ A6  (0.02m)(0.0623rad)

=c — = = 0.00249rad.
dz Az (0.5m) o

Hence, 0.9(r = ¢) =2Gey(r = c) = Gy. implies that

0 6.98 x 10'N/m?

G="2= =2.80 x 10'°Pa = 28.0 GPa.
Y. 0.00249 b 4

Third, calculate e;(,)max and ¢, using Hooke’s law:

) 1 69.8 MPa
max — A~ .~0-0)max — R7AG mn~m N 0.00125
€a0)max = 56020 max = 5085 Gpa)
and, finally,
1
€z = _[Gzz - V(O’rr + 699)] =0.

E
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Thus, the shaft does not extend and the maximum shear strain is indeed small,
consistent with our small-strain assumption in the derivation of the governing
equations and our use of a LEHI descriptor of the behavior. Also note that in
reference to Table A2.1, a shear modulus G ~ 28 GPa suggests that the material
is a 2024-T4 aluminum. The yield strength of this material is ~170 MPa in
shear; hence, we would not expect that yield would have occurred.

Example 4.4 A solid circular member is to be subjected to an applied torque of
500 Nm. Find the required diameter of the member so as not to exceed the
maximum stress o,y of 125 MPa.

Solution: Given
g N
6.0 = 125, MPa = 1.25 x 10 s T =500 Nm;

let the maximum radius r = c¢. From Eq. (4.27),

Tr or ( ) Tc
0 = — o(r=c)=—
O30 7 039 C 7 y
where
27 pC P
J = Jrsz = ” rrd@dr = J J Pdrdd = =c*.
o Jo 2
Hence,
= T W 5 o7\ '/
oylc) = ———=— > = —c=
@ (z/2)c* 73 L) 050
or

1/3

2(500N

c= ( 8m) —0.0137m = 13.7mm,
2(1.25 x 10°N/m2)

and thus the minimum allowable diameter is 2¢ =27.4 mm, which is just
over 1 in.

Observation 4.2. Not all bones serve the same function. Some serve primarily to
protect underlying soft tissue (e.g., the skull and sternum); thus, they have
significant strength but carry little load most of the time. Conversely, other


http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Tab1_2
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bones serve intermittently as load-bearing structures (e.g., the humerus, radius,
and ulna of the arm), whereas still others consistently bear significant loads
(e.g., the spine as well as the femur, tibia and fibula of the leg). We would
expect, therefore, that the strains experienced by these different bones differ
significantly throughout a normal day. Much of the attention in the
mechanobiology of bone has focused on load-bearing long bones.

Regardless of their primary function, from the perspective of mechanics,
bones tend to experience small strains. Hence, given that bones are also
relatively stiff, standard strain gauges can be used to measure the surface strains
that they experience under either in vitro or in vivo loading conditions. Given
material properties, of course, stresses can then be computed from measured
strains without the need to solve the equilibrium problem (for that point). Note,
therefore, that the magnitude of peak compressive strains measured in vivo on
the outer surface of load-bearing bones (e.g., cortical bone of the diaphysial
region of the femur) have been reported on the order of 0.001 or less during
normal walking (often ~0.0004) and between 0.002 and 0.004 during vigorous
exercise. It is interesting to note, therefore, that Rubin and Lanyon (1985)
reported a maintenance of cortical bone (i.e., a balanced production by osteo-
blasts and removal by osteoclasts) when the compressive strain is between
0.0005 and 0.0015. Above a strain of ~0.0015, there tends to be a net growth
whereby production exceeds removal. Microdamage may occur, however,
when the strains are greater than 0.0025 in tension or 0.004 in compression.
Microdamage is also thought to stimulate a bone growth/healing response.
Yield may occur at strains of ~0.006 in tension and 0.009 in compression,
whereas cracks can occur when strains exceed ~0.03, which will also elicit a
bone growth/healing response. Of course, sustained inactivity (e.g., bedridden
patients) or gross unloading (e.g., in astronauts in a microgravity environment)
leads to a net loss of bone material in bones that normally support loads. We
conclude, therefore, that consistent, vigorous exercise promotes bone growth by
increasing the strains (or stresses) and, through mechanotransduction mecha-
nisms, increasing the production and organization of bone material by the
osteoblasts. Let us now look at small strain deformations in torsion, one load
seen daily by bones such as the femur.

