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Preface to the Second Edition

We have very much appreciated the overwhelmingly positive response to this

book by professors and students alike at universities across the USA and abroad.

The goals and approach of this Second Edition thus remain as originally

presented: to motivate the need for continuum biomechanics across diverse

areas of study, to present a consistent introductory approach to the biomechan-

ics of solids and fluids and their interactions, and to illustrate this general

approach via numerous Examples and Exercises. This Second Edition has

allowed us, however, to add new “Observations” that highlight further impli-

cations of mechanics within biology and medicine, to add a new Appendix, to

update the references, to include additional Exercises, and to correct some

typographical errors. Perhaps most importantly, this Second Edition has

allowed us to add at the end of each chapter a “Chapter Summary” to help

emphasize general points of importance as well as to reinforce the consistency

of the big picture ideas across chapters.

It was just over a decade ago that we wrote this book with great excitement

and we are very pleased to report that research and training in biomechanics

continues to be universally recognized as both exciting and vitally important.

Traditional areas of research within biomechanics continue to contribute to

basic science as well as translational research and development whereas new

areas continue to emerge with great promise. For example, the US National

Committee on Biomechanics (USNCB) recently sponsored three Frontiers

Meetings that highlighted special opportunities for biomechanics in areas

ranging from developmental biology to the fight against cancer and infections.

Since the first printing of this book, the National Science Foundation has added

another funding program entitled, Biomechanics and Mechanobiology, and a

Federal Interagency Modeling and Analysis Group (IMAG), led by Grace Peng,

Ph.D., has been established to emphasize across many funding agencies the

importance of multiscale mathematical modeling in biology and medicine,

which prominently includes biomechanics. Hence, in areas new and old alike,

we continue to see the importance of the fundamentals of biomechanics in the
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formulation and solution of diverse biological and medical problems of

importance. We thus continue to encourage the reader to focus on learning

the fundamentals well and, of course, to enjoy the journey.

Jay D. Humphrey

New Haven, CT, USA
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Preface to the First Edition

Biomechanics aims to explain the mechanics of life and living. From molecules to
organisms, everything must obey the laws of mechanics.

—Y.C. Fung (1990)

It is purported that Leonardo da Vinci once said, “by means of this [mechanics],

all animated bodies that have movement perform all their actions.” Although

this assertion is obviously overstated, it serves to remind us that scientists have

long thought that mechanics plays an extremely important role in governing

biological as well as physical actions. Indeed, perhaps one of the most exciting

recent discoveries in cell biology is that of mechanotransduction. It is now

known that many cell types express different genes (i.e., perform different

functions) in response to even small changes in their mechanical environment.

Because cells are the fundamental structural and functional units of all living

things, the importance of mechanics in biology and medicine is thereby far

reaching! One goal of this book is to serve as an introduction to a few of the

many, many applications of biomechanics—one of the cornerstones of biomed-

ical engineering. Before proceeding, however, a few words on the scope and

philosophy of approach.

There are five general areas of mechanics: discrete, continuum, statistical,

quantum, and relativistic. Each is important, but this text focuses on biome-

chanics from a continuum perspective, which we will see embraces many

aspects of biomedical engineering at various length and time scales.

Introductory textbooks on mechanics sometimes give the wrong impression

that the subject is primarily a collection of solutions to individual problems—

nothing could be further from the truth. As a branch of classical physics,

continuum mechanics is a deductive science founded upon a few basic postu-

lates and concepts through which all problems must be formulated and then

solved. Mechanics should be recognized, therefore, as a consistent, focused

approach to the solution of classes of problems rather than as a collection of

special results. Another goal of this textbook is to introduce the student to

biosolid and biofluid mechanics such that it is the underlying, consistent
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approach that is learned and reinforced throughout. Indeed, the ultimate goal

here is to enable the reader to formulate and solve real-life problems, many of

which have yet to be identified. In other words, the primary goal of a student

should not be to learn how to solve the specific problems (illustrative examples

and exercises) in this text; we, as a community, already know their solution.

Textbook problems should be used simply as a means to practice the underlying

approach of mechanics, to gain confidence in formulating and solving prob-

lems, and to develop intuition.

Although this philosophy of learning the fundamentals is as old as mechanics

itself, it has at no time in our history been more important. With continued

advances in computer technology and engineering software, the biomechanicist

will have increasingly remarkable experimental, computational, and design

tools at his/her disposal to address the incredibly complex real-life problems

of biomechanics. The only way to ensure that these tools are used well, rather

than misused, is to understand the underlying general approach as well as the

specific assumptions (with associated limitations) within a given formulation.

For example, a finite element program should not be treated as a black box

capable of finding any solution of interest; rather, it should be used cautiously as

a tool only by one who understands how the program actually works. Toward

this end, note one caveat. It has been appropriately said that undergraduates

should be told the truth, nothing but the truth, but not the whole truth. Why not

the whole truth? From a purist perspective, we do not know the whole truth,

scientific knowledge being relative to current advances. From a practical per-

spective, however, continuum biomechanics has tremendous breadth and depth

and it is impossible in an introductory course to scratch the surface of the whole

truth. Therefore the interested student is strongly encouraged to pursue inter-

mediate and advanced study in biomechanics, which will successively reveal

more and more of the beauty and, indeed, the power of biomechanics. Biome-

chanics is a lifelong pursuit, one with many rewards.

Whereas graduate courses on biomechanics are often best taught using a

problem-based paradigm, we suggest that an introductory course on biome-

chanics should be taught using a traditional discipline-based paradigm; that is,

graduate courses are often best taught by focusing on a particular tissue, organ,

or system, or, alternatively, on a specific disease or treatment modality, and then

by bringing to bear all tools (experimental, computational, theoretical, biolog-

ical) that aid in the solution of that class of problems. An introduction to

biomechanics should be different, however. To see the overall approach used

in mechanics, it is best to introduce all of the general tools (e.g., concept of

stress, strain, and equilibrium) and then to illustrate their use via multiple

similar problems that build in complexity but continually reinforce the same

approach. Hence, this book is divided according to approach (e.g., via chapters

on beam theory and Navier–Stokes solutions), not according to areas of

research such as cardiovascular, musculoskeletal, pulmonary, or cell
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mechanics. Therefore, we employ illustrative problems from various fields of

study, often within single chapters.

As a first course in biomechanics, the primary prerequisites are the sequence

of courses on calculus for engineers (including vectors, which are reviewed in

Chap. 7) and some basic biology (reviewed in Chap. 1); many students will

likely have had a course in engineering statics (briefly reviewed in Chap. 1),

which will help but it is not necessary. Although a course on differential

equations would also be helpful (briefly reviewed in Chap. 8), related methods

needed herein will be reviewed at the appropriate time. Given the availability of

personal computers and useful software packages, the student will be asked to

obtain numerical solutions to many exercises.

I would like to close with a quote from the 1998 Bioengineering Consortium

(BECON) Report of the National Institutes of Health:

The success of reductionist and molecular approaches in modern medical science

has led to an explosion of information, but progress in integrating information has

lagged . . . Mathematical models provide a rational approach for integrating this

ocean of data, as well as providing deep insight into biological processes.

Biomechanics provides us with a means to model mathematically many

biological behaviors and processes; thus biomechanics will continue to play a

central role in both basic and applied research. The key, therefore, is to learn

well the basic approaches.

Jay D. Humphrey

College Station, TX, USA
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Comments from a Student to a Student

Although one tends to teach the way he or she was taught, this textbook is

designed to be different. For example, rather than introduce biomechanics

through a sequence of increasingly more involved and detailed problems,

with each illustrating new foundational concepts, we choose to introduce the

basic concepts first and then to illustrate and reinforce the use of these concepts

through the consideration of increasing more complex problems. In addition,

rather than have two professors coauthor the book from their two perspectives,

we chose to have a professor and student coauthor the book from their two

perspectives—teacher and learner. Ms. O’Rourke completed a sequence of

three biomechanics courses at Texas A&M University (BMEN 302 Biosolid

Mechanics, BMEN 421 Biofluid Mechanics, and BMEN 689 Cardiovascular

Mechanics) offered by Professor Humphrey. The goal of this joint effort,

therefore, is to present the material in a way that a professor feels is most

beneficial and yet in a way that a student feels is most easily assimilated. Here,

therefore, consider comments from a student to a student.

When taking my first course from Professor Humphrey “Biosolid Mechan-

ics,” he explained mechanics in such a way that made sense to me. He intro-

duced the idea of a continuum and that classes of problems that fall within the

realm of continuum mechanics, whether it be solid or fluid mechanics, are

governed by the same fundamental relations. The backbone of mechanics was

revealed and the basic/fundamental equations were derived from a single

perspective. This introductory text introduces these basic concepts, which are

essential to all problems in biomechanics. It presents a unified approach that

helps the student to understand and learn the basic concepts and allows one to

build upon these concepts to formulate and solve problems of increasing

difficulty.

The concepts introduced in Part II of this text are reinforced in Part III, as we

apply the same governing equations to different classes of problems, again

deriving necessary equations as we move along. As a student, I found the course

in “Biofluid Mechanics” to be easier than “Biosolid Mechanics” partly because
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I had already learned the general approach to formulating and solving problems.

In these ways, I feel that this book reflects the positive aspects from my learning

experiences at Texas A&M.

All in all, as a student, I appreciated having a unified problem-solving process

presented to me and reinforced throughout each course as well as knowing from

where the basic/fundamental equations were derived. I also appreciated refer-

ence to real-life problems for motivation, and derivations that skipped very few

steps. This book reflects these ideas, upon which one can build.

Sherry L. O’Rourke

College Station, TX, USA
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Summary of Observations
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1
Introduction

1.1 Point of Departure

Biology is the study of living things; mechanics is the study of motions and the

applied loads that cause them. Biomechanics can be defined, therefore, as the

study of the motions experienced by living things in response to applied loads.

Herein, however, we consider that biomechanics is the development, extension,

and application of mechanics for the purposes of understanding better the

influence of applied loads on the structure, properties, and function of living

things and the structures with which they interact. Thus, the domain of bio-

mechanics is very broad. It includes, among many other things, studying the

effects of wind loads or gravity on the growth of plants, the mechanical

properties of foodstuffs, the flight of birds, the drag-reducing properties of the

skin of dolphins, and human athletic performance. Additionally, biomechanics

addresses many issues of health as well as disease, injury, and their treatment

in both humans and animals. This shall be our primary motivation herein; thus,

it is easy to see that biomechanics is fundamental to the rapidly growing field

of biomedical engineering.

It is not possible to identify a true “father of biomechanics,” but many point

to either Leonardo da Vinci (1452–1519) or Galileo Galilei (1564–1642).

Among many other things, da Vinci was interested in a means by which man

could fly, and to this end, he studied the mechanics of the flight of birds.

Mankind’s attempt to base the design of engineering systems on nature’s way

of doing something (e.g., the honeycomb structure within a beehive or a bat’s

radar system) is called bionics, which remains a very important area within

biomechanics. In contrast to da Vinci, Galileo was interested in the intrinsic

strength of bones and, in particular, its relation to the structural design of bones.

Based on a preliminary analysis, he suggested that bones are hollow, for this
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improves the strength-to-weight ratio. Clearly, then, biomechanics focuses on

both design and analysis, each of which is fundamental to engineering.

Jumping forward to the late nineteenth century, Wilhelm Roux put forth the

idea of a “quantitative self-regulating mechanism” that results in functional

adaptation by tissues, organs, and organisms, an idea that was consistent with

the concept of a stress-mediated organization of the microstructure of bone that

was put forth by Julius Wolff in 1884. Briefly, Wolff suggested that the fine

structure within bones (i.e., oriented trabeculae) is governed by lines of tension

that result from the applied loads. Although his analysis was not correct, the

basic idea was extremely important. For more on “Wolff’s law of bone

remodeling,” see Chap. 4 as well as Roesler (1987). Indeed, we will return

many times to this observation that mechanical loads control tissue structure

and function, which has given rise to the very important area of research called

mechanobiology.

Many other savants were interested in biomechanical applications.

They include R. Hooke (1635–1703), L. Euler (1707–1783), T. Young (1773–

1829), J.L.M. Poiseuille (1799–1869), and H. von Helmholtz (1821–1894).

Despite the caliber of scientists who have sought answers in biomechanics

over the centuries, our field did not truly come into its own until the mid-

1960s. Although historians will likely argue over the reasons for this, it is

suggested here that five nearly concurrent developments provided both

increased motivation and increased capabilities in biomechanics. Recall that

the 1960s was the decade of mankind’s pursuit of the Moon. When faced with

the question, “How will man respond to the altered loads associated with space

travel, including a reduced gravitational load on the Moon?,” clinical medicine

could not provide the answers, for it is based largely on observations. There was

a need, therefore, for a predictive science, one focusing on how the body

responds to mechanical loads. In addition, note that much of biomechanics

deals with the response of soft tissues (i.e., tissues other than bones and teeth). It

has long been known that soft tissues exhibit complex nonlinear behaviors that

could not be described by the classical mechanics of continua developed in the

eighteenth and nineteenth centuries. Rather, biomechanics had to await the

post-World War II renaissance in continuum mechanics (�1948–1965) through
which the nonlinear theories achieved a more complete and rational foundation.

During this same period, 1950s–1960s, technological developments gave rise to

the digital computer. Computers are essential in biomechanics for solving many

important but complex boundary and initial value problems, for controlling

complicated experiments, and for performing nonlinear analyses of the data.

Paralleling the development of computers was the advancing of powerful

numerical methods of analysis, including the finite element method, which

was introduced in 1956 and has become a standard tool in the biomechanicist’s

arsenal for attacking basic and applied problems. Finally, it is not coincidental

that biomechanics emerged at the time that modern biology was born, which
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was due in large part to the identification in the 1950s of the basic structure of

proteins (by L. Pauling) and DNA (by J. Watson and F. Crick). In summary

then, the 1950s and 1960s provided important new motivations as well as

theoretical, experimental, and technological advances that allowed the emer-

gence of biomechanics. This is, of course, only a synopsis of some of the

essential historical developments. The interested reader is encouraged to inves-

tigate further the history of our field.

Although biomechanics encompasses a broad range of topics, the purposes of

this book are twofold: first, to introduce fundamental concepts and results from

solid and fluid mechanics that can be applied to many different problems of

importance in biology and medicine and, second, to illustrate some of the many

possible applications by focusing on the mechanics of human health, disease,

and injury. Hence, to motivate our study further, let us briefly review some of

the many cases wherein biomechanics can and must contribute to the advance-

ment of health care. Once we have sufficient motivation, we shall then briefly

review results from Cell and Matrix Biology, results on which we shall build in

Chaps. 2–11.

1.2 Health Care Applications

There are many obvious examples wherein biomechanics plays a central role in

the delivery of health care, roles that literally span all levels from the molecule

to the person. Beginning with the latter, a simple example of an important

biomechanical contribution is the design of efficient wheel-chairs. By efficient,

of course, we mean having sufficient strength with minimal weight, but also

ease of maneuverability, ease of transport in a car or van, flexibility in the

positioning of the patient, and even affordability. One does not realize the

importance of what may seem to be such a simple device until a family member

is incapacitated and in need. Selection of materials, design, experimentation,

and stress analysis each play important roles in the engineering of an efficient

wheelchair. Another common example at the level of the whole person is the

design of transportation systems that improve occupant safety. Again, one only

needs to see the devastation wrought on a family when someone is injured

severely in a vehicular accident to appreciate the need for biomechanical

solutions to improve safety in transportation.

Intracranial saccular aneurysms are balloonlike dilatations of the arterial wall

that tend to form in or near bifurcations in the circle of Willis (Fig. 1.1), the

primary network of arteries that supply blood to the brain. Although the natural

history of saccular aneurysms is not well understood, it is generally accepted

that mechanical factors play important roles. Hemodynamic forces may con-

tribute to the initial local weakening of the wall, intramural forces that balance

the distending blood pressure may contribute to the enlargement of the lesion
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from a small bulge to a sac over 25 mm in diameter (note: the parent artery is

often less than 4 mm in diameter), and it is thought that rupture occurs when the

intramural forces exceed the strength of the wall. Ruptured saccular aneurysms

are the primary cause of spontaneous subarachnoid hemorrhage (i.e., bleeding

within the brain due to nontraumatic cause) and thus are responsible for

significant morbidity and mortality. Understanding the biomechanics of aneu-

rysms at the tissue level is thus potentially very important in neurosurgery.

On yet another scale, it was discovered around 1974 that endothelial cells,

which line all blood vessels, are very sensitive and responsive to the forces

imparted on them by the flowing blood. In particular, these cells express

different genes, and thus produce different molecules, depending on the

magnitude and direction of the blood-flow-induced forces (Fig. 1.2). Many

different situations alter the flow of blood and thus the forces felt by the

FIGURE 1.1 Schema of the circle of Willis, the primary network of arteries that supplies

blood to the brain. Note the intracranial saccular aneurysm, which is a focal dilatation of

the arterial wall on the left middle cerebral artery (with the circle viewed from the base

of the brain). Such lesions tend to be thin-walled and susceptible to rupture. From

Humphrey and Canham (2000), with permission from Kluwer Academic Publishers.
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endothelium: exercise or the lack thereof, diseases such as atherosclerosis and

aneurysms, a microgravity environment on the space shuttle, the implantation

of medical devices including artificial arteries or left ventricular assist devices,

and even the surgical creation of arterio-venous fistulas for kidney dialysis.

To understand and ultimately to control endothelial function, we must under-

stand the associated biomechanics and mechanobiology—how the fluid-

induced forces deform a cell, how the cell senses these forces, and how the

transduction of these forces controls gene expression. It is thought, for example,

that loads applied to the surface of a cell are transmitted to the proteins within

the cell through membrane-bound protein receptors. Hence, from the wheel-

chair to individual proteins in the cell membrane, and everywhere in between,

biomechanics has a vital role to play in analysis and design that seeks to

improve health care.

Figure 1.3 is a rendition of the drawing of a man by da Vinci that emphasizes

interesting symmetries of the body. Shown, too, are some of the many examples

FIGURE 1.2 Schema of the monolayer of endothelial cells that lines the inner surface

of a blood vessel, with a free-body diagram showing various mechanical loads that act

on a single cell: flow-induced shear forces; radial forces due to the blood pressure;

circumferential forces due to cell–cell contacts and the distension due to the pressure;

and axial forces due to cell–cell contacts and the prestretch that appears to arise

during development. Also shown are classes of molecules that are produced by endo-

thelial cells in response to changes in these mechanical loads. MMPs denotes matrix

metalloproteinases—molecules that degrade extracellular matrix.
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wherein mechanics plays a key role: from understanding why abdominal aortic

aneurysms rupture, to identifying the failure strength of the anterior cruciate

ligament (ACL) in an elite athlete, which must be protected during training and

competition; from designing an artificial heart valve that must open and close

over 30 million times per year, to understanding why artificial hip implants

loosen over time and cause pain; from understanding what pressure must be

applied to an angioplasty balloon to open a diseased artery, to understanding

how deep and how many incisions should be made to modify the curvature of

the cornea to correct for visual problems; from understanding the role of

stresses in biological growth for the purpose of engineering tissue replacements,

to designing a mechanical ventilator for those in respiratory distress; from

using computer-aided modeling to guide robotic-assisted surgery, to designing

needles that induce less damage to the arterial or venous wall; from designing

an orthotic device for supporting an injured limb, to specifying a rehabilitation

schedule that promotes tissue healing. In these and many, many other cases,

biomechanics plays vital roles in the research laboratory, biomedical device

industry, and hospital on a daily basis.

FIGURE 1.3 A schema of da Vinci’s man showing a few of the many different

aspects of human physiology, pathophysiology, and injury that can be addressed using

biomechanics.
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1.3 What Is Continuum Mechanics?

The functioning of the body and, likewise, the success of many clinical

interventions depend on chemical, electrical, mechanical, and thermal processes.

Nevertheless, we shall focus herein solely on the mechanics. Recall, therefore,

that classical physics is typically thought to consist of a number of related areas of

study: acoustics, electromagnetics, mechanics, optics, and thermodynamics.

Thus, most of classical physics is concerned with the behavior of matter on a

“natural” scale of observation or experience. Although its foundations and appli-

cations continue to be vibrant areas of research, the fundamental ideas upon

which classical physics rests (due to Gibbs, Huygens, Maxwell, Newton, and

others) were identified prior to the twentieth century. In contrast, modern physics

is concerned primarily with phenomena at “extreme” scales of observation and

thus includes atomic (or nuclear) physics, low-temperature physics, quantum

mechanics, and relativity. Clearly, biomedical engineering is supported by, and

relies on, both classical and modern physics. Without the latter, important

diagnostic tools such as CAT (computerized axial tomography) scans and MRI

(magnetic resonance imaging) would not be possible. In this introductory text,

however, we shall rely solely upon classical mechanics.