4.4 Angle of Twist Due to Torque

Recall from Sect. 4.1 that in axial load problems, it is often useful to find the
maximum displacement (extension), denoted as J, as well as the displacement
vector and strain fields. So, too, with torsion, it is often useful to determine the
maximum angle of twist
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do
0= Jd—dz atr =c. (4.42)

z

4.4.1 Basic Derivation
From Egs. (4.19)—(4.21), we recall that

do 1 1

€0 = Eyr, €9 = ﬁ

— 20 4.43
5 & 620 (4.43)

ve=r

Hence, from Eq. (4.27), we have

o 1 1. (1 1 (Tr\ T
& ey, =20 =—( ) == 4.44
dz 7" r (2G0“9> rG(J) JG’ (4.44)

and, consequently, the angle of twist ® can be computed via
=T
0(z) — ©(0) = J —dz = J idz, (4.45)

where, similar to Eq. (4.5), we allow the torque, second polar moment of (cross-
sectional) area, and shear modulus to vary with position z along the length in
general. It is important to note, therefore, that if the shaft is homogeneous, then
G # G(z2); if the shaft has a constant cross-sectional area, then J # J(z); and if the
shaft is under a constant torque, then T # T(z). The direction of the angle of twist
O coincides with the direction of the applied torque 7.

Example 4.5 Find the total twist at a distance z in each of the members in
Figs. 4.16 and 4.17.

Solution: . T
—0(0) = | do, do=——d:.
o) ~0(0) = | a0, av e

The first shaft is homogeneous and acted upon by a constant torque; it does not
have a constant cross-sectional area however. The area changes from A; to A, at
a length of L/2 from the wall. Therefore, J =J(z) and the angle of twist becomes

LT T (21 T(E 1
O(L) — 0(0) = dz=—| —d +—J —dz.
©) ©) Jo J(2)G ’ GJO Ji TG L2J2 :
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Ficure 4.16 Two idealized circular cylinders of length L are acted upon by a single,
constant end torque T. The cylinder on the /eft has a nonconstant cross section, whereas
the one on the right is nonhomogeneous in composition.
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Ficure 4.17 A LEHI circular cylinder subjected to multiple applied torques. A free-
body diagram of the whole allows the reaction support T,, to be determined; free-body
diagrams of judiciously selected parts allows internal torques to be determined as a
function of z. Remember that judicious cuts are typically those taken between abrupt
changes in applied loads.

Because the integral was broken into a sum of integrals for the discontinuity in
cross-sectional area, each new integral contains terms that are constant along
the range of integration and can be moved outside the integral and evaluated.
Given that the twist at the fixed end is zero [i.e., ®(0) = 0], we have
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dz — 0O(L) = + .
0 J2G) ) (L) 25,G  2J,G

T JL/ 2 T JL TL 1L
The second shaft has a constant cross-sectional area and is acted on by a

constant torque; it is not homogeneous however. The material properties change

at a distance of L/2 from the wall. Therefore, G = G(z) and the twist becomes

1
d

L T TJL/Q 1 TJL
—dz,
L/2 GZ

o)~ 00) = | ot =] gt

or

TL/1 1
OL)=—(—+—].
() 2J<G1+G2>

The third shaft is homogeneous and has a constant cross-sectional area; it is
not under a constant loading however. The applied load changes at a distance of
L/2 from the wall; thus, T = T(z). Before we solve for the twist at the end of the
shaft, we must determine the internal torques at each z. From equilibrium of the
whole (Fig. 4.17b), we see that the reaction torque at the wall T,, must balance
the combined effects of the 27 and the T that are applied at z=L/2 and z =L,
respectively. Equilibrium of parts (note: when we have discrete changes in
loads, geometry, or properties, judicious cuts are those between the abrupt
changes) reveals further that the left half has an internal torque 3T and the
right half only 7. Hence, the end twist becomes