Classical mechanics is typically thought to offer two basic approaches:

continuum mechanics and statistical mechanics. Consider, for example, a sim-

ple glass of water at room temperature. On the natural scale of observation, we

see and can think of the water as a continuous medium. In reality, however, we

know that water is a collection of discrete, interacting molecules composed of

hydrogen and oxygen atoms, and we know that there are gaps between the H2O

molecules and even gaps between the electrons and nucleus of each of the

atoms. In statistical mechanics, we attempt to describe the (statistical) mean

behavior of the individual molecules so as to understand gross behaviors on a

natural scale of observation. In continuum mechanics, we also consider a

volume-averaged mean behavior, but one that is independent of any consider-

ation of the individual molecules. Perhaps a good example that illustrates when

the continuum and statistical approaches are each useful is the analysis of drag

on the Saturn V rocket that carried the Apollo spacecraft into space. When the

rocket took off, the drag due to the frictional interaction between the surface of

the rocket and the molecules of the air could be studied within a continuum

context because there were so many closely spaced molecules that a gross,

volume-averaged description of their properties was meaningful. In the upper

atmosphere, however, the molecules of the air may be far enough apart that one

should consider statistically their individual behaviors. In other words, the

continuum assumption (or hypothesis) tends to be reasonable when δ/λ� 1,

where δ is a characteristic length scale of the microstructure and λ is a charac-

teristic length scale of the physical problem of interest. For the rocket, δmay be

the distance between the individual molecules of the air and λ the diameter of
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the rocket. In this case, the ratio of δ/λ is much less than 1 near the ground but

perhaps on the order of 1 in the upper atmosphere. With regard to biomechanics,

consider the following. If one is interested, for example, in the forces felt by

cells (on average) within the wall of a large artery due to the distending blood

pressure, the characteristic length scales would be micrometers (μm) for the

microstructure (e.g., size of the cell and diameters of the fibers in the extracel-

lular matrix) and millimeters (mm) for the physical problem (wall thickness).

Thus, δ/λ� μm/mm� 0.001 which is much less than 1 and the continuum

assumption would be expected to be reasonable. Similarly, if one is interested

in the velocity of blood at the centerline of a large artery, the characteristic

length scales would again be micrometers for the microstructure (diameter of a

red blood cell) and millimeters for the physical problem (luminal diameter), and

again δ/λ� 1. The situation would be very different in a capillary, however,

wherein δ/λ� 1 because the diameter of the red blood cell and capillary are both

about 5–8 μm. We shall see throughout this text that the continuum assumption

tends to be very useful in a wide variety of problems of design and analysis

in biomechanics; hence, it is adopted throughout. Nevertheless, we are well

advised to remember the following: “Whether the continuum approach is

justified, in any particular case, is a matter, not for the philosophy or method-

ology of science, but for experimental test” (Truesdell and Noll 1965, p. 5).

In other words, the utility of any of our designs or analyses must first be checked

in the laboratory.

Recall, too, that matter is typically thought to exist in one of three phases:

solid, liquid, or gas. Mechanics tends to be divided along these lines into solid

mechanics and fluid mechanics, where fluid mechanics includes the study of

both liquids and gases. That is, one can define a fluid as a substance that assumes

(within short times) the shape of the container in which it is placed, whereas a

solid tends to resist such shape changes unless so forced. Referring to Fig. 1.4,

therefore, note that solid and fluid mechanics are generally studied in the order

of increasing complexity, which has (artificially) given rise to subfields of

study. Although no solid is rigid, the assumption of a rigid body can lead to

many useful designs and analyses, as, for example, in satellite dynamics.

Likewise, all fluids resist the forces that cause them to deform, or flow.

Again, however, neglecting this intrinsic resistance to flow (or, viscosity) can

lead to many useful engineering solutions, particularly in aerodynamics. Hence,

despite being based on unrealistic assumptions, rigid-body solid mechanics and

inviscid fluid mechanics are both useful and convenient starting points for

study.1

1 It is assumed herein that the student has had an introduction to mechanics, which
typically covers rigid body statics and sometimes dynamics. If not, a brief review of
statics is found in Appendix 1.
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Our focus herein is on deformable solids and viscous fluids, for which it is

often convenient to study separately the linear and nonlinear behaviors

(Fig. 1.4), which give rise to additional subfields of study such as elasticity

and plasticity (in solid mechanics) or Newtonian and non-Newtonian fluid

mechanics. Although many problems in biomechanics necessitate dealing

with the complexities associated with nonlinear behaviors (e.g., the stiffening

response of soft tissues to increasing loads or the flow-dependent viscosity of

blood), we shall focus primarily on the linear behavior of both solids and fluids.

Not only do such problems serve as a natural preparation for the consideration

of the more complex problems found in advanced courses, but many solutions

to linear problems are fundamental to clinical and industrial applications as well

as to basic research. For an introduction to nonlinear cardiovascular solid

mechanics, see Humphrey (2002).

1.4 A Brief on Cell Biology2

The word “cell” comes from the Latin cellulea, meaning “little rooms.” This

terminology was coined by Hooke (1635–1703) who was perhaps the first to

describe a cellular structure, which in his case was remnant cell walls in a thin

FIGURE 1.4 Flowchart of traditional divisions of study within continuum mechanics.

Note that solid mechanics and fluid mechanics focus primarily on solidlike and fluidlike

behaviors, not materials in their solid versus fluid/gaseous phases. Note, too, that linear

and nonlinear refer to material behaviors, not the governing differential equations of

motion. As we shall see in Chap. 11, many materials simultaneously exhibit solidlike

(e.g., elastic) and fluidlike (e.g., viscous) behaviors, which gives rise to the study of

viscoelasticity and the theory of mixtures, both of which are important areas within

continuum biomechanics.

2 Much of Sects. 1.4 and 1.5 are from Humphrey (2002).
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slice of cork. Today, by the word “cell,” we mean “the fundamental, structural,

and functional unit of living organisms” (Dorland’s Medical Dictionary 1988).

For a detailed discussion of cell biology, see the wonderful work by Alberts

et al. (2008) or similar texts; here, we simply offer a brief introduction.

Most cells consist of various organelles (i.e., organized structures having

specific functions), the cytosol, the cytoskeleton, and an outer membrane

(Fig. 1.5). The most conspicuous organelle is the nucleus, which contains the

genetic information, chromosomal DNA. The nucleus consists of its own

porous membrane or envelope, which mediates all transport into and out of

the nucleus, a nucleoplasm that contains a fibrous scaffold, and a nucleolus that

produces the ribosomes that are responsible for translating mRNA data for

protein synthesis. The primary functions of the nucleus, therefore, are to archive

and replicate the genetic code as needed to direct cellular activity. Whereas the

cells in a given organism contain the same genetic information (the genotype),

each cell does not “express” the same genes. The genes that are expressed define

the phenotype; hence, skin cells are different from bone cells and so on. That

cells are able to express different genes in response to changing external stimuli,

particularly mechanical loads, will prove to be very important in biomechanics

FIGURE 1.5 Schema of a mammalian cell showing its three primary constituents: the cell

membrane (with various receptors, pumps, channels, and transmembrane proteins), the

cytoplasm (including many different types of organelles, the cytoskeleton, and the

cytosol), and the nucleus. From a mechanics perspective, the three primary proteins of

the cytoskeleton (actin, intermediate filaments, and microtubules) are of particular

importance. [From Humphrey (2002), with permission.].
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and, thus, is discussed separately in Sect. 1.6. Other organelles within a cell

include the mitochondria, endoplasmic reticulum (rough and smooth), and the

Golgi apparatus. Mitochondria provide the cell with usable energy by oxidizing

foodstuffs (e.g., sugars) to make adenosine triphosphate (ATP). A typical cell

may have over 1,000 distributed mitochondria, which, together, may constitute

up to one-fourth of the total cell volume. The rough endoplasmic reticulum

represents an interconnected space that specializes in the synthesis of proteins;

it connects to the outer portion of the nuclear membrane and is intimately

associated with ribosomes—carriers of the RNA. The smooth endoplasmic

reticulum is tubular in structure; although it aids in the packaging of proteins,

it specializes in the synthesis of lipids and steroids. The Golgi apparatus plays a

key role in the synthesis of polysaccharides as well as in the modification,

packaging, and transport of various macromolecules; this transport includes

secretion into the extracellular space. In addition to these organelles, which are

responsible for the conversion of energy or processing of products, lysosomes

and peroxisomes are responsible for the degradation of various substances

within the cell. Lysosomes are capable of digesting proteins, carbohydrates,

and fats and thereby aid in both the breakdown of foodstuffs and the removal of

unnecessary cellular components. With an internal pH of about 5, lysosomes

accomplish this degradation via various acidic enzymes, including nucleases,

proteases, and lipases. Peroxisomes are capable of generating and degrading

hydrogen peroxide, which is cytotoxic, and they assist in the detoxification of

other compounds (e.g., formaldehyde). Of course, cells also ingest extracellular

substances via a process called phagocytosis, which facilitates a controlled

intracellular degradation by the lysosomes and peroxisomes. A controlled

degradation of “old” constituents plays an important role in the biomechanics

of tissue maintenance, adaptation, and wound healing.

The cytoplasm is defined as that part of the interior of the cell that does not

include the nucleus. Thus, it consists of all the other organelles, the cytoskel-

eton, and the cytosol. The cytosol constitutes up to one-half of the total cell

volume and consists primarily of water.3 The cytoskeleton consists primarily of

three classes of filamentous proteins: actin, which is often the most abundant

protein in a cell; microtubules, which are formed from tubulin; and intermediate

filaments, which include vimentin, lamins, and keratins. These cytoskeletal

filaments have diameters of 5–25 nm and they can polymerize to form linear

units that span distances between organelles or even over the entire length of a

cell. Collectively, these filamentous proteins along with hundreds of different

types of accessory proteins endow the cell with much of its internal structure,

they aid in cell division, they enable cell mobility, and they maintain cell shape.

The cytoskeleton is thus fundamental to cell mechanics. Moreover, much of the

3 Note: 70 % of the total cell volume is due to water.
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water and other proteins within the cytosol are bound to the cytoskeleton, which

aids in the selective positioning or movement of components within the cell.

The cytoskeleton is a dynamic structure, continually reorganizing to meet the

needs of the cells. For example, the intermediate filaments can increase in

density in response to increased mechanical stress. Likewise, stress fibers

consisting of temporary bundles of actin often form within fibroblasts. They

serve to connect the strong network of intermediate filaments that surround the

nucleus to the plasma membrane at sites where it is connected to the extracel-

lular matrix via transmembrane linker proteins (e.g., integrins). This arrange-

ment (Fig. 1.6) may allow the stress fibers to transduce the level of tension in the

extracellular matrix to the nucleus and thus to control gene expression (i.e.,

mechanotransduction). Conversely, stress fibers in fibroblasts also allow them

to exert tension on the extracellular matrix, which is particularly useful during

morphogenesis or repair in wound healing. Understanding the mechanics of

growth and remodeling is one of the most important open problems in biome-

chanics at this time; this general area is discussed more in Sect. 1.6.

Note that striated muscle (e.g., that makes up the myocardium of the heart

wall or skeletal muscle) contains an additional, specialized intracellular con-

stituent—the myofibril. These contractile elements are approximately 1–2 μm

in diameter, they span the length of the cell, and they consist of a chain of

shorter (2.2 μm) units, called sarcomeres. According to the sliding filament

model proposed in 1954, sarcomeres consist of overlapping thin (actin) and

thick (myosin) filaments. It is thought that the myosin has tiny “cross-bridges”

FIGURE 1.6 Schema of some of the constituents that participate in cell–matrix interac-

tions that are important to the mechanobiology. The transmembrane protein that “links”

the cytoskeletal (e.g., stress fibers) and extracellular (e.g., fibronectin and collagen)

proteins is often a member of the family of integrins. [From Humphrey (2002), with

permission.].
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that attach, detach, and reattach in a ratcheting fashion with the actin, which

thereby produces movement associated with the contraction of muscle

(Fig. 1.7). Smooth muscle cells similarly rely on actin–myosin interactions

although they do not have a sarcomere structure. Thus, studying the biome-

chanics of muscular organs such as the heart, blood vessels, diaphragm, or

uterus as well as studying locomotion at the organism level all require an

understanding of the associated cell biology.

The cell membrane separates the cellular contents from their surroundings. It

consists primarily of a phospholipid bilayer with embedded proteins and is on

the order of 5 nm thick (cf. Fig. 1.5). Held together by noncovalent bonds, this

membrane is described in biology texts as having “fluidity”; that is, the lipid

molecules can exhibit rapid lateral diffusion, which is to say that they can

readily exchange places with each other. It appears that this fluidity endows

the membrane with a self-sealing capability and it plays a role in some pro-

cesses of transport across the membrane (e.g., ion transport facilitated by

glycolipids). The embedded proteins likewise play many roles: they may

participate in the conduction of electrical signals or the transport of various

substances across the membrane by serving as selective channels, gates, and

pumps. Alternatively, these proteins may serve as enzymes to catalyze specific

reactions, they may act as selective receptors that bind extracellular substances

to the cell membrane, or they may serve as anchors for the attachment of

intracellular cytoskeletal filaments or extracellular proteins to the membrane

(Fig. 1.6). The latter is accomplished primarily via a special class of transmem-

brane proteins, the integrins, which consist of two noncovalently associated

glycoproteins referred to as α and β units (there are at least 14 different α units

and 9 different β units). Some integrins bind to specific proteins (e.g., laminin or

fibronectin), whereas others bind to multiple proteins by recognizing a

FIGURE 1.7 Schema of the cross-bridge mechanism that is thought to control the

contraction and relaxation of muscle. In particular, the cross-bridges allow a ratcheting

motion between the thick myosin filaments and the thin actin filaments. Calcium plays a

key role in this process.
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particular amino acid sequence (e.g., arginine–glycine–aspartic acid, or RGD).

Integrins are found in large numbers, but their binding to a particular ligand

tends to be weak. This would be advantageous in cell migration, for example,

wherein local adhesion would be short-lived. Cells can regulate the activity of

their integrins, and, conversely, gene expression can be mediated by the extra-

cellular matrix via the integrins. Finally, note that some of the embedded

membrane proteins are decorated with carbohydrates; this glycocalyx, or

“sugar coat,” appears to protect the cell from mechanical and chemical damage

and may participate in certain transient adhesion processes.

Cells can be interconnected via three types of junctions: occluding, or tight,

junctions seal cells together; anchoring junctions mechanically attach cells to

other cells or extracellular matrix at specific sites; and communicating (e.g.,

gap) junctions allow cell-to-cell exchange of electrical or chemical signals. At

any particular instant in the mature organism, most cells are simply performing

their primary function (e.g., muscle cells are contracting and fibroblasts are

synthesizing extracellular matrix). Nonetheless, normal tissue maintenance also

typically requires a delicate balance between continuous cell replication and

cell death; in the adult, for example, millions of cells are produced each minute

to replace cells that are damaged, killed, or simply experience a normal cell

death (apoptosis). Of course, cells reproduce by duplicating their contents and

dividing in two. Although we will not consider the details of the cell cycle (see

Alberts et al. 2008), note that it appears that cells require multiple external

signals before they will divide. Growth factors, for example, are special proteins

that bind to specific receptors on the cell membrane and encourage cell division.

According to Gooch et al. (1998),

Growth factors can stimulate or inhibit cell division, differentiation, and migration.

They up- or down-regulate cellular processes such as gene expression, DNA and

protein synthesis, and autocrine and paracrine factor expression. [They] . . . can
interact with one another in an additive, cooperative, synergistic, or antagonistic

manner. They may cause dissimilar responses when applied to different cell types

or tissues, and their effect on a certain type of cell or tissue may vary according to

concentration or time of application.

Among the over 50 different growth factors in humans are the platelet-

derived growth factors (PDGFs), fibroblast growth factors (FGFs), and

transforming growth factors (TGFs). Mechanical stresses and injuries have

both been shown to modulate the secretion of growth factors; hence, tissues

that normally have a slow turnover of cells (replication and death) can experi-

ence rapid increases in turnover in response to certain mechanical stimuli.

Understanding and quantifying these homeostatic control mechanisms is a

newly identified, important topic in biomechanics and mechanobiology.

This is but a cursory introduction to the general structure and function of

the cell, yet it serves as sufficient motivation for our purposes. Of course,
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in most cases, we will not be interested in a single cell, but rather large

populations of communicating cells. In this regard, the role of the extracellular

matrix, in which most cells are embedded, is of utmost importance. Let us now

consider this important component in more detail.

1.5 The Extracellular Matrix

It is axiomatic in continuum mechanics that the properties of a material result

from its internal constitution, including the distributions, orientations, and

interconnections of the constituents. Examination of microstructure is essential,

therefore, for quantifying the mechanical behavior and analyzing the internal

distribution of forces. In most tissues and organs in the body, the microstructure

depends largely on the extracellular matrix (ECM).

The ECM serves multiple functions: it endows a tissue with strength and

resilience and thereby maintains its shape; it serves as a biologically active

scaffolding on which cells can migrate or adhere; it may regulate the phenotype

of the cells; it serves as an anchor for many proteins, including growth factors

and enzymes such as proteases and their inhibitors; and it provides an aqueous

environment for the diffusion of nutrients, ions, hormones, and metabolites

between the cell and the capillary network. In many respects, therefore, it is the

ECM that regulates cell shape, orientation, movement, and metabolic activity.

It is the cells (e.g., fibroblasts), however, that fashion and maintain the ECM.

Hence, the ECM and cells have a strong symbiotic relation.

The ECM consists primarily of proteins (e.g., collagen, elastin, fibronectin,

and laminin), glycosaminoglycans (GAGs), and bound and unbound water

(Fawcett 1986; Ayad et al. 1994; Ninomiya et al. 1998; Alberts et al. 2008).

The GAGs are often bound covalently to protein cores, thus forming proteo-

glycans. Although collagen was long regarded to be a single protein, more than

25 distinct forms have been identified. Collectively, the collagens are the most

abundant protein in the body (�25–30 % of all protein), common forms being

types I, II, III, and IV, as well as types V, VI, and VIII. Types I and III form

fibers and provide structural support in tension; they are found in tendons, skin,

bone, the heart, arteries, and cornea. Type II collagen occurs as fibrils; it is

found largely in cartilage, which also contains significant proteoglycans. Type

IV collagen forms as a porous network (basement membrane) that acts as a

scaffolding for epithelial and endothelial cells (adhesion being aided by fibro-

nectin or laminin); it is found, for example, in the lens capsule of the eye as well

as in the inner layer of blood vessels. Types V and VI collagen tend to associate

with smooth muscle cells, whereas type VIII tends to associate with endothelial

cells. For more on the collagens, see Kucharz (1992).

Synthesized by various cells (Fig. 1.8), the collagen molecule consists of

three polypeptide α chains, each containing 1,300–1,700 amino acid residues.
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The majority of these residues (�1,000–1,400) are organized into a central

triple-helix motif (Ayad et al. 1994), which is on the order of 285 nm long and

1.5 nm in diameter. The triple helix results from the repetition of a triplet of

amino acid residues of the form (G-X-Y)n, where G stands for Glycine,

FIGURE 1.8 Schema of collagen at different levels of organization: from the triple-helix

molecule consisting of three α-helices of repeating triplets of amino acids (G-X-Y),

where G is glycine and X and Y are often proline or hydroxyproline, to an undulated

fiber that could be found in arteries, cartilage, cornea, the heart, lungs, skin, tendons, and

many other tissues. [From Humphrey (2002), with permission.].
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the simplest amino acid, and X and Y may be any of the other 19 common

amino acids, although often proline or hydroxyproline. The triple-helix

structure is stabilized by abundant interchain hydrogen bonds, many via the

hydroxyprolines. Intramolecular covalent cross-links in or near the nonhelical

ends of the molecule provide further structural stability, often via

hydroxylysine. Type IV collagen also has extensive disulfide bonds. Details

on the biosynthesis of collagen can be found in Nimni (1992) and Kucharz

(1992); details on the chemical structure can be found in Ayad et al. (1994).

Vascular type IV collagen is synthesized, for example, by endothelial cells,

whereas types I and III collagen are synthesized by fibroblasts and smooth

muscle cells; it takes the cell on the order of 10–60 min to synthesize a complete

intracellular collagen precursor, called procollagen (Nimni 1992). Following

secretion by the cell, newly synthesized type I collagen molecules undergo

extracellular modifications prior to assembly (polymerization) into 4–8-nm-

diameter microfibrils consisting of repeating quarter-staggered (which gives

the characteristic 67-nm periodicity) groups of four to five molecules in cross

section. This assembly results from electrostatic and hydrophobic bonding

(which liberates previously bound water) between molecules. The specific

directional assembly may be aided by narrow extracellular channels within

the plasma membrane of oriented cells [e.g., the fibroblast (Birk et al. 1989)].