3T (L2 T (* 3TL T (L TL
OL)—00)="2| dr+—| dz—0OL)="Z4+——(Z)=2"—2.
(L) =~ ©(0) JGJO ”JGL/2 2= 6(L) 2JG+JG(2> 1G

4.4.2 Statically Indeterminate Problems

Just as in the case of the axially loaded rods, cases in which we do not have a
sufficient number of equations from statics for the number of unknowns arise
naturally and frequently in torsion problems. Such cases are called statically
indeterminate because all quantities cannot be determined from statics alone.
Here, let us return to the bone—prosthesis experiment of Sect. 4.1.3, but now
focus on shear stresses induced by torsion. Referring to Fig. 4.18, we know that
if we assume separate LEHI behaviors for the prosthesis and bone that
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FiGURE 4.18 Similar to
Figure 4.7, at section
D-D, except that the
bone-prosthesis  system
is subjected to a constant
end torque T (ie., a
twisting moment having
units of force times
length).

:|_~prosthesis

T
6,9=—, 0<r<a, and aggzjir,a<"§0> (4.46)

P b

where T, and T, are those portions of the overall torque T carried by the
prosthesis and bone, respectively, and

J, = Ea4, Jp = g(c4 - a4). (4.47)

From equilibrium, we know that T =T, + T}, but we do not yet know how the
torque partitions. For a painless prosthesis, we require that there be no relative
motion and, consequently, that all overall rotations, including the total end
rotation, be equal; that is,

T,L  T,L r _ TohGy

0. — Y el —
P0G, TGy PTG,

(4.48)

which, with ®(0) =0, yields our second equation for our second unknown.
Hence,

1J,G TJ,G
Tb:$, p:#, (4.49)
JGp +JPGP JGp —|—JPG1,
and, therefore,
TG,r
0'2227”’, 0<r<a,
JvGp +J,G,
(4.50)
b TGyr a<r<c
)y =——, .
o 1,Gy +J,G, -

In summary, we see again that if statics alone does not provide sufficient
information, we should appeal to remaining equations (e.g., kinematics, con-
stitutive, and boundary conditions).
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Example 4.6 Consider the simple shaft shown in Fig. 4.19, which has uniform
LEHI properties and is fixed on both ends. Find the torque T in each section.

Solution: Because the shaft is fixed at both ends, the problem is statically
indeterminate. If we let the end torques be denoted by T, and T, overall
equilibrium requires that T,+7Tc+7T4=0 (where T, is the known, applied
torque). We need another equation to find the reactions however. Note, there-
fore, that

TcL
21,G

rﬁ Ta g~k o) —ew)2) =

OL/) - 00)= | —hdz= -t

where ® =0 at both z=0 and z=L. Moreover, ©(L/2) is but a single value;
thus,

TAL TcL Jl

O(L/2) = — -
(L/2) 2,6 2,6 7

and therefore, having two equations and two unknowns, we can solve for the
two reactions

Ficure  4.19 Statically ﬂ N

indeterminate shaft, 7 L2 §
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structure and the parts / N

allow the reaction and

internal torques to be

isolated but not ya [ ya

determined because we (. ( FBD
have only one nontrivial Whole
equation (the sum of the \'TA \’To \'Tc

twisting moments equals
zero) for the two reaction
torques T's and T¢. There Ta Te

is, therefore, a need for N a ~

an additional equation. FBD
Ta ! g ‘ ‘( ( Parts
T.