Note, therefore, that the orientation of cells appears to be governed by the local

force field (Carver et al. 1991) and so too for the orientation of the collagen [e.

g., in tendons, the collagen tends to be oriented uniaxially, whereas in skin, it is

distributed primarily in a two-dimensional (2-D) fashion]. The microfibrils, in

turn, are organized into successively larger fibrils (�10–500 nm in diameter)

and ultimately fibers (1–500 μm in diameter), the specific diameter of which is

also thought to be dictated largely by the mechanical force field in the ECM.

The extracellularly organized fibrils and fibers are stabilized by interchain

cross-links that occur primarily through the conversion of lysine

and hydroxylysine (in the nonhelical portion of the molecule), via the enzyme

lysyl oxidase, into peptide-bound aldehydes. Further aldehyde cross-linking

of collagen is important industrially with regard to the engineering of bio-

prosthetic heart valves, which must exhibit sufficient biocompatibility,

strength, and efficiency as a valve. The need to understand the microstructure,

which governs these characteristics, is thus clear. Finally, note that additional

cross-links also form in type III collagen via intermolecular disulfide bonds.

Cross-links can be either reducible or nonreducible; reducible cross-links can be

broken, for example, during thermal treatment.4 Overall, the degree of cross-

linking tends to increase with age, which results in concomitant stiffening;

4 Advances in laser, microwave, and radio-frequency technologies continue to encour-
age new uses of thermal energy to treat disease and injury (Humphrey 2003b).
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pathological stiffening, via the addition of glycosylated cross-links, occurs in

diabetes. Note, too, that collagen fibers are usually undulated at physiologic

loads; thus, they exhibit their true stiffness only when straightened under the

action of applied loads. For example, the tensile strength of nearly straight

uniaxially oriented type I collagen in tendons can be 100 MPa in mature tissue.

Finally, the half-life of collagen varies tremendously throughout the body: it

is only a few days in the periodontal ligament but typically many months in

tendons and possibly years in bones.5 In the cardiovascular system, the half-life

of collagen is on the order of 15–90 days. Regardless of the specific half-life,

maintenance of physiologic levels of collagen depends on a delicate balance

between continual synthesis and degradation, the kinetics of which is complex

but may be assumed to be of first order (Niedermuller et al. 1977; Gelman et al.

1979). Degradation can be accomplished by blood-plasma-borne serine pro-

teases, the extracellular release of matrix metalloproteinases (MMPs), as, for

example, by macrophages or via intracellular lysosomal activity within phago-

cytotic fibroblasts (Ten Cate and Deporter 1975). As noted earlier, phagocytosis

can be a highly selective mechanism of degradation. It also appears that much

of the synthesized collagen is degraded prior to its incorporation into the

ECM (McAnulty and Laurent 1987). The reason for this is not clear, but may

simply reflect an internal mechanism for culling imperfectly synthesized

molecules (i.e., a cellular quality control). In response to disease or injury,

however, the rates and control of the continual degradation and synthesis

can change dramatically, as needed. Wound healing in skin is a prime example

of an accelerated turnover of collagen, which in this case may result in a

collagenous scar.

Strictly speaking, elastic fibers in the ECM consist of two components—one

microfibrillar (10 nm in diameter) and one amorphous. Whereas the former

consists of multiple glycoproteins, the amorphous (major) portion is called

elastin. It consists of a polypeptide chain of �786 amino acid residues, the

majority of which are glycine, alanine, and proline. Elastin is synthesized in

minutes, as the precursor tro proelastin, via normal pathways—mRNA, endo-

plasmic reticulum, Golgi apparatus, and so forth. Moreover, it appears that

synthesis can be assumed to be a first-order process, one that is completed in

less than 1 h (Davidson and Giro 1986). In the vasculature, this synthesis is

accomplished primarily by smooth muscle, but also by specialized fibroblasts

and, perhaps, endothelial cells. Once secreted into the extracellular space, the

soluble tropoelastin is cross-linked to form the insoluble (stable) elastin mesh-

work. Two unique amino acids, desmosine and isodesmosine, are largely

responsible for the formation of distributed covalent cross-links between the

5 In contrast, many cellular proteins have half-lives of hours or days (Alberts et al.
2008).
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relatively loose and unstructured chains. It is the loose, amorphous, but highly

cross-linked structure of elastin which results in a meshwork that exhibits an

elastic (i.e., nondissipative or recoverable) response over large deformations

(indeed, elastin appears to be the most elastic protein in the body). Moreover, a

high concentration of nonpolar hydrophobic amino acids renders elastin one of

the most chemically, thermally, and protease-resistant proteins in the body.

Indeed, in contrast to collagen, the turnover of elastin is much slower in the

adult, perhaps on the order of years to decades (Lefevre and Rucker 1980).

Much of the production of elastin occurs during development. The protease

elastase, which can be secreted by macrophages, is capable of degrading

elastin, however. Such degradation appears to play a role in the formation of

aneurysms in the vasculature. For more details on elastin, see Robert and

Hornebeck (1989).

Elastic fibers appear to consist of aggregated 10-nm-diameter microfibrils

embedded in the amorphous elastin. These fibers can be from 0.2 to 5.0 μm in

diameter, and they tend to branch and form networks or sheets. When straight,

elastic fibers can experience uniaxial extensions of 150 % without breaking

(compared to less than 10 % for collagen), and they return to their original

configuration when unloaded. Indeed, it has been said that the primary role of

elastic fibers is to store and then return mechanical energy.

Other important components of the ECM include the aforementioned fibro-

nectin and laminin, both of which play important roles in cell adhesion

(cf. Fig. 1.6). Fibronectin consists of �2,476 amino acid residues; it is a widely

distributed glycoprotein—synthesized by fibroblasts, endothelial cells, and

smooth muscle cells—that mediates cellular interactions and migration. For

example, fibronectin binds fibroblasts to underlying collagen substrates, thereby

playing an important role in normal development, growth, remodeling, and

wound healing. It may likewise play a role in the aggregation of platelets.

The ability of fibronectin to bind to different proteins and cells is due to the

presence of different binding sites, which depend in part on the aforementioned

RGD sequence. The laminins constitute a family of large glycoproteins (over

3,000 amino acid residues) that are associated with the basement membrane;

they self-assemble into a feltlike sheet. Laminin, one of the first proteins

produced in the embryo, has numerous functional binding domains, as, for

example, for heparan sulfate, type IV collagen, and various cells. Hence, like

fibronectin, this protein plays an important role in the migration and anchoring

of cells.

Proteoglycans represent a relatively small portion of the ECM in most tissues

and have no preferred structural organization; they play important roles

nonetheless. Proteoglycans consist of a core protein to which is attached

multiple glycosaminoglycan (GAG) chains via covalent bonds. GAGs are linear

polymers that contain repeating disaccharide units, the principal ones being

hyaluronan, chondroitin sulfates, dermatan sulfates, keratan sulfates, heparan
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sulfates, and heparin. Because GAGs tend to occupy large volumes compared to

their mass, and because they are highly negatively charged, they tend to imbibe

considerable water into the ECM. Water, in turn, enables many of the necessary

diffusive processes within the ECM and enables the tissue to withstand com-

pressive loads (this is particularly important in cartilage). Moreover,

hyaluronan, for example, gives the aqueous portion of the ECM its fluidlike

consistency, or viscosity. It is for this reason that the nonfibrous portion of the

ECM is often referred to as an amorphous ground substance or gel matrix.

Referring to Sect. 1.4, note that the core protein of the proteoglycan is

made on membrane-bound ribosomes and transported to the endoplasmic retic-

ulum. Upon passage to the Golgi apparatus, GAGs are affixed to the core

and possibly modified (Alberts et al. 2008). By associating with the fibrous

proteins in the ECM, proteoglycans and individual glycosaminoglycans create a

highly complex 3-D structure embodied with chemical reactivity and

intercellular signaling pathways. For example, fibroblast growth factor (FGF)

binds to heparan sulfate, which may not only localize the FGF, it may also

activate it. The ubiquitous transforming growth factor (TGF) likewise binds to

numerous proteoglycans. Similarly, proteases and protease inhibitors may bind

to proteoglycans, thus localizing activity, inhibiting activity, or providing a

storage mechanism for later use.

In addition to the binding of specific cells to fibronectin and laminin, recall

from Sect. 1.4 that cell–matrix interactions are often mediated by the integrins.

For example, the integrins that are connected to intracellular actin can “pull” on

extracellular proteins to which they are bound. Alternatively, tensions in the

ECMmay be sensed by the nucleus of a cell via the ECM–integrin–cytoskeletal

connections. It is through the integrins, therefore, that cells influence the ECM

and the ECM may provide inputs for cell growth.

Finally, when discussing the extracellular matrix in tissue and organs, the role

of fibroblasts cannot be overemphasized. Fibroblasts belong to the differenti-

ated cell family known as connective tissue cells [other members in this family

include osteocytes, chondrocytes, adipocytes, and smooth muscle cells (Alberts

et al. 2008)]. Fibroblasts are the least differentiated member of this family

and are found throughout the body. Their primary responsibility is regulation

of the collagen-rich ECM. For example, in response to tissue damage, fibro-

blasts will quickly migrate to the site of injury, proliferate, and then synthesize

new collagen. Such activity is regulated in part by growth factors, in particular

FGFs and TGF-β. Likewise, macrophages are essential in regulating the ECM:

they dispose of dead cells and degrade unneeded matrix material. Macrophages

are mononuclear phagocytes that arise from stem cells in the bone marrow,

enter the bloodstream as monocytes, and eventually enter tissues wherein they

increase in size and phagocytic activity. Macrophages secrete a wide variety of

products in addition to proteases, including coagulation factors, prostaglandins,

and cytokines.
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1.6 Mechanotransduction in Cells

As noted earlier, one of the most exciting and important recent findings in cell

biology is that mechanical stimuli have a direct influence on gene expression in

many different cell types. Such cells have been classified as mechanocytes,

which include chondrocytes, endothelial cells, epithelial cells, fibroblasts, mac-

rophages, myocytes, and osteoblasts. Consider, for example, the endothelial

cell. Endothelial cells form a contiguous monolayer throughout the vasculature

(Fig. 1.2). Because the luminal surface of the endothelial cell is decorated with

the glycosaminoglycan heparan sulfate, it was long thought that these cells

serve primarily as a smooth, nonthrombogenic surface that minimizes blood

clots and thus facilitates blood flow. We now know that this is but one of the

many functions of the endothelium. In response to local increases in blood flow,

endothelial cells increase their production of nitric oxide (NO), a potent vaso-

dilator; conversely, in response to local decreases in blood flow, endothelial

cells increase their production of endothelin-1 (ET-1), a potent vasoconstrictor.

That is, by altering its production of vasoactive molecules that diffuse into the

wall and cause vascular smooth muscle cell relaxation or contraction, the

endothelium is able to help control the diameter of the blood vessel in response

to changing hemodynamic demands. Of course, sympathetic and parasympa-

thetic signals as well as circulating hormones also contribute to the control of

blood vessel diameter.

In addition to its mechanosensitive control of the production of vasoactive

molecules (e.g., NO, ET-1), growth regulatory molecules (e.g., PDGF, FGF),

cytokines (e.g., IL-1,6), and adhesion molecules (e.g., vascular cell adhesion

molecule VCAM-1, monocyte chemoattractant protein MCP-1), the endothe-

lium also changes its shape and ultrastructure in response to changing hemo-

dynamic loads. In vivo and in vitro studies both reveal that these cells realign to

follow the direction of the blood flow and they realign perpendicular to an

applied uniaxial stretching of a substrate on which they are adhered (Note:

whereas the flow of blood along the axis of an artery causes cells to align in the

axial direction, the distending blood pressure stretches the vessel circumfer-

entially, which, being perpendicular to the axial direction, also causes the cells

to align in the axial direction; hence, these two effects are complementary.)

Additionally, an increased blood flow induces an increase in the density of flow-

aligned stress fibers (i.e., specialized actin filaments). For beautiful time-lapse

figures of these changes, see Galbraith et al. (1998).

One of the key questions facing biomechanics and mechanobiology, there-

fore, is how are these many different changes effected? In other words, how

does a cell sense a changing mechanical environment and how is this signal

transduced to the nucleus wherein different genes are expressed? This question

becomes more acute when we realize, for example, that vascular smooth muscle

cells independently express different genes in response to the changing
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hemodynamics even though they are not in direct contact with the pressure-

driven blood flow. As noted by Zhu et al. (2000), which is a very readable, nice

review of cell mechanics, critical questions are as follows: How do forces

applied to a tissue distribute around the surface of a cell? How are these forces

balanced within the interior of the cell? How does this internal force field

induce a biological response? See, too, the review by Stamenovic and Ingber

(2002). Although we do not have answers to these and similarly important

questions, competing hypotheses and theories are under consideration. The

student is encouraged to read, for example, the provocative paper by Ingber

et al. (2000), which contrasts two ideas on how the intracellular forces balance

the externally applied loads. One idea is based on tensegrity (tensional integ-

rity), an architectural concept advanced by Buckminster Fuller wherein a meta-

stable structure is constructed from self-equilibrating tensional and compres-

sive elements; the other idea focuses on the combined fluidlike and solidlike

behaviors exhibited by cells under different conditions. Clearly, there is a

pressing need for more data on the mechanical properties of cells; fortunately,

experimental tools such as laser tweezers (see Chap. 3) and the atomic force

microscope (Chap. 5) allow increased insight into cell mechanics and, indeed,

the various intracellular constituents, which includes actin filaments, interme-

diate filaments, microtubules, the plasma membrane, and even the cytosol. The

need to understand cellular responses also leads naturally to a focus on molec-

ular biomechanics (i.e., how individual molecules respond to applied loads).

Zhu et al. (2000) point out, for example, that in response to applied loads, a

molecule may rotate/translate, it may deform, or it may unfold/refold. By

changing the conformation of a molecule, one can change its biochemical

character, as, for example, the availability of binding sites. In summary then,

there is a need for mechanics at all scales in biology—from the molecule to

the cell to the organ to the organism. Although much is known, much remains

to be discovered.

1.7 General Method of Approach

The biomechanical behavior of biological tissues and organs results from the

integrated manifestation of the many components that constitute the structure

and their interactions. Although we may not always be directly interested in

cellular- or molecular-level phenomena, as, for example, when calculating the

forces within the wall of an aneurysm to evaluate its rupture potential or when

designing a wheelchair, some knowledge of the associated cell and matrix

biology can always provide important insight. In the case of an aneurysm,

its fibroblasts regulate the continuous production and removal of intramural

collagen in response to changes in the intramural forces; in the case of the

wheelchair, the skin may break down at the cellular level (e.g., decubitus ulcer)
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in response to frictional forces, which must be designed against. Throughout

this book, therefore, we will continually refer to the biology that motivates the

mechanics.

Whereas Issac Newton (1642–1727) developed a “discrete” mechanics in

which his fundamental postulates were assumed to apply to individual mass

points (whether the Earth or an apple), Leonard Euler (1707–1783) showed

that these same postulates apply to every mathematical point within a body.

We submit, therefore, that every continuum biomechanics problem can be

addressed via the five fundamental postulates of continuum mechanics by

specifying three things: the geometry (i.e., the domain of interest), the consti-

tutive relations (i.e., how the material responds to applied loads under condi-

tions of interest), and the applied loads (or associated boundary conditions).

Moreover, we agree with Fung (1990) and others that the key to success in this

approach is often the identification of robust constitutive relations. We discuss

specific constitutive relations in Chaps. 2, 6, 7, and 11. Here, however, simply

note that there are five steps in every constitutive formulation6:

Delineate general characteristic behaviors

Establish an appropriate theoretical framework

Identify specific functional forms of the constitutive relation

Calculate the values of the material parameters

Evaluate the predictive capability of the final constitutive relation

Specifically, the first step is to observe the particular behaviors of interest and

then, by induction, to delineate general characteristics of the material’s response

to the applied loads. In practice, this step is as difficult as it is critical. In many

cases, the biomechanicist must distill the results from tens to hundreds of papers

in the biological and clinical literature to delineate the underlying mechanism or

general characteristics of importance. Once accomplished, one then attempts to

formulate a general hypothesis and establish a theoretical framework; robust

theories should rely on the axiomatic and deductive foundations of mathematics

and mechanics. Two frameworks that we will consider in detail in this book are

the theories of the linearly elastic behavior of solids and the linearly viscous

behavior of fluids. Next, one must perform experiments to test the hypothesis or

theory, which includes identification of specific functional relationships

between quantities of interest and calculation of the values of the associated

material parameters. Because of the unique behaviors exhibited by living

tissues, performing theoretically motivated experiments may necessitate the

design and construction of a novel experimental system or transducer. More-

over, based on comparisons to experimental data, one will often need to refine

6 A former student suggested that these five important steps in a constitutive formula-
tion are remembered easily via the acrostic DEICE.
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the hypothesis or theory and then to perform additional experiments and data

analysis. This iterative procedure continues until the associated constitutive

relation has predictive capability, which must be verified against additional

observations or experimental data. Only then can one begin to answer applied

questions of interest, often via numerical simulations (i.e., computations) and

then animal and clinical trials. See Fig. 1.9 for a summary of this overall

approach, which is best appreciated via the examples that are provided in

Chaps. 2–11. In conclusion, we emphasize that a constitutive relation is but a

mathematical descriptor of particular behaviors exhibited by a material under

conditions of interest; it is not a descriptor of a material per se. Hence, multiple

theories will likely be needed to describe the myriad behaviors exhibited by a

given molecule, cell, tissue, or organ under different conditions. Moreover,

although we should always seek to understand and quantify the basic mecha-

nisms by which responses to applied loads occur, this is often difficult or

impossible; hence, we must sometimes rely on phenomenological descriptors

or empirical correlations. Regardless of approach, the main goal of biomechan-

ics must remain clear—to improve health care delivery via careful and appro-

priate design and analysis.

FIGURE 1.9 Illustration of the scientific approach employed by many in biomechanics.

In particular, note that observations and experiments are equally important, but very

different. The latter must be designed based on a hypothesis or theory for the purpose of

testing an idea. Because science is “relative truth,” we often need to iterate to improve

our models of the physical and biological worlds.
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Chapter Summary

There are five basic areas of study in mechanics: discrete mechanics, continuum

mechanics, statistical mechanics, quantum mechanics, and relativistic mechan-

ics. Each area is important in its own right, but the first four areas play

particularly important roles in life science research and clinical care. For

example, discrete mechanics is useful when studying athletic performance at

the scale of the whole person and statistical mechanics is fundamental to

understanding structure – function relations of individual biomolecules. The

focus of this book, however, is at the scales of cells, tissues, and organs, and

thus the development, extension, and application of continuum mechanics to

study living things and the materials or structures with which they interact.

Continuum biomechanics requires that one always consider five different

classes of mechanical relations or concepts: kinematics (i.e., the study of motion),

the concept of force (and related measures such as tractions, stress, and pressure),

the five basic postulates (namely, balance of mass, linear momentum, energy, and

angular momentum, plus the entropy inequality), constitutive relations (which

quantify how individual materials respond to applied loads under conditions of

interest), and initial or boundary conditions (which close a problem mathemat-

ically and thus allow its solution). Of these, quantification of the mechanical

responses of individual materials is perhaps the most challenging and yet the most

important; the acrostic DEICE can help us to remember the five basic steps

required in the formulation of a constitutive relation. By convention, we tend to

focus such studies on solidlike versus fluidlike responses, with specialized theo-

ries to handle coupled solidlike and fluidlike responses. In this book, we focus on

solidlike responses in Chaps. 2–6 and fluidlike responses in Chaps. 7–10, with

Chap. 11 introducing coupled responses.

In addition to needing to understand the mechanics well, we must also

understand the associated biological structure (i.e., anatomy, which is the

study of gross structure, and histology, which is the study of fine structure)

and function (i.e., physiology, which is the study of normal function, and

pathophysiology, which is the study of function in disease). Of course, advances

in modern biology reveal that structure and function result from genetic and

epigenetic causes, thus we must also understand well the underlying molecular

and cell biology.

In summary, the goal of this Introductory Chapter was to define continuum

biomechanics and to provide some motivation for its study while introducing

briefly the areas of cell and matrix biology. Although mechanics is viewed by

some as primarily the collection of solutions to individual initial or boundary

value problems, this perception is far from the truth. Continuum Biomechanics

is an axiomatic science with rich rewards if one learns well a general method of

approach that can and should be applied to the many different problems that

arise in analysis and design. The reader is thus encouraged to look for parallels
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throughout this text, that is, the common methods of approach that are

introduced and applied first to solidlike, then fluidlike and finally coupled

biomechanical behaviors.

Appendix 1: Engineering Statics

From physics, we recall that Newton put forth three “laws” that form the

foundation of classical mechanics: (1) a body at rest will remain at rest, or a

body in motion at a constant velocity will remain at a constant velocity, unless

acted upon by an external force; (2) with respect to an inertial frame of

reference, the (time) rate of change of the linear momentum must balance the

applied external forces; (3) for every force that acts on a body there is an equal

and opposite force that acts on some other body. Of these, the second law of

motion is of particular importance herein; it is a statement of the balance of

linear momentum. To this postulate, we can add the balance of mass, balance

of angular momentum, balance of energy, and the entropy inequality. These five

basic postulates form the foundation of continuum mechanics from introductory

statics and dynamics to the sophisticated theories addressed in graduate courses.

Here, however, let us only consider the two balance of momentum equations:

X
F ¼ ma,

X
M ¼ Iα; ðA1:1Þ

where F is an applied force (i.e., a vectorial push or pull), m is the mass of a

material particle, a is its acceleration vector, M is the applied moment (i.e., a

force acting at a distance), I is the inertia, and α is the angular acceleration vector.

Hence, these balance equations state that relative to an inertial frame, the sum of

all forces acting on a body must balance the (time) rate of change of the linear

momentum of the body and that the sum of all moments must balance the rate of

change of the angular momentum. (Note: For a particle of constant mass, the time

derivative of the linear momentum mv, where v is the velocity, is simply ma, and

similarly for the angular momentum.) In addition, recall that a moment M is

defined with respect to a reference point, say o. Mo is thus defined as7

Mo ¼ rA � F ðA1:2Þ

where rA is a position vector that connects point o to any point A along the

line of action of F. The line of action is simply a line that coincides with the force

vector but extends well beyond it in each direction. It is important to be com-

fortable with the calculation of moments; hence, consider the following example.

7 Vector operations are reviewed in Appendix 7, if needed.
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Example A1.1 Prove that r�F� r⊥�F where r⊥ is the shortest distance

between o and the line of action of F.

Solution: For simplicity, let us consider the 2-D case. Referring to Fig. 1.10 let

r⊥ ¼ dê⊥ and r ¼ rx îþry ĵ¼r
0
x î
0þr0y ĵ

0
depending on which coordinate

system is found to be most convenient. Likewise, the force vector can be written

as F ¼ Fx îþFy ĵ¼F
0
x î
0þF 0

y ĵ
0
. Because F

0
x¼0, it is easiest to consider

Mo ¼ r� F ¼ r
0

x î
0þr0y ĵ

0
� �

� F
0

y ĵ
0

� �

or

Mo ¼ r
0

xF
0

y

� �
^
k
0 þ 0:

Note, however, that d� r
0
x and ê⊥� î

0
, thus proving r�F= r⊥�F.

Whereas moments should be computed with respect to a fixed reference

point, there exists a special moment whose value is independent of that refer-

ence point. Such a moment is called a couple. It is constructed via two equal and

opposite forces F separated by a distance d, and it has a magnitude of |F|d.

Figure 1.11 illustrates, in two dimensions, the couple C ¼ �Fdk̂ . In general,

however, we will typically seek to compute M= r�F; hence, let us review a

simple method to determine r. Any position vector r from o to A can be

determined by subtracting the coordinate locations of A and o with respect to

FIGURE 1.10 Schema of a force F acting in the x-y plane relative to an origin O.

Although forces are vectors, and thus defined independent of a coordinate system (i.e.,

an origin and basis), they must be resolved into components relative to convenient

coordinate systems to permit computations.
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a common coordinate system. A coordinate system is defined by an origin

and a basis, of course, where a basis is a linearly independent set of (unit)

vectors, as, for example, the triplet î , ĵ , k̂
� �

in a 3-D Cartesian space. For

example, if o is located at (xo, yo, zo) and A is at (xA, yA, zA), then the position

vector rA between o and A is

rA ¼ xA � xoð Þî þ yA � yoð Þ ĵ þ zA � zoð Þk̂ : ðA1:3Þ

In Engineering Statics, both accelerations are zero and Eqs. (A1.1) reduce to

X
F ¼ 0,

X
M ¼ 0; ðA1:4Þ

which are our “two” basic equations of mechanical equilibrium. We say two

equations, but because each is vectorial, we actually have three total (scalar)

equilibrium equations in 2-D problems and six total equations in 3-D problems.

Regardless, an important observation is that if a body is in equilibrium, then

each of its parts are in equilibrium. This observation allows us to make

fictitious cuts to isolate parts of a body in order to quantify internal forces and

moments that are necessary to maintain equilibrium. For example, consider

Fig. 1.12: The upper part of the figure shows that the body is maintained in

equilibrium by two externally applied forces, f1 and f2, which must be equal

and opposite; the lower part of the figure shows that these forces are balanced

by equal and opposite internal forces f that act on the cut surface, plus possibly

equal and opposite moments, which we neglect at first. For example, equilib-

rium of the whole requires

f1 þ f2 ¼ 0! f1 ¼ � f2; ðA1:5Þ

whereas equilibrium of the parts requires

f2 � f ¼ 0! f ¼ f2 to the ð Þ ðA1:6Þ

and

FIGURE 1.11 Schema of

couple C (or, pure

moment), which is con-

structed by equal and

opposite forces sepa-

rated by a distance d.
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f� f2 ¼ 0! f ¼ f2 to the!ð Þ: ðA1:7Þ

We will see that in solid mechanics, it is often useful to draw such free-body

diagrams to analyze the distribution of internal forces and moments. By a free-

body diagram, we mean a drawing of the body of interest, free from all external

structures, that depicts all externally applied forces, including those due to

interactions between the body and its environment. Because each part of a body

in equilibrium is also in equilibrium, one often considers multiple free-body

diagrams for the same body; that is, multiple judicious, fictitious cuts are often

needed to expose and determine all of the internal forces and moments of

interest. It is upon these basic ideas of mechanics that we will build; thus, we

return to this issue in Chap. 2 and again in Chap. 7. Here, however, let us

introduce a few additional topics of statics and consider a few examples. Indeed,

because statics is embodied in the two balance relations in Eq. (A1.4), much of

statics simply entails illustrations of the use of these relations in diverse

applications.

Example A1.2 Consider the structure in Fig. 1.13, a rigid strut fixed at its base

and loaded in three dimensions via a cable. Given the applied force and the

dimensions and assuming the strut is rigid, find the reactions (forces and

moments) at the base of the strut.

Solution: In statics, a cable is typically defined as an inextensible structure of

negligible mass that only supports a tensile (axial) load. A fixed support is

one that completely prevents displacements and rotations of a member at the

support. In two dimensions, this means that two displacements (e.g., in x and y)

and one rotation (about the z axis) are prevented by horizontal and vertical

reaction forces and one reaction moment; in three dimensions, all three dis-

placements and rotations are prevented at a fixed support by three reaction

forces and three reaction moments. Letting the reactions at the fixed support be

denoted by Rx, Ry, and Rz for the forces and Mx, My, and Mz for the moments,

FIGURE 1.12 Free-body diagram of a generic body B subjected to applied end loads f1
and f2; a fictitious cut isolates the internal forces f, which are equal and opposite on

opposing faces, consistent with Newton’s third law.
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each according to a positive sign convention, and letting the force applied by the

cable be F, we have from force balance

X
F ¼ 0! Rx îþRy ĵþRzk̂þFx îþFy ĵþFzk̂¼0

or

Rx þ Fxð Þîþ Ry þ Fy

� �
ĵþ Rz þ Fzð Þk̂¼0!

Rx ¼ �Fx, Ry ¼ �Fy, Rz ¼ �Fz:

If we know the magnitude of the force, say T� |F|, then

F ¼
��F
��ê ¼ T

rBA

rBAj j

� �
¼ T

xA � xBð Þî þ yA � yBð Þ ĵ þ zA � zBð Þk̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA � xBð Þ2 þ yA � yBð Þ2 þ zA � zBð Þ2

q

0
B@

1
CA;

which thereby yields the components of F in terms of (x, y, z). If, consistent with

Fig. 1.13, xA> xB and zA> zB, then the values of Fx and Fz will be positive; if

yB> yA, then the value of Fy will be negative, which is to say that the assumed

direction of Ry is correct, whereas those for Rx and Rz are not; that is, a negative

value tells us to switch the assumed direction of a particular component of a

force (or moment). It is usually best to assume that all reactions are positive and

to let equilibrium determine the actual directions. Likewise, for moment bal-

ance, we have

FIGURE 1.13 A rigid, vertical strut is loaded in three dimensions via a rigid cable.

A fixed end can, in three dimensions, supply three reaction forces, which resist dis-

placements, and three reaction moments, which resist rotations.
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X
Mo ¼ 0! Mx îþMy ĵþMzk̂þr� F¼0;

where r is a position vector from the origin o to any point along the line of action

of the force, say point A. Thus,

r ¼ xA � 0ð Þîþ yA � 0ð Þ ĵþ zA � 0ð Þk̂ ;

whereby, remembering that î � î ¼ 1, î � ĵ ¼ 0, . . . ; but î � î ¼ 0,

î � ĵ ¼ k̂ , . . . ;

r� F ¼ yAFz � zAFy

� �
î þ zAFx � xAFzð Þ ĵ þ xAFy � yAFx

� �
k̂ :

Consequently,

Mx þ yAFz � zAFy

� �
¼ 0, My þ zAFx � xAFzð Þ ¼ 0,

Mz þ xAFy � yAFx

� �
¼ 0;

from which the reaction moments are computed easily. Although it is critical

to rely on the mathematics to solve 3-D problems, it is also important to

consider simple special cases, for they provide important checks and they

help to develop our intuition. For example, with (xB, yB, zB) = (0, L, 0), consider

a special case where (xA, yA, zA) = (L, L, 0) and, thus, (Fx, Fy, Fz)= (T, 0, 0),

which is to say a simple horizontal load at the top of the strut. In this case, we

find, as expected,

Rx ¼ �Fx ¼ �T, Ry ¼ 0, Rz ¼ 0,

Mx ¼ 0, My ¼ 0, Mz ¼ TL:

Conversely, if we have (xA, yA, zA) = (0, 2 L, 0) and (Fx, Fy, Fz)= (0, T, 0) (i.e., a

simple tensile end load acting on the strut), then

Rx ¼ 0, Ry ¼ �Fy ¼ �T, Rz ¼ 0,

Mx ¼ 0, My ¼ 0, Mz ¼ 0;

which, again, is expected if the line of action of F goes through point o.
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Example A1.3 Find the tensions T1= |F1| and T2= |F2| in the two cables in

Fig. 1.14 that support the weight W.

Solution: A free-body diagram of the (whole) weight reveals that the lines of

action of the three forces go through a common point o. Thus, ΣM)o� 0 is

satisfied identically. Hence, we have two remaining equilibrium equations

to find our two unknowns T1 and T2. In vector form, F1+F2+W= 0, where

W ¼ W � ĵ
� �

; the component equations of which are

X
Fx ¼ 0! Fx1 þ Fx2 þ 0 ¼ 0,

X
Fy ¼ 0! Fy1 þ Fy2 �W ¼ 0:

Written this way, however, it appears that we have four unknowns (the x, and y

components of two force vectors) and just two equations. Clearly, we need more

information. Note, therefore, that

F1 ¼ Fx1 îþFy2 ĵ ¼ T1ê 1¼T1 cosϕ1 îþ sinϕ1 ĵ
� �

,

F2 ¼ Fx2 îþFy2 ĵ ¼ T2ê 2¼T2 cosϕ2 �î
� �

þ sinϕ2 ĵ
h i

;

where ϕ1 and ϕ2 are assumed to be known. Hence, the x and y components of

the two yet unknown forces actually represent but two unknowns, which can be

found (do it) to be

FIGURE 1.14 A weight W is supported by two cables, each having individual tensions

T1 = |F1| and T2 = |F2|. The free-body diagram is shown to the right.
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T1 ¼
W

cosϕ1= cosϕ2ð Þ sinϕ2ð Þ þ sinϕ1

,

T2 ¼
W

sinϕ2 þ sinϕ1 cosϕ2= cosϕ1ð Þ:

Note, therefore, that if ϕ1=ϕ2=ϕ, then T1=T2=W/(2sin ϕ), which would go to

infinity if ϕ= 0; that is, a cable cannot support a transverse load without a

change in shape.

Pulleys are often used in the biomechanics laboratory (e.g., to calibrate load

cells) and in the clinical setting (e.g., to apply traction to a broken limb). An

ideal pulley is one in which there is no friction (i.e., no resistance to rotation).

Consequently, a cable (e.g., a suture, a thin string, or a true metal cable) has the

same tension “going onto” and “coming off of’ a frictionless pulley.

Example A1.4 Prove that the tension in a cable is the same on each side of an

ideal pulley.

Solution: This observation is proved easily considering Fig. 1.15. A free-body

diagram of the whole structure reveals that the reactions (in two dimensions) at

the fixed support are given by

X
F
0

x ¼ 0! R
0
x � T1 cos α� T2 sinα ¼ 0,

X
F
0

y ¼ 0! R
0
y � T1 sin α� T2 cos α ¼ 0;

X
M
0

z

�
A ¼ 0! M

z
k̂ þ L cos αð Þîþ L sin αþ að Þ ĵ

h i
� �T1 î
� �

þ L sin αþ að Þîþ L sin αð Þ ĵ
h i

� �T2 ĵ
� �

¼ 0k̂

in terms of the known quantities, T1 T2, L, a, and α. Moreover, a free-body

diagram of the pulley alone reveals that

X
M
0

z

�
B ¼ 0! T1a� T2a ¼ 0! T1 ¼ T2:

Not all cables run over a frictionless surface, however. Friction is defined as

a force of resistance that acts on a body to prevent or retard its slipping with

respect to a second body with which it acts. The friction force f thus occurs in a

plane tangent to the two contacting bodies and has been found experimentally to

be proportional to the normal force N between the contacting bodies; the

constant of proportionality is the so-called coefficient of friction μ. Thus,
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f ¼ μN: ðA1:8Þ

The maximum value of f (i.e., the value just prior to slipping) is given via the

coefficient of static friction μs; thus fmax= μsN.

Example A1.5 Find the relationship between the force in a cable as it goes onto

and off of a surface with friction.

Solution: Figure 1.16 shows a cable (or belt) that is pulled over a rough surface.

In this case, the force (or tension) on the side corresponding to the direction of

motion is larger than that on the “feed direction”; that is, TL>Ts. A free-body

diagram of a small part of the belt, wherein TL is only slightly greater than Ts,

reveals the pointwise equilibrium result (governing differential equation). Note

that the frictional force is denoted byΔf, which we know from physics is related

to the normal force ΔN via Δf = μsΔN, where μs is the coefficient of static

friction. Hence, equilibrium requires

FIGURE 1.15 An ideal (frictionless) pulley of radius a is mounted from a wall at angle α

and length L. Free-body diagrams of the whole pulley and its rotating part alone isolate

reaction and internal forces and moments of interest.

36 1. Introduction



þ "
X

Fnormal ¼ 0! �T sin
Δθ

2

� �
� T þ ΔTð Þ sin Δθ

2

� �
þ ΔN ¼ 0,

 
þ
X

Ftangent ¼ 0! T þ ΔTð Þ cos Δθ

2

� �
� T cos

Δθ

2

� �
� Δ f ¼ 0:

If we assume Δθ� 1, then sin(Δθ/2)�Δθ/2, cos(Δθ/2)� 1, and

ΔT�Δf¼ μsΔN. Hence, the normal force equation requires that

�2T Δθ

2

� �
� ΔT

Δθ

2

� �
¼ �ΔN ¼ �ΔT

μs
:

If we ignore the higher-order term ΔTΔθ/2 with respect to the other terms,

we have

TΔθ ¼ ΔT

μs
! ΔT

Δθ
¼ μsT;

or in the limit as Δθ! 0,

dT

dθ
¼ μsT:

This first-order differential equation, with a constant coefficient, admits a

solution via integration, namely

ð
1

T

dT

dθ
dθ ¼

ð
μsdθ! lnT ¼ μsθ þ c1:

Now, if T=Ts when θ = 0 (i.e., we establish our coordinate system where the

belt first contacts the surface), then

FIGURE 1.16 Free-body diagram of a belt being “pulled” over a rough, cylindrical

surface. A differential element (free-body diagram of a part) allows derivation of the

governing differential equation.
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lnTs ¼ 0þ c1 ! lnT � lnTs ¼ μsθ;

or

ln
T

Ts

� �
¼ μsθ! T ¼ Tse

μsθ:

The maximum tension is thus TL ¼ Tse
μsβ; where β= θL – θS in Fig. 1.16.

We see, therefore, that in contrast to the frictionless pulley wherein T1¼ T2,

here the ratio of the two tensions depends exponentially on the angle of contact

and the coefficient of friction.

Finally, let us consider a structure referred to as a truss. Such a structure is

composed of elements that may support tension or compression along their long

axis and are joined together at their ends by pins or welds. It is further assumed

that each member is rigid, which is to say, inextensible. Again, an illustrative

example serves well to introduce the associated analysis.

Example A1.6 Consider the structure in Fig. 1.17a, a 2-D truss fixed at A by a

simple pin and at B by a simple roller. Given the applied force at C and the

dimensions, and assuming the truss is constructed of rigid members, find the

reactions (boundary conditions) at A and B as well as all internal forces.

Solution: Let the reactions at the pin be denoted as Ax and Ay (note: a 2-D pin

cannot resist a rotation and thus cannot supply a reaction moment) and similarly

let the reaction at the roller be denoted as By (note: a roller cannot resist a

horizontal motion or a rotation), each according to a positive sign convention

(Fig. 1.17b). In such problems, it is best to first solve equilibrium of the whole

and then equilibrium of individual parts as needed to find all of the values of

interest. For overall equilibrium, we have from force balance,

X
F ¼ 0! Ax îþAy ĵþBy ĵ þ Fî¼0

or in components,

Ax þ F ¼ 0! Ax ¼ �F, Ay þ By ¼ 0! Ay ¼ �By:

Now, for moment balance, let us take moments about point A because the lines

of action of two of the four forces go through A. Hence,
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X
M
�
A ¼ 0! 2lî � By ĵþ lîþl ĵ

� �
� Fî ¼ 0! 2lByk̂ � lFk̂ ¼ 0:

From moment balance and the second force balance equations respectively, we

thus have

By ¼
F

2
, Ay ¼ �

F

2
:

It is reemphasized that in two dimensions, we have three scalar equations

(summation of force in x and y as well as summation of moments about the z

axis at any one point) to find three unknowns; if there are more unknown

reactions in the overall problem, it is said to be statically indeterminate,

which is to say that we need additional equations to find the reactions. The

focus of Chaps. 2–5 is the development and use of such additional equations.

Here, however, the reactions are now known; thus, we can consider equilibrium

of the parts. Toward this end, there are two commonly used approaches: the

method of pins and themethod of sections. In the former, one isolates, via a free-

body diagram (FBD), the pins at each joint and then enforces equilibrium at

each; in the latter, one similarly isolates, via FBDs, sections of the truss and

likewise enforces equilibrium. Because of the 2-D nature of each of these

subproblems, one can only determine two unknowns in each. We review the

method of sections here.

Physical

Problem

Equilibrium

of Parts

Equilibrium

of Whole

CA CB

AC

AB BA

BC

F

F

F F

tension compression

Panel dPanel c

Panel a

Panel b

ByAy

Ax
A

y

x

B

C

2l

l

2l

F/2 F/2

FIGURE 1.17 Shown is a simple 2-D truss (panel a) and associated free-body diagrams of

the whole structure (panel b) and individual parts (panel c). Panel (d) shows results of
the final analysis with regard to which members support tension versus compression.
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Figure 1.17c shows the truss with three fictitious cuts; note that each cut

crosses only two structural elements, thereby isolating only two unknown

internal forces each. (Because the lines of action in each “part” go through a

point, one can only enforce force balance in the x and y directions and thus solve

for only two unknowns in each FBD—Why is this the case?) For the part

including pin A, we have,

X
Fx ¼ 0! AC cos θ þ AB� F ¼ 0,

X
Fy ¼ 0! AC sin θ � F

2
¼ 0! AC¼F

2

2ffiffiffi
2
p ¼ Fffiffiffi

2
p ;

where sin θ ¼
ffiffiffi
2
p

=2 and cos θ ¼
ffiffiffi
2
p

=2 given the geometry. From the x-

direction equation, therefore, we find that AB=F/2. Similarly, for the part

containing pin B, we have

X
Fx ¼ 0! �BC cos θ � BA ¼ 0,

X
Fy ¼ 0! BC sin θ þ F

2
¼ 0! BC ¼ � Fffiffiffi

2
p

and thus from the x-direction equation, BA=F/2. Although the solution is now

complete (i.e., all reactions and internal forces have been found in terms of F

and l), we shall consider the part containing pin C as a consistency check.