[o]




4.4. Angle of Twist Due to Torque 197

J J
Te =T, (—2) Ty =—T, (—1>
Ji+Js Ji1+J2

As a special case, note that if J; =J, (i.e., the shaft has a constant cross section),
then T = —T,/2 and T4 = —T,/2, as expected.

Observation 4.3. One of the main complications with metallic implants (i.e.,
prostheses) is a gradual loosening of the device over time. Although infection
and the associated degradation of bone material can cause loosening, aseptic
loosening (i.e., mechanical failure) remains the most common cause of failure.
PMMA, or poly(methyl methacrylate), is commonly used as a cement to fix
metallic implants within bone. Because loosening is often due to the develop-
ment of microcracks within the PMMA, there is a need to understand the
associated mechanics. PMMA has a stiffness (i.e., Young’s modulus) of
2-3 GPa, a Poisson’s ratio of 0.35, a mass density of 1,220 kg/m3, a yield stress
of about 28 MPa, and a tensile strength of about 83 MPa. Tensile strength is the
maximum stress attained by a material on a ¢ versus ¢ curve. A particularly
important characteristic, however, is the fracture toughness of the PMMA bone
cement (i.e., its ability to withstand applied loads in the presence of flaws,
including cracks). Whereas the load-carrying capability of a material containing
defects or cracks is not compromised much in compression, which tends to
close the defect, the behavior in tension and shear is very important. Indeed,
excessive shear stresses at the bone—cement interface are thought to play a key
role in the loosening of a hip implant.

A typical fracture toughness test consists of applying known axial stresses on
a uniaxial sample that has a well-defined flaw in the central region (Fig. 4.20);
this flaw experiences increased stress at its tip, which serves to nucleate and
possibly to propagate a crack. For this simple test, a stress intensity factor K is
often defined as K = fo+/ma, where fis a geometric factor for the specimen and
flaw, o is the applied axial stress, and « is a measure of the width of the flaw. The
critical value of K at which the flaw begins to propagate is known as the fracture
toughness K. Values of K. for PMMA are around 990MPa+/m. Whereas
increased rates of loading or the presence of large defects reduce the fracture
toughness, increasing the presence of very small inclusions tends to increase K.
Such inclusions, including grains in metals, tend to arrest the propagation of a
microcrack because more energy is needed to divert the crack around the
inclusion. For this reason, small whiskers of titanium are sometimes added to
the bone cement. These whiskers not only increase the fracture toughness of the
bone cement, they also improve its radio-opacity and thus permit an easier
examination of the integrity of the cement with X-rays. We have not considered
fracture mechanics or the associated material science herein, but the student
must know that many real life problems require advanced methods and the
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FiGure 4.20 Schema of
a specimen used for o
determining the fracture
toughness of a material.

2a

e

expertise of many to understand fully the clinical problem and its most effective
solution. We emphasize again, therefore, that this text is but an introduction; the
interested student must pursue advanced courses in applied mechanics and
biomechanics.

4.5 Experimental Design: Bone Properties

We recall from Chap. 2 that bones are typically heterogeneous (cortical and
cancellous bone being very different); here, we consider a simple experiment to
determine a first-order approximation for the shear modulus G in the diaphysial
region of the femur based on the assumptions of homogeneity and isotropy.
Pretend, however, that we do not have access to a tension—torsion device, which
would allow us to perform a torsion test on a cylindrical sample and thereby to
measure the end rotation ®(z = L), applied torque T, length L, and second polar
moment of area J that are needed to calculate G = TL/J®. Rather, assume that
we have available a much less expensive axial load device. We are thus faced
with the dilemma of determining the value of the shear modulus G via an axial
load experiment; let us employ our theoretical framework for help.