We have

X
Fx ¼ 0! �CA sin θ þ CB sin θ þ F ¼ 0,

X
Fy ¼ 0! �CA cos θ � CB cos θ ¼ 0! CA ¼ �CB;

and thus from the x-direction equation,CB ¼ �F=
ffiffiffi
2
p

, and from the y-direction

equation, CA ¼ �F=
ffiffiffi
2
p

. The correctness of the solutions is thus verified by

the consistency check. Finally, note that we assumed a positive sign convention

(i.e., tensile load in each member) when denoting each unknown symbolically.

When doing so, a positive sign for the solution of an unknown reveals that the

direction was assumed correctly, whereas a negative sign reveals that the

direction is actually opposite that which was assumed. Hence, as shown in

Fig. 1.17d, members AB and AC are in tension and BC is in compression.

Although this truss problem is very simple, it reveals most of the important

methods of approach in statics: the use of FBDs, equilibrium of the whole

followed by equilibrium of individual parts, the use of vectors to sum forces and

moments, the need to take moments with respect to specific points, the need to
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match the number of unknowns and equations, the need to know boundary

conditions, and the importance of checking for internal consistency. Indeed, it is

for this reason that appreciating the approach to solving simple, illustrative

problems serves us well when we approach new, more difficult problems.

Although Civil Engineers are typically the ones who study trusses, examination

of the cytoskeleton of a cell reveals a truss-like structure and similar approaches

have been applied to studying cell mechanics. Of course, the primary assump-

tion that needs to be relaxed when moving from steel structures to cytoskeleton

components is that of rigid members. We shall consider in Chaps. 2–6 how to

begin to address structures and structural members that are not rigid (i.e., solids

that deform under the action of applied loads). In such cases, however, we do

not “forget” the statics, we merely add new considerations.

Exercises

1.1 Write a four-page (double-spaced, 12-point font, one-inch margins)

summary of the biomechanical interests of either Leonardo da Vinci or

Galileo Galilei, including biographical information. Ensure that refer-

ences are cited amply and correctly (e.g., see the citation format in

current journals such as the Annals of Biomedical Engineering or Bio-

mechanics and Modeling in Mechanobiology).

1.2 Write a four-page summary of the impact/role of biomechanics in health

care research. Illustrate via one or two specific examples.

1.3 Pick a particular biomedical “device” (e.g., a heart valve, an orthotic

device, a balloon catheter for angioplasty, an artificial hip, an intraocular

device, a tissue engineered skin graft) and review the process of design

and analysis that was employed in its development. Submit a four-page

summary.

1.4 Identify the top-ten employers of biomedical engineers, with expertise in

biomechanics, in your region and discuss their products or service in no

more than four pages.

1.5 Write a five-to-seven-page summary of Engineering Statics, based upon

your prior course work. Pretend that you are charged with giving a

review of statics for the Engineering Fundamentals Examination, the

first step toward becoming licensed as a Professional Engineer (P.E.),

and thus ensure that you review all of the salient features of the subject.

1.6 Write a five-page summary of mechanotransduction in cells. Select a cell

type of interest, as, for example, osteoblasts, fibroblasts, or smooth

muscle cells.

1.7 Draw a free-body diagram of an epithelial cell that lines the bronchioles

and discuss the types of loads that may act on it. Likewise, show a

schema of the cytoskeletal architecture in both no-flow and high-flow
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environments. What morphological or histological changes occur in

these airways at the time of birth (i.e., the beginning of breathing)?

1.8 Draw a free-body diagram of an artificial hip implant and discuss the

types of load that may act on it. Discuss how different methods of

fixation affect the boundary conditions.

1.9 Tissue maintenance depends on a delicate balance between the produc-

tion and removal of constituents. If the synthesis and degradation of

collagen each follow first-order kinetics, namely

d C½ 	
dt
¼ �k C½ 	;

where k is a specific reaction rate, find the change in concentration [C] as

a function of time.

1.10 The explosion of discoveries in molecular and cellular biology have

given rise to new areas of research in bioengineering, including tissue

engineering and genetic engineering. Write a four-page review of

the state of the art in functional tissue engineering emphasizing the

role that biomechanics must play.

1.11 Write a four-page summary of the work by Wolff in the late nineteenth

century on remodeling in bone and contrast it with current trends in

research in bone mechanics.

1.12 Write a three-page discussion of the differences between induction and

deduction. In particular, consider the roles of Bacon (1561–1626)

and Descartes (1596–1650). Because biomechanics combines biology

and mechanics, which tend to employ induction and deduction, respec-

tively, discuss how these two different philosophical approaches should

be synthesized in modern biomechanical research.

1.13 Write a three-page essay on the difference between observation and

experimentation in the overall scientific method. You may want to

consider the commentary of the nineteenth century scientist C. Bernard

whose book is entitled An Introduction to the Study of Experimental

Medicine (reprinted in 1957 by Dover Books, New York).

1.14 Write a four-page summary of the scientific method, including its ori-

gins. In particular, define and discuss the role of hypothesis in biome-

chanical research. Illustrate your position by reviewing three to five

hypotheses of importance in recent scientific papers.

1.15 Visit the NIH webpage (www.nih.gov) and search for information on

bioengineering and biomedical engineering. Write a four-page summary

of current trends and directions for research.

1.16 Write a four-page summary of new experimental tools that promise to

provide new insight into the response of cells and intracellular proteins to

applied loads. Consider, for example, the atomic force microscope, laser

tweezers, confocal microscopy, and magnetic bead cytometry.
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1.17 Prove that the value of a couple Fd, where F= |F| is the magnitude of

equal and opposite parallel forces separated by the distance d, is the same

regardless of the point about which moments are computed.

1.18 Repeat Example A1.2 with (xA, yA, zA) = (0, L, L) and |F| =T; that is, find

the reaction forces and moments.

1.19 In two dimensions, the so-called direction cosines (cos α and cos β here)

are determined easily:

cos α ¼ Ax

A
, cos β ¼ Ay

A
;

where A ¼ Ax î þ Ay ĵ ¼ Aê with ê ¼ cos αî þ sin α ĵ or ê ¼ cos αîþ
cos β ĵ : Repeat this for three dimensions given angles α, β, and γ, and

A ¼ Ax ĵ þ Ay ĵ þ Azk̂ with a clear diagram showing all quantities.

Because ê is a unit vector, |ê|= 1, note that α, β, and γ are not indepen-

dent. Find their inter-relationship. Does such an inter-relationship make

sense in two dimensions?

1.20 Use equilibrium restrictions and vectorial representations for r1 and r2 as

well as forces F1 and F2, with magnitudes T1= |F1| and T2= |F2|, respec-

tively, to relate T1, T2, d1, and d2 in Fig. 1.18.

1.21 The following figure illustrates a simple setup for calibrating a (tension)

load cell. Determine the load “felt” by the load cell for each applied weight

W. Also, find the reaction supports for the (ideal) pulley (Fig. 1.19).

FIGURE 1.18

FIGURE 1.19
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1.22 Use the following simple setup to design an experiment to determine the

coefficient of static friction μs between materials A and B. In particular,

show that μs= tan θS where θS is the angle at which the relative slippage

begins (Fig. 1.20).

1.23 Find the internal forces in the truss (see figure) and note the members that

are in compression versus tension (Fig. 1.21).

FIGURE 1.20

FIGURE 1.21
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Part II

Biosolid Mechanics



2
Stress, Strain, and Constitutive
Relations

2.1 Introduction

Consider the two structural members in Fig. 2.1, each acted upon by an applied

weight W that is much larger than the individual weights mg, which we

therefore neglect. From statics, we know that if these two members are in

equilibrium, then ΣF= 0 and ΣM= 0. Free-body diagrams of the whole struc-

ture and the individual parts reveal that the reaction and internal forces are the

same: Ry= fy=W; that is, from the perspective of statics alone, these two

problems are equivalent. Nevertheless, intuition tells us that the behavior of

member A need not be the same as that of member B. One may fail before the

other. An important question to be answered by mechanics, therefore, may be

the following: Which member will likely fail first given increasing weights W?

At first glance, we may be inclined to say that A will fail before B, for A is

“thinner,” and indeed this may well be. Yet, our information is incomplete: We

have not specified what A and B are made of; A could be made of a much

stronger material than B. Thinking back to statics, we realize that we never

specified the properties of the materials or structures that we studied, we simply

assumed that they were always rigid (i.e., infinitely stiff). In this book, however,

we will see that the individual properties of materials are central in biome-

chanics. For example, we often seek to match the properties of man-made or

tissue-engineered replacements to those of the native tissue or organ. Indeed,

one of the continuing challenges in biomechanics is accurate characterization,

or quantification, of the material behavior of both living tissues and

biomaterials.
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Returning to Fig. 2.1 and the question of whether structure A or B will fail

first, we first need to define what is meant by failure. In mechanics, failure

simply implies an inability to perform the intended mechanical function. Struc-

tures A and B could thus fail by the following:

• Material failure, including fracture, tearing or rupture, as, for example, in the

tearing of an anterior cruciate ligament

• Deforming excessively, which may or may not include a permanent defor-

mation such as a severely bent (e.g., plastically deformed) surgical instru-

ment, which does not return to its functional shape

Determination of failure criteria for materials is thus an important responsi-

bility of the biomedical engineer. Recalling our intuition earlier that structure A

may fail before B because A is thinner (Fig. 2.1) suggests that failure criteria

cannot be written in terms of the applied loads alone; one must also consider the

geometry. This brings us to the concept of stress.

FIGURE 2.1 Contrast the potentially different responses of two simple structural

members, A and B, which have the same type of fixed support at the top, the same

initial length, and the same axial loading W at the otherwise free-end. Free body

diagrams of the whole and a part reveal the reactions at the fixed support and the

internal force.
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2.2 Concept of Stress

In 1678, Robert Hooke published the anagram (in Latin) ceiiinosssttuv, which

can be deciphered as, ut tensio sic vis, and translated, as the force, so the

extension. That is, by studying the response of linear metallic springs to the

application of various weights, Hooke realized that there is a one-to-one

relationship for many materials between the applied load (force) and the motion

(extension). Figure 2.2 shows force–extension curves for three similar but

different linear springs, each described by the general formula f¼ k(‘ – ‘0)
where ‘ is the current length, ‘o is the original length, and k is the so-called

spring constant or stiffness. The results in Fig. 2.2 for three different springs

suggest that each is characterized by an individual spring constant k1, k2, or k3
(or material property). If we apply the same idea of plotting force versus

extension for cylindrical specimens of various materials (e.g., aluminum or

stainless steel), we quickly discover that such tests do not characterize the

material. If the same loads are applied to the same material in two different

labs, which use two different diameter specimens, we find different slopes in the

force–extension data. Indeed, the thicker sample, albeit composed of the same

material, will appear “stiffer” because it will extend less in response to the same

force.1 Hence, in contrast to Hooke’s original idea, there is more to it than just

“as the force, so the extension.”

FIGURE 2.2 Force–extension behavior of three different metallic springs, which exhibit

linear behaviors and thereby can be quantified by individual spring constants k (or

stiffnesses). Although many springs exhibit a linear behavior, nonlinear springs exist as

well.

1 Differences between structural stiffness, which depends in part on geometry, and true
material stiffness are important in clinical measurements, as discussed later.
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In 1757, Leonard Euler realized that a better measure for analysis is a “force

intensity” or stress. Simply put, Euler defined this intensity as a force acting

normal to an area divided by the value of that area (i.e., a pressure-like quantity

that we now call a normal stress). During the period 1823–1827, Augustin-

Louis Cauchy formalized the concept of stress. Defined as a force acting over

an oriented area at any point in a body, it is clear that there can be different

“stresses” at the same point depending on the orientation of the applied force

and the orientation of the area of interest, which implicitly says depending on

the choice of a coordinate system (i.e., an origin and basis)—that is, stress is a

mathematical construct; its “value” is not unique.

For example, consider a force having only an x component, say Δfx, which

acts over an area ΔA in the current (deformed) configuration of the body

(Fig. 2.3). Intuitively, the effect of the same force Δfx on the same area ΔA

will have different effects depending on the orientation of ΔA, which is denoted

by the outward unit normal vector n (i.e., |n|¼ 1). For example, if n is in the

direction of Δfx, we call the force a normal force and its intensity (per unit area)

a normal stress; if n is perpendicular to the direction of Δfx, we call the force a

shearing force and its intensity a shear stress. Note, therefore, that although a

force could act on an area at any angle, it is generally convenient to resolve the

force vector into components that are normal and parallel to the surface.

Specifically, then, if we let ΔAx denote that ΔA has an outward normal n= êx
and take the limit as ΔA tends to zero, then we obtain the normal stress:

FIGURE 2.3 Schema of the x component of a differential force Δfx (actually, the mean

value of a distributed force) that acts on an area ΔA. Clearly, the effect of this single

component of force on the underlying material will depend on the orientation of the area

over which it acts: If the area is oriented in the same direction as the force, we expect a

tension or compression, whereas if the area is oriented orthogonal to the force, we

expect a shearing action. The directions of both the force f and the area (given by its

outward unit normal vector n) are equally important.
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lim
ΔA!0

Δ f x
ΔAx

¼ d f x
dAx

¼ σxx; ð2:1Þ

that is, we denote stress (i.e., a force acting over an oriented area in the current

deformed configuration) with the Greek lowercase sigma, with the first and

second subscripts (or indices) associated with the oriented area (i.e., face) on

which the force acts and the direction of the applied force, respectively. Hence,

with

σ faceð Þ directionð Þ; ð2:2Þ

then

lim
ΔA!0

Δ f x
ΔAy

¼ d f x
dAy

¼ σyx ð2:3Þ

for a shear stress in the x-y plane.

Although stresses act in the direction of that component of the force that acts

at the point of interest, they are not vectors. Rather, because stress is a force

acting over an oriented area, it is associated with two directions, one each for

the direction of the force and the outward unit normal n. Mathematically, such

quantities are called tensors, but we will not exploit this character. It is useful

nonetheless to represent the components of stress by arrows that act on the

appropriate faces of a body in the appropriate directions. See, for example,

Fig. 2.4, which shows the so-called positive sign convention for a 2-D state of

stress relative to a Cartesian coordinate system. In particular, we shall assume

that normal stresses are positive when tensile; this requires that σxx be directed

in a positive direction on a positive face (i.e., one having an outward unit normal

in a positive coordinate direction) and conversely that σxx be directed in a

negative direction on a negative face (i.e., one having an outward unit normal

in a negative coordinate direction). Indeed, for consistency, we assume the same

for the shear stresses, as seen for σyx and σxy in Fig. 2.4. (Note: An easy way to

remember this positive sign convention is that a positive times a positive is

positive and a negative times a negative is a positive; hence, the positive sign

convention requires a negative direction stress on a negative face.) As in statics,

it is best to use the directions associated with the sign convention; if the

computed value turns out to be negative, it simply tells us to switch the assumed

direction of that component of stress.

Recall that if a body is in equilibrium, then each of its parts must also be in

equilibrium—this holds true for any material point p. Note, therefore, that

because of our sign convention (Fig. 2.4), the “two” normal stresses σxx in the

figure balance and so too for the x-direction action of the “two” shear stresses σyx.

If the mathematical point p represents a material particle even of infinitesimal
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dimension, however, we see that equilibrium is not necessarily satisfied; that is,

the two σyx’s would tend to create a couple (i.e., a pure moment, or force acting at

a distance) that would tend to rotate the differential region centered at particle p.

Equilibrium could be ensured by the addition of an opposing pair σxy, as seen in

Fig. 2.4, wherein we have preserved both the positive sign convention (e.g.,

positive direction on a positive face) and the notation sigma subscript (face,

direction). Consequently, σxy� σyx numerically at every point, which can be

proven rigorously via the balance of angular momentum (i.e., ΣM¼ 0 in this

case) as shown below. Committing the sign convention represented in Fig. 2.4 to

memory serves one well throughout mechanics.

In general, however, we note that each point p could be thought of as an

infinitesimal cube that is reduced in size in a limiting process. As such, each

point can be thought to have six faces relative to each Cartesian coordinate

system. For (x, y, z) coordinates, this implies positive and negative ΔAx, ΔAy,

and ΔAz faces. Moreover, given that each point can be acted upon by a force Δf,

which has a component representation relative to (x, y, z) as

Δ f ¼ Δ f x îþΔ f y ĵþΔ f zk̂�Δ f xê x þ Δ f yê y þ Δ f zê z; ð2:4Þ

where î � ê x and so forth, there are nine possible measures (i.e., components)

of stress at each point p relative to (x, y, z). They are

FIGURE 2.4 Positive sign convention for a 2-D state of stress, relative to Cartesian

coordinates, that exists at point p but is shown over a square domain for illustrative

purposes. The direction of each component is positive on a positive face (i.e., a face with

an outward unit normal in the positive coordinate direction) but negative on a negative

face. This convention is consistent with normal stresses being positive when tensile and

it is consistent with equilibrium at a point (i.e., the balancing of equal and opposite

pushes and pulls).
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σ faceð Þ directionð Þ ¼

d f x
dAx

d f y

dAx

d f z
dAx

d f x
dAy

d f y

dAy

d f z
dAy

d f x
dAz

d f y

dAz

d f z
dAz

2
666666664

3
777777775

�
σxx σxy σxz
σyx σyy σ yz

σzx σzy σzz

2
4

3
5; ð2:5Þ

which we have written in matrix form for convenience (matrices are reviewed in

Appendix 6). The components σxx, σyy and σzz are normal stresses; they can

cause extension or compression. The components σxy, σxz, σyx, σyz, σzx, and σzy
are called shear stresses; they can cause a body to distort, which is to say to

experience changes in internal angles. Consistent with the above, this matrix is

symmetric (i.e., σxy¼ σyx, σxz¼ σzx, and σyz¼ σzy) for the Cauchy stress, which

is a measure of actual forces acting on current oriented areas. This can be shown

formally by letting the dimensions of an infinitesimal element be Δx, Δy, and

Δz. Because the components of stress have units of force/area, to sum the

moments about an axis such as the z axis in Fig. 2.4, we must first multiply

the respective component of stress by the area over which it acts and then

multiply by the associated moment arm about any point, say o (because two of

the four stress components have lines of action that go through o, this point is

convenient for computing the moments). Hence,

X
Mz

�
o ¼ 0! �σyx ΔxΔzð ÞΔyþ σxy ΔyΔzð ÞΔx ¼ 0: ð2:6Þ

Simplifying, therefore, we have the result:

σxy ¼ σyx: ð2:7Þ

Similarly, show that σxz¼ σzx and σyz¼ σzy.

Example 2.1 Referring to Fig. 2.5, what are the values of σxx, σxy, σyx, and σyy
in this 2-D state of stress.

Solution: Noting that the right face is an x face (with outward unit normal êx)

and that the top face is a y face, we have σxx¼ 120 kPa, σxy¼ 0 kPa,

σyy¼ 150 kPa, and σyx¼ 0 kPa. Being able to identify components of stress

σ(face)(direction) is an important step in understanding the mechanics.

It cannot be overemphasized that stress is a mathematical concept; it is

defined as a measure of a force acting over an oriented area at a point.
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Mathematically, stress is a tensor, which is defined independent of a coordinate

system. Yet, to solve practical problems, one must always compute components

of stress relative to a particular coordinate system. Because coordinate systems

(which are defined by an origin and a set of base vectors) are not unique but can

be defined in many different ways, many different sets of components of

stress exist at the same point in a body that is subjected to a single set of applied

loads. For example, for the three Cartesian coordinate systems shown in

Fig. 2.6—defined by (o; êx, êy, êz), (o; ê
0
x, ê
0
y, ê
0
z), and (o; ê00x, ê

00
y, ê
00
z)—the

point p admits three different sets of components of the same stress

σ(face)(direction):

σxx σxy σxz
σyx σyy σyz

σzx σzy σzz

2
4

3
5; ð2:8Þ

σ
0
xx σ

0
xy σ

0
xz

σ
0
yx σ

0
yy σ

0
yz

σ
0
zx σ

0
zy σ

0
zz

2
6664

3
7775; ð2:9Þ

and

FIGURE 2.5 An illustrative 2-D state of stress acting at a point, components of which act

over oriented areas that are expanded for ease of visualization. Although the magnitudes

of the components can be considered arbitrary, these values are consistent with in-plane

values of stress within a large artery.
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σ
00
xx σ

00
xy σ

00
xz

σ
00
yx σ

00
yy σ

00
yz

σ
00
zx σ

00
zy σ

00
zz

2
6664

3
7775: ð2:10Þ

[Note: The (. . .)0 and (. . .)00 notation here simply denotes different coordinate

systems; it does not imply differentiation as used in many courses on differen-

tial equations.]

In some cases, it may be more natural to compute one set of components, say

σxx, σxy,. . ., σzz, whereas in other cases, it may be more useful to compute

another set of components, say σ0xx, σ
0
xy,. . ., σ

0
zz. A good example of this need

is the case of a rectangular structure that consists of two members that are glued

together on a 45
 angle (Fig. 2.7). Because glue is stronger in shear than in

extension (empirically compare removing a Postit® note by applying a normal

versus a shear force), it is useful to know howmuch of the applied force f results

in shear versus normal stresses at the glued interface; that is, we would like to

know the values of σ0xx and σ
0
xy, which are computed relative to (o; ê0x, ê

0
y, ê
0
z).

Yet, from Fig. 2.7, it is clearly easier to enforce equilibrium relative to (o; êx, êy,

êz); that is, assuming the force is applied uniformly over the surface area on

which it acts, it is easy to show (see Sect. 3.3.2) that ΣF= 0 yields σxx= f/A and

σxy¼ 0 on a cross section with an outward unit normal n= êx that cuts through

the glued region. It is clear, therefore, that multiple coordinate systems can be

useful even in the same problem. Fortunately, we shall discover in Sect. 2.3 that

the desired values σ0xx and σ
0
xy can be determined directly from the more easily

FIGURE 2.6 Interrelations, via single angles, between different Cartesian coordinate

systems that share a common origin and a z-axis. The angle α is taken to increase in

the direction given by the right-hand rule: counterclockwise, with the z-axis coming out

of the paper.
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computed values σxx¼ f/A and σxy¼ 0; that is, we will not need to solve the

equilibrium problem for each coordinate system of interest.

Inasmuch as coordinate systems are introduced for convenience, many dif-

ferent coordinate systems prove useful in the wide variety of problems that fall

within the domain of biomechanics. For problems in the circulatory and pulmo-

nary systems, for example, the nearly circular nature of the arteries, capillaries,

veins, and bronchioles render cylindrical-polar coordinate systems very useful.

For problems involving certain cells, saccular aneurysms, the urinary bladder,

and so forth, spherical coordinates are very useful. For problems in cardiac

mechanics, particularly for the left ventricle, prolate spheroidal coordinates are

useful. For problems in developmental cardiology, toroidal coordinates are

convenient. Indeed, the list goes on and on, including more complex coordinate

systems. Fortunately, regardless of the coordinate system, our notation σ(face)

(direction) will hold; that is, we seek measures that describe the intensity of the

force relative to both the oriented area on which the force acts and the direction

of the applied force. In cylindrical coordinates (r, θ, z), we have (Fig. 2.8)

σ½ 	 ¼
σrr σrθ σrz
σθr σθθ σθz
σzr σzθ σzz

2
4

3
5; ð2:11Þ

and likewise for spherical coordinates (r, θ, ϕ), we have (Fig. 2.9)

FIGURE 2.7 Free-body diagrams of the same structure cut along two cross sections: one

with an outward unit normal in the direction of the applied force (which is natural for

solving the equilibrium problem) and one with an outward unit normal to the glued

surface (which exposes stresses that act thereon and are important with regard to

possible debonding). In each case, the components are identified as σ(face)(direction).

Note: although we could denote stresses with respect to an x0 face and x0 direction as

σx0x0, we prefer to denote them as σ0xx for convenience.
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σ½ 	 ¼
σrr σrθ σrϕ
σθr σθθ σθϕ
σϕr σϕθ σϕϕ

2
4

3
5; ð2:12Þ

each at every point p. It is important to review and understand that which is

represented in these figures.

FIGURE 2.8 Components of stress relative to a cylindrical coordinate system, again using

the standard notation σ(face)(direction).

FIGURE 2.9 Normal components of stress relative to a spherical coordinate system, again

denoting the components as σ(face)(direction). As an exercise, add the shearing

components.
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Independent of the specific coordinate system, a 1-D state of stress is one in

which only one component of stress (e.g., σxx) is nonzero relative to the

prescribed coordinate system; a 2-D state of stress is one in which four

components of stress (e.g., σxx, σyy, σxy, and σyx, three of which are independent

because σxy= σyx) may be nonzero relative to the chosen coordinate system;

a 3-D state of stress is one in which all nine components (six of which are

independent) may be nonzero in general.

In summary, the concept of stress is a mathematical one. Stress may be

computed at each point in a continuum body; when resolved with respect to a

coordinate system, there are nine components at each point, although only six

components of the Cauchy stress are independent relative to each 3-D coordi-

nate system—three normals and three shears. Because coordinate systems can

be related via transformation relations, the various components of stress can be

related through transformation relations. Let us now derive these useful rela-

tions for Cartesian components.

2.3 Stress Transformations

Consider a 2-D state of stress relative to either (o; êx, êy) or (o; ê
0
x, ê
0
y) as shown

in Fig. 2.10. Because these figures merely represent the stresses that act at point

p, we can cut either square part in order to represent components relative to both

coordinate systems in a single figure. Anticipating the need to sum forces and

moments to enforce equilibrium (of the parts), let the diagonally cut part be of

uniform width Δz and length Δy along the vertical cut edge. Hence, the three

exposed areas of interest are computed easily, as shown in Fig. 2.11.

From geometry, we have sin α¼ opp/hyp and cos α¼ adj/hyp, where

opp�Δx and adj�Δy. Hence, hyp¼Δy/cos α¼Δy sec α. Now, if we multiply

through by the widthΔz, then we have the result that the area that σ0xx and σ
0
xy act

over is given byΔz (hyp)¼ΔA sec α, withΔyΔz=ΔA being the area over which

σxx and σxy act. Similarly, σyy and σyx act over Δz(opp)¼Δz(hyp) sin α¼ΔA sec

α sin α¼ΔA tan α. Now, we are ready to sum forces. Balancing forces (i.e.,

stresses multiplied by the areas over which they act) in the x0 direction requires

that we find the components in the x0 direction. Clearly, the x-directed forces must

be multiplied by cos α, whereas the y-directed forces must be multiplied by sin α

to get the x0 direction components. Hence, equilibrium yields

X
Fx
0 ¼ 0 ¼ σ

0
xxΔA sec α� σxxΔAð Þ cos α� σyxΔA tan α

� �
cos α

� σyyΔA tan α
� �

sinα� σxyΔA
� �

sin α

or
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FIGURE 2.11 Detailed diagram of the fictitious element from Fig. 2.10 with the 2-D

components of stress isolated relative to two different Cartesian coordinate systems.

Remembering that if a body is in equilibrium, then each of its parts are in equilibrium,

we can therefore use a force balance to relate the components of stress for the two

coordinate systems. Alpha is an arbitrary cutting angle.

FIGURE 2.10 General 2-D state of stress at the point p emphasizing again that the

components are defined with respect to the orientation of the area over which they act

(i.e., the face) and the direction of the applied force (i.e., the direction). Hence, different

sets of components coexist at the same point. This allows us to make fictitious cuts that

expose, on the same element, components relative to different coordinate systems.
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σ
0

xx ¼ σxx cos
2αþ 2σxy sin α cos αþ σyy sin

2α; ð2:13Þ

wherein we let σxy¼ σyx from above, and we see that theΔA cancels throughout,

thereby rendering the equation valid for arbitrarily chosen (small) dimensions

about point p. It is important to realize, therefore, that the continuum concept of

stress actually represents an average force intensity within a small region

(neighborhood) centered about the point of interest.

Recalling the trigonometric identities

cos 2α ¼ 1þ cos 2α

2
, sin 2α ¼ 1� cos 2α

2
, sin 2α ¼ 2 sin α cos α

ð2:14Þ

Equation (2.13) can be rewritten as

σ
0

xx ¼ σxx
1þ cos 2α

2
þ σxy sin 2αþ σyy

1� cos 2α

2
; ð2:15Þ

or

σ
0

xx ¼
σxx þ σyy

2
þ σxx � σyy

2
cos 2αþ σxy sin 2α: ð2:16Þ

Given that Eq. (2.13) is a perfectly acceptable way to compute σ0xx from values of

stress relative to (o; êx, êy) for any α, one might ask: Why use the trigonometric

identities to obtain the alternate form [Eq. (2.16)]? This is actually a good question,

the answer to which comes from hindsight.Throughout this text, we must remem-

ber that even what may appear to be simple or obvious may have taken great

thinkers many years to realize (e.g., nearly 150 years passed between Hooke’s

ideas on force to Cauchy’s on stress). We will see below that Eq. (2.16) is

extremely convenient in one particular application. It is also important to remem-

ber that we, as students, benefit from the many hours, days, indeed weeks or even

years of thought by many which resulted in simplifications we have today.

Forces in the y0 direction (Fig. 2.11) can similarly be balanced, namely

X
Fy
0 ¼ 0 ¼ σ

0
xyΔA sec αþ σxxΔAð Þ sinα� σxyΔA

� �
cos α

� σyyΔA tan α
� �

cos αþ σyxΔA tan α
� �

sin α;

or

σ
0

xy ¼ 2 sinα cos α
σyy � σxx

2

� �
þ cos 2α� sin 2α
� �

σxy: ð2:17Þ
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Again, using trigonometric identities, we can rewrite this equation as

σ
0

xy ¼
σ yy � σxx

2
sin 2αþ σxy cos 2α: ð2:18Þ

Remembering that if a body is in equilibrium, then all of its parts are in

equilibrium, we often fictitiously cut a body into multiple different parts to

expose, on cut surfaces, specific components of stress of interest. Because the

selection of the oblique cutting plane in Fig. 2.10 did not isolate a y0 surface
(i.e., an area with outward unit normal ê0y), we must consider another free-body

diagram that isolates σ0yy and σ0yx (Fig. 2.12). Doing so, we can again balance

forces in x0 and y0. This is left as an exercise; thus, show that given such a cut,
X

Fx
0 ¼ 0! σ

0
yxΔA sec α ¼ � σxxΔA tan αð Þ cos α� σxyΔA tan α

� �
sin α

þ σyyΔA
� �

sin αþ σyxΔA
� �

cos α;

or

σ
0

yx ¼ 2 sinα cos α
σyy � σxx

2

� �
þ cos 2α� sin 2α
� �

σxy: ð2:19Þ

Again, using trigonometric identities, we have the alternate form

σ
0

yx ¼
σ yy � σxx

2
sin 2αþ σxy cos 2α; ð2:20Þ

which is the same as Eq. (2.18), as it should be (i.e., σ0xy must equal σ0yx to
satisfy the balance of angular momentum for a rectangular body cut parallel to

x0 and y0). Finally, show that
X

Fy
0 ¼ 0! σ

0
yyΔA sec α ¼ σxxΔA tan αð Þ sinα� σxyΔA tan α

� �
cos α

þ σyyΔA
� �

cos α� σyxΔA
� �

sin α;

FIGURE 2.12 Alternate

fictitious cut (cf.

Fig. 2.11) to expose

y0-face components of

stress σ.

2.3. Stress Transformations 61



or

σ
0

yy ¼ σxx sin
2α� 2σxy sin α cos αþ σyy cos

2α: ð2:21Þ

This equation can then be written as

σ
0

yy ¼
σxx þ σyy

2
þ σyy � σxx

2
cos 2α� σxy sin 2α: ð2:22Þ

Together, Eqs. (2.16), (2.18), (2.20), and (2.22) show that the components of a

2-D state of stress relative to one Cartesian coordinate system can be related to

those of any other Cartesian system sharing a common origin. All that is needed

is the angle α that relates the two coordinate systems; indeed, as a check, we see

that at α¼ 0, the (o; x, y) and (o; x0, y0) coordinate systems coincide, and our

transformations yield σ0xx¼ σxx at α¼ 0, and so on, as they should. Although it

can be shown that similar transformation relations hold for 3-D states of stress

and also for other coordinate systems, we will not go into the details here.

Rather, the most important things to realize are that the concept of stress is

defined at every point in a continuum body and that the components of the stress

(tensor) are not unique; they are determined by the coordinate system of

interest. Fortunately, one does not have to solve the equations of equilibrium

to determine the value of each component of stress relative to each coordinate

system. Rather, one only needs to solve equilibrium once (in terms of the

coordinate system that is most convenient) and then to compute any related

component of interest through the transformation relations. Because these

derivations did not require us to specify the material, these relations are good

for any solid or fluid as long as the continuum assumption is valid. We will thus

use these transformations throughout this book.

Example 2.2 Consider the 2-D state of stress in Fig. 2.5. Find the values of

stress σ0xx, σ
0
yy, and σ0xy for α¼ 45
.

Solution: From Eqs. (2.13), (2.21), and (2.17), we have

σ
0
xx ¼ 120 cos 45
ð Þ2 þ 2 0ð Þ cos 45
 sin 45
 þ 150 sin 45
ð Þ2

¼ 120
ffiffi
2
p

2

� �2
þ 150

ffiffi
2
p

2

� �2
¼ 135kPa,

σ
0
yy ¼ 120

ffiffi
2
p

2

� �2
þ 150

ffiffi
2
p

2

� �2
¼ 135kPa,

σ
0
xy ¼ 2

ffiffiffi
2
p

2

� � ffiffiffi
2
p

2

� �
150� 120

2

� �
þ 0 ¼ 15kPa:
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Hence, the state of stress at point p can also be represented as in Fig. 2.13.

We see, therefore, that a “shearless” state of stress with respect to one coordi-

nate system need not be shearless in general. Indeed, it can be seen from

Eq. (2.17) that if σxy¼ 0, then σ0xy¼ 0 only if σxx¼ σyy or α¼ 0 or α¼ 90
.

2.4 Principal Stresses and Maximum Shear

Given that different values of normal stresses and shear stresses can be

computed at the same point in a body depending on the choice of coordinate

system (e.g., different Cartesian coordinate systems related via the arbitrary

angle α), it is natural to ask if a particular coordinate system exists relative to

which the normal or shear stresses are maximum or minimum. The answer, of

course, is yes, which will prove very important. For example, if we plot σ0xx
as a function of α according to Eq. (2.13) (e.g., for values from Example 2.1

of σ0xx¼ 120 kPa, σyy¼ 150 kPa, σxy¼ 0 kPa), we obtain the result shown

in Fig. 2.14, with σ0xx minimum at α= 0
 and maximum at α¼ 90
 in this

case. Recall from calculus, therefore, that general max/min problems require

us to compute a first derivative with respect to the quantity of interest. Hence,

to find a maximum or minimum normal stress in two dimensions, relative to

Cartesian coordinates, differentiate Eq. (2.16) with respect to α and set the result

equal to zero; that is,

dσ
0
xx

dα
¼ σxx � σyy

2
� sin 2αð Þ 2ð Þ þ σxy cos 2αð Þ 2ð Þ ¼ 0; ð2:23Þ

FIGURE 2.13 Two-dimensional state of stress from Fig. 2.5 with components computed

relative to both the original x-y coordinate system and an x0-y0 coordinate system with

α= 45
.
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or

sin 2α p

cos 2α p

¼ σxy

σxx � σyy

� �
=2
¼ tan 2α p: ð2:24Þ

Hence, the maximum or minimum normal stresses σ0xx occur when α is given by

α p ¼
1

2
tan �1

2σxy

σxx � σyy

� �
 !

: ð2:25Þ

We denote this value of α as αp because the maximum/minimum normal stresses

are called principal values. Note that whenever σxy¼ 0, then αp¼ 0, which is to

say, σxx and σyy are the max/min values of the normal stress. This was the case in

Example 2.2 and thus Fig. 2.14. Conversely, if σxx¼ σyy, then tan 2αp¼1.

Recall that the tangent function goes to infinity at π/2 radians; hence in this case,

2αp¼ π/2 radians, which is to say, αp¼ π/4 radians whenever σxx¼ σyy regard-

less of the value of σxy. All other values of αp are computed easily.

Now, if we substitute the value of α¼ αp into Eqs. (2.16), (2.18), and (2.22)

for σ0xx, σ
0
yy, and σ0xy, we will find σ1� σ0xx)max/min, σ2� σ0yy)max/min, and the

value of shear associated with these so-called principal values of stress σ1 and

σ2. This is easily done numerically, but it proves useful to note the following.

The tangent of an angle equals the opposite over the adjacent. Hence, we can

think of a triangle with an angle 2αp and sides as shown in Fig. 2.15 (this is

hindsight for which we introduced the above trigonometric identities). Hence,

we have

sin 2α p ¼
σxy

H
; ð2:26Þ

FIGURE 2.14 Plot of the normal and shear stresses σ0xx and σ0xy as a function of

α 2 [0, π/2] radians (i.e., 90
). Note that the local extrema for the normal stress occur

at α = 0 and 90
, whereas the local maximum for the shear stress is at α = 45
.
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where

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
ð2:27Þ

and, similarly,

cos 2α p ¼
σxx � σyy

� �
=2

H
: ð2:28Þ

Using these relations for cos 2αp and sin 2αp in Eq. (2.16), we have

σ
0
xx

�
max=min ¼ σ

0
xx α ¼ α p

� �
� σxx þ σyy

2

þ σxx � σyy

2

σxx � σyy

� �
=2

H

� �
þ σxy

σxy

H

� �
;

ð2:29Þ

wherein the second and third terms have a common denominator and can be

combined. Multiplying this combined term by unity (i.e., H/H), we have

σ
0

xx

�
max=min ¼

σxx þ σyy

2
þ

σxx � σyy

� �
=2

� �2 þ σ2xy

H

H

H
; ð2:30Þ

or, finally,

σ1�σ
0

xx

�
max=min ¼

σxx þ σyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
: ð2:31Þ

Hence, we see that it is easy to compute one of the principal stresses. Show

that σ0yy)max/min yields the same result; that is, the two principal values of stress

are given by the same equation with the plus/minus signs preceding the radical

delineating the two.

FIGURE 2.15 Trigonometric

interpretation of the angle

αp, which is associated with

the principal values of stress

in two dimensions.
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Next, note that if we compute σ0xy at α¼ αp, we obtain from Eq. (2.18)

σ
0

xy α ¼ α p

� �
¼ σ yy � σxx

2

� � σxy

H

� �
þ σxy

σxx � σyy

� �
=2

H

� �
¼ 0; ð2:32Þ

that is, the shear stress associated with the max/min normal (or principal)

stresses is always zero. In other words, a principal state of stress simply imposes

extension or compression, not shear, relative to the principal directions (defined

by αp).

Finally, one can ask similarly: At what value of α is the shear maximum or

minimum? In this case, we differentiate Eq. (2.18) with respect to α and set the

result equal to zero. Doing so, we obtain

dσ
0
xy

dα
¼ σ yy � σxx

2
cos 2αð Þ 2ð Þ þ σxy � sin 2αð Þ 2ð Þ ¼ 0; ð2:33Þ

or

sin 2αs

cos 2αs
¼ σyy � σxx
� �

=2

σxy
¼ tan 2αs: ð2:34Þ

Denoting the value of α at which the shear is max/min as αs, we thus have

αs ¼
1

2
tan �1

σ yy � σxx

2σxy

� �
: ð2:35Þ

Here, we see that if σyy¼ σxx, then αs¼ 0 and the associated σxy is an extremum;

conversely, if σxy¼ 0, then 2αs¼ π/2 or αs¼ π/4. Recalling that the shear

stress is zero when the state of stress is principal, this reveals that αs and αp
differ by π/4 or 45
. Substituting the value of αs into Eq. (2.18) and using ideas

similar to those in Fig. 2.15, we find that

σ
0

xy

�
max=min ¼ σ

0

xy α ¼ αsð Þ ¼ σyy � σxx

2

σyy � σxx

2H

� �
þ σxy

σxy

H

� �
; ð2:36Þ

which can be written as

σ
0

xy

�
max=min ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σyy � σxx

2

� �2
þ σ2xy

r
ð2:37Þ

or because of the squared term, it is often written (which is the same asH above)
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τm�σ
0

xy

�
max=min ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
: ð2:38Þ

Here, note two things. First, the normal stresses at α¼ αs are nonzero in general

(this is different from the vanishing shear at α¼ αp), but computed easily.

Second, if the principal stresses occur at α¼ 0, then σxx and σyy are principal,

whereas σxy¼ 0. In this case, σ0xy)max/min is simply one-half the difference

between the principal values [cf. Eq. (2.38)]. Indeed, it can be shown (do it)

that this is the case in general:

τm ¼ �
σ1 � σ2

2
; ð2:39Þ

where σ1 and σ2 are the principal values, usually ordered σ1> σ2.

Example 2.3 For the state of stress in Example 2.1 (σxx¼ 120 kPa,

σyy¼ 150 kPa, σxy¼ 0 kPa), find αp and αs and discuss.

Solution: From Eq. (2.25), we have

α p ¼
1

2
tan �1

σxy

σxx � σyy

� �
=2

 !
¼ 1

2
tan �1 � 0

15

� �
¼ 0

and, therefore, the (o; êx, êy) coordinate system is principal; that is, the values of

σ0xx and σ0yy are max/min at α¼ 0, which is consistent with Fig. 2.14 and the

finding in Example 2.2 that σ0xx (α¼ 45
)¼ σ0yy (α= 45
)¼ 135 kPa, which is

an intermediate value between 120 and 150 kPa.