Actually, there are various ways to overcome this problem. First, we could
recall that for isotropy, G = E/2(1 +v) and therefore we simply need to deter-
mine E and v. If we perform a uniaxial load test, we can infer o,, and ¢, (with
0. = E¢,,) from measurables: o, =f/A, which can be determined by measuring
the applied load and the cross-sectional area, and &,,, which can be obtained
directly from an axially oriented strain gauge (because the bone will experience


http://dx.doi.org/10.1007/978-1-4939-2623-7_2

4.6. Experimental Design: Papillary Muscles 199

small strains in its elastic range). Indeed, if €, = €,4a1, then a second strain
gauge placed orthogonal to the first would yield &,era; Whereby

G — E _ Gxx/gxx _ f/Agaxial : (451)
2(1 + V) 2(1 - elateral/exx) 2(E'zal)(ia\l - elateral)/eaxial

or

f

G = .
2A(€axia1 - 8lateral)

(4.52)

Alternatively, we could recall our transformation equations for stress and
strain (Chap. 2). For example,

/ O — Oyy\ 2 / Exr — Eyy\ 2
ny)max = \/(T) + 6,%)» exy)max = \/(T) + 8,12-y7 (453)

where, for a uniaxial test, 6,, =0, 6,,= 0, and &,, = 0. Thus, we simply need to
invoke the constitutive relation relative to the primed coordinates, namely

’ ’ 1 GXX/Z
o, mx:2G8\~mx—>G: > (454)
y) ’ '}) ’ 2(€~u_8>'y)/2
or with Oxx :f/A’ Exx = Eaxial, and €yy = Elateral,
G= f : (4.55)

ZA(Saxial - €1ateral)

which is the same result as obtained earlier. We see again, therefore, that theory
helps us to determine what to measure—that is to say, how to design a good
experiment. If we were working in industry, our boss would be particularly
pleased if our knowledge of theory would allow the desired result (here, the
value of G) to be determined using available instrumentation (a standard axial
load frame) rather than necessitating the expense and delay associated with the
purchase of more specialized equipment.

4.6 Experimental Design: Papillary Muscles
4.6.1 Biological Motivation

The wall of the heart consists primarily of myocardium, which is delimited on
its inner and outer surfaces by thin endocardial and epicardial membranes
(Fig. 4.9). Whereas these delimiting membranes consist primarily of a 2-D
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plexus of collagen with admixed elastin, the myocardium consists primarily of
locally parallel cardiomyocytes that are embedded in a 3-D collagenous matrix.
Clearly, then, the myocardium and delimiting membranes exhibit very different
mechanical behaviors (recall Fig. 2.24) consistent with their very different
biomechanical functions. Fundamental to understanding overall cardiac func-
tion, therefore, is a detailed knowledge of the mechanical properties of the
various tissues that constitute the heart. Quantification of the mechanical prop-
erties of the myocardium is complicated, however, by its ability to contract as a
muscle and the observation that it experiences multiaxial finite extensions,
shortening, and shears throughout the normal cardiac cycle (recall Fig. 2.20).
There is a need, therefore, for tests that address both of these complexities.

The papillary muscles are thin, fingerlike projections within the ventricles of
the heart (cf. Fig. 3.2). They consist of locally parallel myocardial fibers that are
oriented along the axial direction, plus a thin delimiting endocardial membrane.
Because some papillary muscles (e.g., from the right ventricle of the rabbit) are
thin, nearly circular in cross section, and of modest taper along a significant
portion of their length, they have proven to be ideal specimens for experiments
that seek to quantify behavior in extension (i.e., axial loading) and shear (i.e.,
torsion) in both active and passive states; that is, the thinness of such specimens
allows one to induce muscular contraction by bathing the papillary muscle in an
appropriate solution, such as a normal physiologic solution augmented with
barium to induce contracture or, likewise, to induce relaxation by changing the
bathing solution to one containing an appropriate cardioplegic (e.g., high
potassium and 2,3-butanedione 2-monoxime, or BDM). From the perspective
of mechanics, therefore, one can design a tractable experiment: the combined
axial extension and torsion of a cylindrical specimen having either active or
passive properties. Given that we have derived formulas for axial extension and
torsion, it may seem that it would be easy to design and interpret such an
experiment to determine the stress—strain behavior of a papillary muscle and,
thus, myocardium. Here, however, we must be very careful: Whereas the
formula for Cauchy stress in an axially loaded member (o,, =f/A) is a universal
solution and thus applicable to any material and any degree of strain, the
analogous formula for Cauchy stress in the torsion of a circular member
(0.9=Tr/J) holds only for LEHI behavior and small strains. Likewise,
the formulas for end deflection (e.g., 6 =fL/AE) and that for end rotation
(® =TL/JG) are both restricted to small strains. The characteristic nonlinear,
inelastic, heterogeneous, and anisotropic behavior exhibited by myocardium
thus prohibits the use of three of our otherwise four seemingly applicable
formulas.