From Eq. (2.35), we have

αs ¼
1

2
tan �1

150� 120

2 0ð Þ

� �
¼ 1

2
tan �1 1ð Þ ¼ 1

2

π

2

� �
¼ π

4

or 45
. Hence, the value of σ0xy)max/min¼ 15 kPa, as computed in Example 2.2.

Example 2.4 Given the 2-D state of stress σxx¼�p, σyy¼�p, and σxy¼ 0,

show that such a “hydrostatic state of stress” exists relative to all coordinate

systems.
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Solution: Recall from Eq. (2.13) that

σ
0

xx ¼ σxx cos
2αþ 2σxy sin α cos αþ σyy sin

2α;

hence for our state of stress,

σ
0

xx ¼ �p cos 2αþ sin 2α
� �

¼ � p 8α

and similarly for σ0yy. Likewise, recall from Eq. (2.17) that

σ
0

xy ¼ sinα cos α σyy � σxx
� �

þ cos 2α� sin 2α
� �

σxy;

and thus for our state of stress,

σ
0

xy ¼ sinα cos α � pþ pð Þ þ 0 ¼ 0 8α:

A similar finding can be shown in three dimensions. Thus, a hydrostatic state of

stress (in two dimensions, σxx¼ σyy¼�p and σxy¼ 0, or in three dimensions,

σxx¼ σyy¼ σzz¼�p and σxy¼ σyz¼ σzx¼ 0) is principal relative to all coordi-

nate systems. This is a very special case.

Finally, the student should be aware that Otto M€ohr showed in 1895 that the

simple trigonometric structure of these relations [Eqs. (2.26)–(2.28)] for max/

min components of stress can be represented easily in a 2-D diagram called

Mohr’s circle. The interested reader is encouraged to explore this representation

via any standard textbook entitled Strength of Materials or Mechanics of

Materials. We shall not discuss Mohr’s circles herein because the computer

(or calculator) has rendered these computations so easy (compared to the slide

rule) that Mohr’s circle is no longer needed even though some still use it

because of its visual appeal. Rather, we refer the reader to Fig. 2.16, which

reviews the methods discussed herein.

2.5 Concept of Strain

Mechanics is, of course, the study of forces and the associated motions. In

dynamics, we tend to study the motion (i.e., kinematics) in terms of quantities

like the velocity vector v or the acceleration vector a. These will likewise prove

central to our discussion of biofluid mechanics in Chaps. 7–10. In biosolid

mechanics, however, our primary interest is usually the displacement vector u.
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Basically, a displacement vector quantifies the difference between where we (a

point) are, denoted by a position vector x, and where we were originally,

denoted by a position vector X. Thus, u¼ x –X (Fig. 2.17). Because each

point in a body can displace separately (provided certain compatibilities are

maintained between neighboring points, except in cases of fracture, of course),

the displacement vector can vary with position and time, namely

u X; tð Þ ¼ x X; tð Þ � X; ð2:40Þ

where the position vector x also depends on which point (i.e., originally located

by X) is being tracked. Because u is a vector, it has components relative to the

selected coordinate system. With respect to Cartesian coordinates, we may write

FIGURE 2.16 Flowchart

showing our approach

for determining max/min

values of stress (or strain)

relative to preferred

coordinate axes.
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u¼ux î þ uy ĵþuzk̂�uxê x þ uyê y þ uzê z; ð2:41Þ

where ux, uy, and uz are the components relative to the chosen Cartesian

coordinate system. As a simple example, consider a slender structural member

that is fixed at its upper end and loaded by a uniformly distributed force at its

other end (Fig. 2.18). From Sect. 2.2, we can show that each cross section (e.g.,

that obtained via the cutting plane D-D) has a stress σxx= f/A, where f is the total

axial force and A is the cross-sectional area. If the member is of homogeneous

composition, we would expect this same stress at each point to cause the same

response. An obvious question then is whether the displacement u can serve as a

good measure of this response: Do we expect a one-to-one relation between the

stress and the displacement at a given point? A quick examination of the

problem reveals that the answer is no. Whereas the value of σxx is the same at

FIGURE 2.17 Schema of the

displacement vector u of a

generic point p from its

location X in an undeformed

reference configuration to its

location x in a deformed

configuration.

FIGURE 2.18 Displacements at various locations in a uniformly loaded, vertically

suspended structural member. Note, in particular, that the value of the displacement

varies from point to point (i.e., it is nonuniform), whereas the value of the xx component

of stress does not vary.
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all points in this member, the displacement clearly differs from point to point.

Because of the fixed support at X¼ 0, the ux displacement there is zero.

Conversely, the ux displacement at the end of the member is a maximum.2 As

it turns out, the displacement gradient ∂ux/∂X, like stress, is the same at each

point in this simple problem. Without going into details, Cauchy showed during

the period 1827–1841 that certain combinations of displacement gradients

(called strains) are convenient for relating to the stress. Indeed, because stress

and strain are both mathematical concepts, or definitions, various nineteenth

and early twentieth-century investigators (Almansi, Green, Kirchhoff, and

others) showed that different definitions of stress and strain can be equally

useful in different situations. One of the commonly used definitions of strain in

biomechanics is that due to George Green in 1841. In terms of Cartesian

components, it can be computed via

EXX ¼
∂uX

∂X
þ 1

2

∂uX

∂X

� �2

þ ∂uY

∂X

� �2

þ ∂uZ

∂X

� �2
" #

,

EYY ¼
∂uY

∂Y
þ 1

2

∂uX

∂Y

� �2

þ ∂uY

∂Y

� �2

þ ∂uZ

∂Y

� �2
" #

,

EZZ ¼
∂uZ

∂Z
þ 1

2

∂uX

∂Z

� �2

þ ∂uY

∂Z

� �2

þ ∂uZ

∂Z

� �2
" #

,

EXY ¼
1

2

∂uX

∂Y
þ ∂uY

∂X
þ ∂uX

∂X

∂uX

∂Y
þ ∂uY

∂X

∂uY

∂Y
þ ∂uZ

∂X

∂uZ

∂Y

� �
¼ EYX,

EYZ ¼
1

2

∂uY

∂Z
þ ∂uZ

∂Y
þ ∂uX

∂Y

∂uX

∂Z
þ ∂uY

∂Y

∂uY

∂Z
þ ∂uZ

∂Y

∂uZ

∂Z

� �
¼ EZY ,

EZX ¼
1

2

∂uZ

∂X
þ ∂uX

∂Z
þ ∂uX

∂Z

∂uX

∂X
þ ∂uY

∂Z

∂uY

∂X
þ ∂uZ

∂Z

∂uZ

∂X

� �
¼ EXZ:

ð2:42Þ

Relations are similar, but more complex, for other coordinate systems such as

cylindrical and spherical. For a complete derivation and interpretation of these

relations, see Humphrey (2002). Suffice it to say, however, that one of the

reasons that these relations are so useful is that they are insensitive to rigid-body

translations or rotations; that is, the components of the Green strain measure

only the deformation part of a total motion, where we note that it is the

deformation (changes in length or internal angle due to applied loads) that we

2 If the overall deformation is homogeneous, careful experimental measurements show
that ux=ΛX –X= (Λ – 1)X, where Λ is just a number, a so-called stretch ratio. Stretch
ratios are used extensively in Chap. 6.
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wish to relate to the stress. Clearly, however, Green’s definition of strain is

nonlinear (quadratic) in terms of the displacement gradients. Even for the

simple (idealized) example in Fig. 2.18, which consists only of an axial exten-

sion and associated lateral thinning, we have

EXX ¼
∂uX

∂X
þ 1

2

∂uX

∂X

� �2

, EYY ¼
∂uY

∂Y
þ 1

2

∂uY

∂Y

� �2

,

EZZ ¼
∂uZ

∂Z
þ 1

2

∂uZ

∂Z

� �2

:

ð2:43Þ

As it turns out, the nonlinear terms can introduce considerable complexity into

the solution of the full boundary value problem. We will consider such prob-

lems in Chaps. 6 and 11.

Here, let us consider a tremendous simplification. IF the displacement is

small, then x ~ X from uX¼ x – X and similarly for y ~ Y and z ~ Z; IF the

displacement gradients are small, then the nonlinear terms can be neglected in

comparison to the linear terms (e.g., if ∂uX/∂X ~ 0.001, then 1
2
∂uX=∂Xð Þ2 ~

0.0000005 is small in comparison); and IF the rigid-body rotations are small

(see below), then the Green strains can be approximated as

ε½ 	 ¼
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

2
4

3
5; ð2:44Þ

where

εxx ¼
∂ux

∂x
, εxy ¼

1

2

∂ux

∂y
þ ∂uy

∂x

� �
¼ εyx,

εyy ¼
∂uy

∂y
, εyz ¼

1

2

∂uz

∂y
þ ∂uy

∂z

� �
¼ εzy,

εzz ¼
∂uz

∂z
, εxz ¼

1

2

∂uz

∂x
þ ∂ux

∂z

� �
¼ εzx;

ð2:45Þ

where εxx, εyy, and εzz are the extensional components and εxy, εyz, and εxz are the

shear components of the linearized strain.

Similarly for cylindricals, u¼ urêr+uθêθ+uzêz and the linearized (often

called small) strains are

ε½ 	 ¼
εrr εrθ εrz
εθr εθθ εθz
εzr εzθ εzz

2
4

3
5; ð2:46Þ
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where

εrr ¼
∂ur

∂r
, εrθ ¼

1

2

1

r

∂ur

∂θ
þ ∂uθ

∂r
� uθ

r

� �
¼ εθr,

εθθ ¼
ur

r
þ 1

r

∂uθ

∂θ
, εθz ¼

1

2

∂uθ

∂z
þ 1

r

∂uz

∂θ

� �
¼ εzθ,

εzz ¼
∂uz

∂z
, εrz ¼

1

2

∂ur

∂z
þ ∂uz

∂r

� �
¼ εzr:

ð2:47Þ

Finally, for sphericals, the linearized strains are

ε½ 	 ¼
εrr εrθ εrϕ
εθr εθθ εθϕ
εϕr εϕθ εϕϕ

2
4

3
5; ð2:48Þ

where

εrr ¼
∂ur

∂r
, εrθ ¼

1

2

1

r

∂ur

∂θ
þ ∂uθ

∂r
� uθ

r

� �
¼ εθr,

εθθ ¼
ur

r
þ 1

r

∂uθ

∂θ
, εθϕ ¼

1

2

1

r sin θ

∂uθ

∂ϕ
þ 1

r

∂uϕ

∂θ
� uϕ

r
cotϕ

� �
¼ εϕθ,

εϕϕ ¼
1

r sin θ

∂uϕ

∂ϕ
þ uθ

r
cot θ þ ur

r
, εrϕ ¼

1

2

1

r sin θ

∂ur

∂ϕ
þ ∂uϕ

∂r
� uϕ

r

� �
¼ εϕr:

ð2:49Þ

Of course, the exact (nonlinear) components can likewise be represented as

3� 3 matrices because they too consist of nine components (six independent)

relative to a particular coordinate system. It is also very important to note that

we have not derived the exact (nonlinear) or the approximate (linear) relations

for strain; we have merely listed the results. In many introductory textbooks,

the linearized relations are often derived poorly, primarily in an attempt to make

the derivation “accessible” to the beginning reader. We prefer to adhere to the

adage stated in the preface: To tell the truth, nothing but the truth, but not

the whole truth until the student is ready to appreciate the whole truth. Hence,

rather than derive these relations poorly, let us merely consider a few 1-D or

2-D examples to illustrate their meaning and usage. First, consider a motion

described by the displacement vector u¼ uxêx+uyêy, with components

ux ¼ Λ� 1ð ÞX, uy ¼ 0; ð2:50Þ
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where Λ is a number close to unity. That is, as the body deforms, none of its

material particles displace vertically, whereas particles may displace in the X

direction differently: at X¼ 0, there is no displacement, which is to say that the

left edge is fixed, whereas the right edge displaces the most. Hence, current

positions of points originally at (X, Y) are given by x¼ΛX and y¼Y, which

allows us to map material points from original to current places (cf. Fig. 2.17).

For example, point (X, Y)¼ (0, 0) stays put, whereas point (X, Y)¼ (1, 1) goes to

(x, y)¼ (Λ, 1) for any value of Λ. Finally, for Λ near unity (which satisfies the

above requirement that the displacement and displacement gradients are both

small for this problem with zero rigid-body rotation), the linearized strain is

εxx ¼ Λ� 1, εyy ¼ 0, εxy ¼ 0: ð2:51Þ

As can be seen in Fig. 2.19a, this motion represents a 1-D extension only. That

the linearized values of strain differ from the exact (nonlinear) values is seen

easily given that

Exx ¼ Λ� 1ð Þ þ 1

2
Λ� 1ð Þ2 ¼ 1

2
Λ2 � 1
� �

�1
2
Λþ 1ð Þ Λ� 1ð Þ,

Exy ¼ 0, Eyy ¼ 0:

FIGURE 2.19 Schema of three simple motions: (a) a 1-D extension by the amount Λ, (b)

a simple shear via the measure κ, and (c) a rigid-body rotation given by the angle ϕ. In

each case, note that we assume that the motion is homogeneous; that is, although the

displacements differ from point to point, their spatial gradients do not. In other words,

each point experiences the same strain in a homogeneous motion, although each point

need not experience the same displacement.
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Second, consider a motion described by

ux ¼ κY, uy ¼ 0; ð2:52Þ

where κ is a number close to zero. Hence, x¼X+ κY and y¼ Y allows us to map

points from the undeformed to the deformed configuration. For example, point

(X, Y)¼ (0, 0) stays put again, whereas point (X, Y)¼ (0, 1) goes to (x, y)¼ (κ, 1).

Moreover,

εxx ¼ 0, εyy ¼ 0, εxy ¼
1

2
κ; ð2:53Þ

and as can be seen from Fig. 2.19b, this motion is one of simple shear (if x¼X+

κY and y¼Y + κX, then we would have a pure shear). Third, consider a motion

given by

x ¼ cosϕX þ sinϕY,

y ¼ � sinϕX þ cosϕY;
ð2:54Þ

where ϕ is some fixed angle. Hence, the displacements [differences between

where we (a point) are (x, y) and where we were (X, Y)] are

ux ¼ cosϕ� 1ð ÞX þ sinϕY,

uy ¼ � sinϕð ÞX þ cosϕ� 1ð ÞY:
ð2:55Þ

Consequently, the linearized strains are

εxx ¼ cosϕ� 1, εyy ¼ cosϕ� 1, εxy ¼
1

2
sinϕ� sinϕð Þ ¼ 0:

ð2:56Þ

Clearly, εxx and εyy equal zero if and only if ϕ¼ 0. If we use these displacements

to map the motions of points demarcating a unit square, we find that this case

represents a rigid-body rotation about the z axis (Fig. 2.19c). Although we do

not expect strains to arise due to rigid-body motions, increasingly larger values

of ϕ wrongly suggest increasing extensional strains. As we stated earlier,

therefore, the approximate (linearized) relations for strain are only good for

small deformations and small rotations. This is extremely important to remem-

ber in biomechanics, especially in soft tissue biomechanics wherein the defor-

mations and rigid-body motions are often large (finite). This is the case for the

heart, for example, which twists, shortens, shears, and becomes much smaller in

diameter upon contraction. There are, nonetheless, many articles in the litera-

ture that use the small strain measure to study the heart—this is wrong and the

reader must beware.
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Example 2.5 Show that, in contrast to the linearized measure εxx, the exact

measure EXX is insensitive to the rigid-body motion in Eq. (2.54).

Solution: From Eq. (2.42), the 2-D strain EXX is

EXX ¼
∂uX

∂X
þ 1

2

∂uX

∂X

� �2

þ ∂uY

∂X

� �2
" #

;

where for the rigid-body rotation,

∂uX

∂X
¼ cosϕ� 1,

∂uY

∂X
¼ � sinϕ:

Thus,

EXX ¼ cosϕ� 1þ 1

2
cosϕ� 1ð Þ2 þ � sinϕð Þ2

h i

¼ cosϕ� 1þ 1

2
cos 2ϕ� 2 cosϕþ 1þ sin 2ϕ
� �

¼ cosϕ� 1þ 1

2
�2 cosϕþ 2ð Þ ¼ 0 8ϕ:

As an exercise, the reader should confirm that EYY¼ 0 and EXY¼ 0 for this

rigid-body motion as well.

Observation 2.1. Although we illustrated a few simple states of strain using

examples based on the displacements of four points that define a 2-D rectan-

gular domain, we must realize that strains cannot be computed, in general, by

simply knowing the displacements at a few points. Strains are computed from

displacement gradients, which requires that we know the displacement field

{i.e., the displacement as a continuous function of position [e.g., u¼ u(x, y, z)]}.

Experimentally, however, we cannot measure the displacement at all points; we

can only measure the displacements at a finite, often small, number of points. In

practice, therefore, one often introduces interpolation functions, which allow

one to estimate displacements between measurement points. Because the math-

ematics of interpolation is well established, knowledge of these functions aids

the experimentalist in designing the number and placement of markers for

measuring displacements. For example, the minimum number of points to

estimate the mean 3-D strain in the wall of the heart is four, which forms a
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tetrahedron.3 Conversely, the minimum number of points needed to estimate the

mean 2-D strain on the surface of the heart is three, which form a triangle. By

using multiple sets of four or three markers, one can begin to map region-to-

region differences in strain using interpolation functions. The biomechanicist

should thus be familiar with interpolation, even though we leave such study for

intermediate and advanced courses. See, for example, Humphrey (2002).

In Chaps. 3–6, we will seek to relate the deformations (strains) to the applied

loads (stresses) that act on the body. To do this, we will see that we must use

equilibrium equations to determine the stresses that exist at each point, which,

in turn, will be related to the strains at the same point through functions that

quantify the material behavior (i.e., through constitutive relations). Conse-

quently, it is very important to note the following. Like stress, strain can have

different components at each point (given the same deformation) depending on

the coordinate system to which it is referred. Fortunately, similar to Eqs. (2.13)–

(2.22) for stress, it can be shown that strain transforms in like fashion:

ε
0
xx ¼ εxx cos

2αþ 2εxy sin α cos αþ εyy sin
2α,

ε
0
yy ¼ εxx sin

2α� 2εxy sinα cos αþ εyy cos
2α,

ε
0
xy ¼ 2 sin α cos α

εyy � εxx

2

� �
þ cos 2α� sin 2αð Þεxy;

ð2:57Þ

where α is again the angle that relates the (o; x, y, z) and (o; x0, y0, z0) Cartesian
coordinate systems. Note: If α¼ 0, then the components relative to the two

systems are equal, as they should be. Similarly, principal values for strain are

determined at α¼αp [cf. Eqs. (2.25)–(2.39)], namely

ε1,2 ¼ ε
0

xx

�
max=min ¼ ε

0

yy

�
max=min ¼

εxx þ εyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxx � εyy

2

� �2
þ ε2xy

r
; ð2:58Þ

with

α p ¼
1

2
tan �1

εxy

εxx � εyy
� �

=2

 !
: ð2:59Þ

3 Note that the discussion in Chap. 5 in Humphrey (2002) contains an error. It correctly
notes the need for a minimum of three line segments, but wrongly suggests that they can
be obtained from three coplanar points.
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Similarly, the maximum value of the shearing strain is determined at α¼ αs;

that is,

ε
0

xy

�
max=min ¼ ε

0

xy αsð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxx � εyy

2

� �2
þ ε2xy

r
; ð2:60Þ

where

αs ¼
1

2
tan �1

εyy � εxx

2εxy

� �
: ð2:61Þ

Whereas the stress transformation equations were derived via equilibrium

considerations and thus force balances, here we must take a different approach.

Consider, for example, the linearized extensional strain ε0xx¼∂u0x/∂x
0, just as

εxx=∂ux/∂x. Recall from calculus that two coordinate systems can be related

via a coordinate transformation (Fig. 2.6), specifically

x
0 ¼ x cos αþ y sin α, y

0 ¼ �x sinαþ y cos α ð2:62Þ

whereby x0¼ x and y0¼ y if α¼ 0 (i.e., if the coordinate systems coincide).

Because displacement is just a vector (i.e., difference between position vectors;

Fig. 2.17), we have similar relations for each component,

u
0

x ¼ ux cos αþ uy sinα, u
0

y ¼ �ux sin αþ uy cos α; ð2:63Þ

where, of course, the displacement components can each vary from point to

point in the body: ux=ux(x, y) and uy=uy(x, y), and likewise u
0
x=u0x(x

0, y0) and
u0y¼ u0y(x

0, y0). Yet, from Eq. (2.62), the primed coordinates are a function of

the unprimed coordinates, namely x0¼ x0(x, y) and y0¼ y0(x, y), and,

consequently,

u
0

x ¼ u
0

x x
0
x; yð Þ, y0 x; yð Þ

� �
, u

0

y ¼ u
0

y x
0
x; yð Þ, y0 x; yð Þ

� �
; ð2:64Þ

which is to say, u0x and u0y also depend on position (x, y).