Although we discuss some aspects of the quantification of nonlinear material
behavior in Chap. 6, here let us see that how our simple results can still be used
to design an appropriate experiment on a complex soft tissue.
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4.6.2 Experimental Design

Consider Fig. 4.21, which illustrates a possible setup for an extension—torsion
test on a papillary muscle. In particular, we need actuators to induce both
extension and torsion; this can be accomplished with computer-controlled
stepper motors, which are commercially available at the appropriate resolution
in motion. We also need a method to measure the strain in the central region;
although standard strain gauges cannot be used, strains can be inferred by
affixing small markers to the surface of the specimen and tracking their motion
with a video camera and computer image analysis system. From marker dis-
placements, of course, we can compute the requisite displacements and their
gradients (by introducing interpolation functions) to compute surface strains as
discussed in Chap. 2. Although papillary muscles are small and thus subject to
relatively small axial loads, commercial load cells are available with the
requisite resolution. Measurement of the applied torque is not so simple

torque
motor

axial load cell \
light
N
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/ {=—— specimen
™__ tracking
\ markers
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fluid
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FiGure 4.21 Possible experimental setup for performing an extension—torsion test on a
thin, long, circular soft tissue. Shown are two actuators (a linear motor and torque motor
to induce the extension and twisting, respectively), a standard axial load cell, a custom
laser lever for measuring the torque, and a specimen in a physiologic solution. Note that
the specimen has markers affixed to its surface to allow noncontacting measurements of
displacements and then, via interpolation, calculation of displacement gradients and
thus strains.
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FiGure 4.22 Free-body diagrams of the specimen—fixture assembly for the device in
Fig. 4.21 as well as of the isolated specimen and the wire that connects the upper fixture
to the torque motor. Although the metallic wire and soft tissue have very different
material properties (recall Fig. 2.23), equilibrium and Newton’s third law require
continuity in the applied loads from one to the other.

however because a torque is a force acting at a distance. For a papillary muscle
from the right ventricle (RV) of the rabbit or rat heart, this means a small force
acting at a very small distance; hence, the applied torque will be very small.
Therefore, let us see how the results of this chapter can be used to design an
appropriate torque transducer.

Figure 4.22 is a free-body diagram of the bottom fixture, specimen, upper
fixture, and thin connecting wire assembly. Because equilibrium of the whole
implies equilibrium of the parts, each member of this assembly has a similar
free-body diagram. In particular, there must be continuity of the applied loads
throughout each member of this specimen—fixture assembly. In other words, if
we can measure the torque acting on either the bottom or the upper fixture, we
will know the torque that acts on the papillary muscle. In a Ph.D. dissertation,
Sten-Knudsen (1953) recognized this and suggested that the upper fixture be
connected to a thin metallic wire that exhibits a LEHI behavior. Consequently,
if one measures the rotation at two points along the wire, say ®4 and ®g, and if
one knows the radius ¢ and the shear modulus G of the wire, then the torque on
the wire is [from Eq. (4.45)]
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(®B — @A)JG T 4

T =
L ' 277

(4.56)

where ®4 and Op are the rotations at points A and B and L is the distance
between A and B. If the load cell in Fig. 4.22 is rigidly attached to the torque
motor, then ®, simply equals the rotation of the torque motor, which is
generally available as a digital output signal. How then do we measure ©pz?
One possibility is to measure the angle of reflection of a beam of light (i.e., a
laser) using a mirror that is attached rigidly to the wire at B and a photoreceptor.
The resolution and range of the torque transducer is thus controlled largely by
the position of the mirror at B, the radius of the wire, and the shear modulus of
the wire G. Each of these quantities are easily measured.

In summary, we sought a tractable experiment to reveal the nonlinear exten-
sional and shear behaviors of myocardium in active and passive states. Nature
provided a nearly ideal sample in the thin and nearly circular papillary muscle.
Whereas commercially available stepper motors, video cameras, frame-grabber
boards, axial load cells, and A/D boards allow one to control and measure most
of the requisite quantities, the unavailability of a commercial torque transducer
having sufficient resolution (in 1953 and today) necessitated a custom design.
We saw, therefore, that our simple strength of materials solution restricted to
LEHI behavior could be used to design such a transducer for measuring torques
in a tissue that exhibits a nonlinearly, inelastic, heterogeneous, and anisotropic
material behavior. Knowing not only the restrictions but also the applications of
each derivation is thus fundamental to creative analysis and design. Whereas we
have considered only the design of the transducer here, Humphrey (2002)
addressed the complete problem via nonlinear mechanics.

4.7 Inflation, Extension, and Twist

Because the stress boundary value problems associated with the distension of a
thin-walled circular tube, the small strain axial extension of a rod, and the small
strain twist of a circular shaft are each linear, their solutions can be
superimposed to consider more complex loading conditions. In particular,
relative to (r, 0, z) coordinates, recall the following results:

Pa Pa f Tr
O, 0 — ——

5 %= = 5 + Smalt o, 7 (4.57)

0o =

wherein we emphasize that each result relates the stress to the applied load and
geometry. Referring to Fig. 4.23, therefore, we see a potentially complex 2-D
state of stress. From a design perspective, one could ask questions such as: What
are the maximum principal or shear stresses and at what orientation @ do they
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Ficure 4.23 Complex state of stress in a cylindrical tube. Relative to z and 8, the axial
stress o, is induced by the axial load f, the shear stress 6.4 is induced by the torque 7,
and the circumferential stress oy is induced by the pressure P. Superposition applies
because the problem is linear.

act? Knowing the value a, for the principal values would be useful, for
example, in the placement of strain gauges on the specimen. Fortunately, such
questions are answered easily because the formulas for stress in Eq. (4.57) can
be superimposed.

In summary, as we noted in the Introduction, considering separately the
mechanics of simple problems not only gives us intuition and reinforces
the general method of approach, it also yields direct applications and in some
cases it allows us to consider more complex situations consisting of multiple
types of applied load. In any event, we must always be mindful of the deriva-
tions (i.e., of the embodied assumptions).

Chapter Summary

This chapter addresses, in part, two of five aforementioned canonical problems
in biosolid mechanics: extension of 1-D structures and torsion of cylindrical
structures. The other canonical problems are considered in Chaps. 3 and 5.
Obvious applications of solutions to extension and torsion problems include the
analysis of bones, tendons, ligaments, and muscles, but many others as well,
including diverse experimental fixtures or medical devices. As in Chap. 3, we
sought to determine stress in terms of the applied load and geometry and to
determine strain, or associated deformations, in terms of the applied load,
geometry, and material properties.

Although stress in an axially loaded, uniform 1-D structure (Sect. 3.3) can be
determined via a universal solution (i.e., independent of constitutive proper-
ties), we found in this chapter that determination of the associated strain
required specification of a constitutive relation (Eq. 4.4). Hence, even for the
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same problem, one must be careful to remember the limitations of individual
results. Indeed, in many books one finds that stress and strain in axial loading
are derived in the same section without emphasizing that the solution for stress
is universal whereas that for strain is not. This observation is especially impor-
tant t