Hence, we can compute strains relative to (x0, y0) using the chain rule:

ε
0

xx ¼
∂u

0
x

∂x
0 ¼

∂u
0
x

∂x

∂x

∂x
0 þ

∂u
0
x

∂y

∂y

∂x
0 ð2:65Þ

and so forth. Toward this end, let us first solve for x and y in terms of x0 and y0

[from Eq. (2.62), which represents two equations and two unknowns]:
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x ¼ x
0
cos α� y

0
sin α, y ¼ x

0
sinαþ y

0
cos α: ð2:66Þ

Now, we have from Eq. (2.65), using Eqs. (2.63) and (2.66),

ε
0
xx ¼

∂ux

∂x
cos αþ ∂uy

∂x
sin α

� �
cos αð Þ þ ∂ux

∂y
cos αþ ∂uy

∂y
sin α

� �
sinαð Þ

¼ ∂ux

∂x
cos 2αþ ∂uy

∂x
þ ∂ux

∂y

� �
sinα cos αþ ∂uy

∂y
sin 2α;

ð2:67Þ

whereby, from Eq. (2.45), we have the desired result,

ε
0

xx ¼ εxx cos
2αþ 2εxy sin α cos αþ εyy sin

2α; ð2:68Þ

which is similar in form to the relation for σ0xx. It is left as an exercise for the

reader to find the transformation equations for ε0yy and ε0xy.
As we saw earlier, one way to infer components of strain based on experi-

mental measurements is to place multiple markers (points) on the specimen and

to follow their motions. From these motions, we then construct displacement

vectors at each point to identify the displacement field, as, for example, u=u(X,

Y, Z), from which one can compute the appropriate displacement gradients and

thus strains. Indeed, using noncontacting methods [e.g., video, X-ray, magnetic

resonance imaging (MRI), laser Doppler] to track the motions of multiple

surface or embedded markers is a common way to “measure” strains in soft

tissues and even cells. Such approaches are used in applications ranging from

gait analysis to quantifying cardiac motion in health and disease. Figure 2.20

shows, for example, that all six components of the finite Green strain are

nonzero and changing throughout the cardiac cycle; likewise, they vary from

point to point. For more on cardiac motions, see Humphrey (2002).

Here, however, let us consider devices called strain gauges, which are useful

for inferring surface strains on many engineering structures, from bridges to

components on airplanes, as well as hard biological tissues. Briefly, in 1856,

Lord Kelvin (William Thompson) reported three important observations: The

electrical resistance of metallic wires increases with increasing mechanical

loads applied along their long axis, different materials have different

sensitivities, and the Wheatstone bridge can be used to measure well the

changes in resistance. These observations led to the invention of the electri-

cal-resistance strain gauge (Fig. 2.21). These gauges are glued onto the surface

of the specimen, which allows them to deform with the underlying specimen.

By deforming with the specimen, the electrical resistance changes in the wires,

which, in turn, provides (via calibration) the value of the associated extensional

strain (i.e., in the predominant direction of the wires). These gauges are very
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FIGURE 2.21 Schema of an electrical-resistance strain gauge that is glued onto a

structure of interest. Such gauges are commonly used in aerospace, civil, and mechan-

ical engineering to measure strains in materials that experience small strains. They are

likewise useful in biomechanics for measuring strains in transducers, select biomate-

rials, and hard tissues such as bone and teeth.

FIGURE 2.20 All six components of the Green strain (extensional and shear) calculated

from the motions of small metallic markers that were implanted within the wall of an

animal heart. Note that 11, 22, and 33 denote circumferential, axial, and radial compo-

nents of strain, respectively, with 12, 23, and so forth denoting the associated shears.

The principal values, are E1, E2, and E3. Clearly, all six components are nonzero, finite

in magnitude, and time varying over the cardiac cycle. [From Waldman et al. (1985),

with permission from Lippincot Williams & Wilkins.].
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useful when the strains are small, as, for example, in bones, teeth, and bioma-

terial implants such as an artificial hip. One limitation, however, is that these

gauges can only measure extensional components, not shears. To know

completely the strain at a point, however, we must know both extensional and

shearing strains in general. Fortunately, theory supports experiment, thus

allowing us to make the necessary measurements as shown next.

Example 2.6 Design an experimental set-up using strain gauges whereby one

can measure a complete 2-D strain in a small region (i.e., averaged over a small

region even though strain is, strictly speaking, defined at a point).

Solution: From Eq. (2.57), we see that an extensional strain relative to a primed

coordinate system is related to the 2-D components of strain relative to an

original coordinate system. If an extensional strain ε0xx is measurable by a strain

gauge, then measuring three extensional strains would provide three equations

for the three components εxx, εyy, and εxy; that is, as illustrated in Fig. 2.22,

ε
0
xx ¼ εxx cos

2 α1 þ 2εxy cos α1 sin α1 þ εyy sin
2 α1,

ε
00
xx ¼ εxx cos

2 α2 þ 2εxy cos α2 sin α2 þ εyy sin
2 α2,

ε
000
xx ¼ εxx cos

2 α3 þ 2εxy cos α3 sin α3 þ εyy sin
2 α3;

FIGURE 2.22 Placement of three strain gauges to form a so-called strain rosette. It is

assumed that each gauge is affixed to the surface at a known angle. Although small,

strain gauges are obviously of finite, not infinitesimal, size, thus information from

rosettes necessarily represent mean values of strain within the region of measurement.
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where the angles α1, α2, and α3 relate the coordinate systems to a baseline x

direction. Clearly then, these equations represent three equations in terms of

three unknowns (εxx, εyy, εxy) provided that ε0xx, ε
00
xx, ε

000
xx, α1, α2, and α3 are

measured. (Note: Whereas the strains come from the resistance changes,

the angles are known because we are the ones who glue the gauges onto

the surface). Although any values of α1, α2, and α3 are fine, certain values

are preferred. For example, α1¼ 0, α2¼ π/4, and α3¼ π/2 radians or α1¼ 0,

α2¼ π/3, and α3¼ 2π/3 radians are common. For example, let us consider the

former case:

ε0
 ¼ ε
0
xx α ¼ 0ð Þ ¼ εxx,

ε45
 ¼ ε
00
xx α ¼ π

4

� �
¼ εxx

ffiffi
2
p

2

� �2
þ 2εxy

ffiffiffi
2
p

2

� � ffiffiffi
2
p

2

� �
þ εyy

ffiffi
2
p

2

� �2
,

ε90
 ¼ ε
000
xx α ¼ π

2

� �
¼ εyy:

Hence, if ε
0
x, ε

0 0
xx, ε

0 0 0
xx are known from the gauges, εxx¼ ε0
, εyy¼ ε90
, and

εxy¼ ε45
 – ε0
/2 – ε90
/2 are thereby measurable.

We emphasize, therefore, that theory is indispensable in the design of

experiments; it tells us what to measure, why, and to what accuracy. Moreover,

theory reveals the inherent limitations and restrictions. Given that the strain

gauge provides information that is averaged along its length and that clusters

(rosettes) of gauges further average information over the enclosed region, strain

gauges should not be used in areas where large gradients (i.e., point-to-point

differences) are expected in the strain field. Again, theory will often reveal the

domain of applicability.

In summary, although Hooke’s suggestion in the late seventeenth century, “as

the force, so the extension,” was profound, we now see that Euler, Cauchy,

Green, and others in the eighteenth, nineteenth, and early twentieth centuries

showed that the mathematical concepts of stress and strain are often much more

useful in continuum mechanics than the physical quantities of force and exten-

sion. Being mathematical concepts, however, stress and strain are merely

definitions, not physical realities or experimental measurables. Stress and strain

can thus be defined in different ways, to suit the particular need, and, fortu-

nately, they can be inferred from experimental “measurables” such as forces,

dimensions, and displacements. Because stress and strain are but mathematical

concepts, having different components depending on the coordinate system to

which they are referred, they cannot be sensed directly by a cell and thus cannot

be the stimulus for mechanotransduction (Humphrey 2001) even though many

have suggested otherwise. These quantities can nevertheless be conveniently
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correlated with mechanosensitive responses by cells (e.g., altered gene expres-

sion due to a microgravity environment) and thus they can serve as important

metrics in phenomenological theories that have predictive capability. More on

this later. First, however, let us explore mathematical relationships between

stress and strain that serve to quantify the behavior of particular materials.

2.6 Constitutive Behavior

Mathematical relations that describe the response of a material to applied loads

under conditions of interest are called constitutive relations because this

response depends on the internal makeup, or constitution, of the material.

That is, given the same overall dimensions, a piece of rubber will respond

differently than a piece of metal to the same forces because of the marked

differences in their internal makeup—long-chain molecules that are held

together via covalent and van der Waals bonds versus collections of atoms

that are held together by metallic bonds. Indeed, even different metals and metal

alloys respond differently because of differences in their internal makeup and so

too for collagenous tissues such as tendons and the cornea, each of which

consist largely of type I collagen, albeit with very different microstructural

arrangements. Likewise, the conditions of interest must be specified. Rubber,

for example, behaves very differently below its glass transition temperature

than it does at room temperature or above its melting point. Quantifying, via

constitutive relations, the different (solidlike and fluidlike) behaviors of mole-

cules, cells, tissues, organs, biomaterials, and other materials under conditions

of importance in biomedical engineering are critically important to both anal-

ysis and design.

As noted in Sect. 1.7, there are five general steps in a constitutive formula-

tion, which can be easily remembered via the acrostic DEICE. First, we must

delineate general characteristics of the behavior. For example, we must deter-

mine if the behavior is solidlike or fluidlike. The former is said to admit a shear

stress in equilibrium, no matter the value of shear; the latter is said to be

incapable of supporting a shear stress in equilibrium, which is to say that it

will flow as long as the shear is applied. We emphasize that although one

generally thinks of solids and fluids as phases of matter, in continuum mechan-

ics we really seek to delineate solidlike versus fluidlike behaviors. For example,

most people would classify glass to be a solid at room temperature, and indeed it

exhibits solidlike behaviors at these temperatures. Yet, over many years to

centuries, one also finds that glass flows at room temperature, as evidenced by

the vertical variations in the thickness of glass window panes in Gothic

churches in Europe. Hence, it is really the behavior under the condition of

interest, including timescales, that is most important, and we may equally well

model glass as a solid or a fluid at room temperature depending on the problem
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at hand. Inasmuch as this is clear, we can loosely talk about solids versus fluids,

as most do; we will discuss particular constitutive behaviors and relationships

for biofluids in Chap. 7.

It is also very important to determine if a material’s response to an applied

load is linear or nonlinear. For example, if we apply increasingly greater loads

(stresses), do we observe proportionate or disproportionate increases in exten-

sion (strain). Metals and bone tend to exhibit a linear stress–strain response

under small strains (i.e., strains that do not cause permanent changes in the

microstructure and, thus, properties). In contrast, elastomers and soft tissues

tend to exhibit nonlinear stress–strain responses under large strains without a

permanent change in structure, as seen in Fig. 2.23. Nonlinear behavior is much

harder to quantify. Indeed, note that elastomers and soft tissues exhibit behav-

iors very different from those of traditional engineering materials (e.g., metals)

because of their long-chain polymeric structure. In particular, much of the

behavior of such polymers depends on changes in the underlying conformations

of the molecules (i.e., their inherent order or disorder). Their mechanical

behaviors are thus said to be governed by entropic mechanisms in contrast to

energeticmechanisms that govern the lattice atomic structure in metals. It is, of

course, the biopolymers (proteins) elastin and collagen that dominate soft tissue

behavior—entropic changes in which complicate the associated quantification.

Another important characteristic exhibited by some solids under certain

conditions is a so-called elastic behavior. By elastic, it is meant that the material

does not dissipate any energy as it deforms. In other words, the path followed by

the material in a stress–strain plot is the same during loading and unloading and

the material will recover its original size and shape when all loads are removed.

Moreover, an elastic behavior suggests that a material responds instantaneously

to an applied load (again, the importance of timescale). Whereas metals exhibit

an elastic response under small strains, tissues and rubber only exhibit a

FIGURE 2.23 Qualitative comparison of the stress–strain behavior of three classes of

materials: metals, soft tissues, and elastomers. Note the different order of magnitudes of

the associated strains (from 0.002 to 2.0) and that the soft tissues and elastomers not only

exhibit nonlinear behaviors, but they also reveal a slight hysteresis (i.e., noncoincident

loading and unloading curves). The values of stress would obviously be very different as

well, but we simply emphasize the general character of the curves here.
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“nearly” elastic behavior under many normal conditions. That the behavior is

not purely elastic is evidenced, in part, by the small differences between the

loading and unloading curves (hysteresis) in Fig. 2.23, the dissipation being

due, in part, to moving the structural proteins within the viscous, proteoglycan

dominated ground substance matrix. Fung calls the nearly elastic behavior of

soft tissues pseudoelastic and offers some ideas to simplify the quantification

(Fung 1990). Constitutive relations for such behavior are discussed in Chap. 6.

If the behavior of a material is independent of the position within the body/

structure from which it was taken, we say that the material is homogeneous.

Obviously, a fiber-reinforced composite like steel-reinforced concrete would

not be homogeneous because the steel and surrounding matrix exhibit very

different behaviors. In contrast, many metals and rubberlike materials are often

homogeneous or at least nearly so, notwithstanding impurities. Although soft

tissues are also composites, consisting of elastin, various collagens, proteogly-

cans, water, and so forth, there are cases in which it is reasonable to consider an

associated homogenized behavior. Examples may include describing the behav-

ior of skin, lung parenchyma, myocardium, bone, or even brain tissue under

certain circumstances. In other cases, however, accounting for the heterogeneity

due to layering (e.g., intima, media, and adventitia in blood vessels or even

cortical versus cancellous bone) is essential.

Finally, if the behavior of a material is independent of its orientation within

the body/structure, we say that its response is isotropic. Whereas many metals

exhibit isotropy under small strains and rubber exhibits isotropy under large

strains, tendons (with axially oriented type I collagen) and the stalks of plants

clearly would not exhibit an isotropic response. Indeed, most tissues exhibit

FIGURE 2.24 Schema of typical stress–strain data from a thin slab of noncontracting

myocardium and associated epicardium. Both exhibit nonlinear anisotropic behaviors

over finite strains, but the epicardium is more strongly nonlinear because of the initially

very compliant behavior that is thought to arise due to the highly undulated collagen (cf.

Fig. 1.8) in the unloaded state. Also shown is the slight hysteresis exhibited by the

primarily collagenous epicardium; muscle tends to exhibit greater hysteresis (not

shown).
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anisotropic responses (see Fig. 2.24), which again are more difficult to quantify

in general. Later in this section, we will discuss two different anisotropics and

compare their quantification to that of isotropy for the case of small strains.

Whereas we seek to characterize the responses of materials in terms of

concepts such as linearity, elasticity, homogeneity, and isotropy, we emphasize

again that these are but descriptors of behavior; no material is linear, elastic,

homogeneous, or isotropic. Rather, material behaviors and the constitutive

relations that describe them depend on the conditions of interest. Water, for

example, behaves differently depending on the temperature; it can behave as a

gas (steam), liquid (fluid), or solid (ice), each of which requires a different

constitutive descriptor. Common metals also exhibit markedly different behav-

iors under different conditions. Under the action of a shear stress, the atoms

comprising the lattice structure of a metal move relative to one another. If the

shear is small (remember, even if the shear is zero relative to one coordinate

system, shears will exist relative to other coordinate systems except in the very

special case of a hydrostatic pressure as discussed in Example 2.4), the atoms

maintain their bonds with their original neighbors, and upon the release of the

loads, they return to their original positions (i.e., deform elastically). Under

larger strains, however, the atoms cannot maintain bonds with their original

neighbors and they slip relative to one another and form new bonds with new

neighbors (this process is called yielding). Thus, when the load is released, they

remain “permanently” displaced rather than going back to their original posi-

tions (Fig. 2.25). This is called plastic set, and this inelastic behavior is called

plasticity. For constitutive relations in plasticity, see Khan and Huang (1995).

FIGURE 2.25 Schema of the stress–strain behavior of a metal that exhibits a linearly

elastic response over small strains but a plastic (i.e., nonrecoverable) response there-

after. In particular, the loading and unloading curves in the plastic domain have a similar

character as those in the elastic domain except that the subsequent “yield point”

increases with increased plastic deformation (a so-called hardening) up to a point called

the ultimate stress. Yield and failure occur due to excessive shear stresses in such ductile

materials.
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We see, therefore, that the strain level of interest can also dictate the constitutive

behavior of a material. Although it is important to analyze plastic deformations

in many fields of engineering (e.g., in metal forming), we seldom design

implant biomaterials to exceed their yield point under the action of in vivo

loads. Hence, in this book, we will focus on elastic behavior. Finally, note that

soft tissues behave differently depending on whether they are hydrated, heated

excessively, or exposed to certain medications. Because constitutive relations

describe material behavior, not the material itself, the bioengineer must always

be mindful of the specific conditions under which the material will perform,

knowing that multiple constitutive relations may be necessary to describe the

behaviors of the same material under different conditions.

Observation 2.2. One of the most important, and challenging, areas within

biomechanics remains the formulation of constitutive relations to describe

material responses to applied loads under biological conditions of interest.

Generally, such formulations require measurement of the geometry, applied

loads, and resulting deformations, or strains. A basic tenet of experimental

biomechanics is that one should design tests that represent simple initial or

boundary value problems for this facilitates both the measurement and the

interpretation of the data. Yet, many biological tissues and organs, particularly

in disease, have inherent geometric complexities or material heterogeneities

that render the experimentation more challenging.

A method for inferring surface strains for complex geometries that is gaining

increasing usage in biomechanics is referred to as Digital Image Correlation, or

DIC. Briefly, using non-contacting imaging, one seeks to identify surface

characteristics within sequential configurations of the body as it is loaded.

Local correlation of these characteristics from configuration to configuration

over large portions of the surface allows one to estimate point-wise displace-

ments, which via the use of interpolation (see Observation 2.1) or similar

methods can be used to compute “full-field” strains. Having information on

geometry, applied loads, and strains is typically sufficient to estimate the

associated material properties, provided the functional form of the constitutive

relation is known. Such estimations are known as inverse methods. A recent

innovation in soft tissue mechanics is a panoramic digital image correlation

(p-DIC) method, which allows one to simultaneously monitor displacements

along the axial length and around the entire circumference of a cylindrical

specimen such as an arterial aneurysm (Genovese et al. 2013). Because DIC

allows one to quantify components of the deformation gradient, one can easily

compute both rigid body rotations and strains, the latter of which can be

computed relative to a convenient coordinate system or via transformation

relations (Chap. 2) relative to principal directions. Innovations in experimental
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methods, such as p-DIC, promise to provide increasingly better information on

soft tissues that exhibit regionally varying, anisotropic, nonlinear responses

under finite strains, particularly in injury repair and disease processes.

2.6.1 Illustrative Characteristic Behaviors

Figure 2.26 shows illustrative data from a uniaxial test on a bovine chordae

tendineae. This tissue connects the heart valve to the papillary muscle within the

ventricular cavity of the heart; it consists primarily of uniaxially oriented type I

collagen having only a slight undulation when unloaded. As seen in the figure,

chordae (similar to tendons and ligaments of the joints) exhibit a nonlinear stress–

stretch response over finite (not infinitesimal) but moderate strains. Because of the

highly oriented collagen fibers, chordae are strongly anisotropic; because of the

slight hysteresis upon cyclic loading/unloading, there is slight energy dissipation;

because of the presence of a thin membranous covering (sheath), the tissue is not

homogeneous. Nonlinearity, inelasticity, anisotropy, and heterogeneity are com-

mon characteristics of soft tissues. Figure 2.24 shows similar responses by excised

noncontracting myocardium and epicardium. The latter is a thin collagenous

membrane that covers the outer surface of the heart. Whereas the myocardium

consists primarily of locally parallel muscle fibers embedded in a 3-D plexus of

collagen and a ground substance matrix, the epicardium consists primarily of a 2-

D plexus of collagen and elastin embedded in its ground substance matrix (pro-

teoglycans and bound water). The collagen fibers tend to be highly undulated in

both tissues in an unloaded configuration, hence the initially very compliant,

perhaps isotropic response by the epicardium that is followed by a rapid stiffening

(due to the straightening of the fibers). The initially greater stiffness of the

myocardium is due to the presence of myofibers. Although the chordae and

epicardium consist of very similar constituents, their behaviors are very different

because of the different microarchitectures. Histology, the study of the fine

FIGURE 2.26 Schema of stress–strain data from a uniaxial test on an excised chordae

tendineae, the thin stringlike tissue that connects the heart valve to the papillary muscle.

Note the small, but not infinitesimal, strain. Many ligaments and tendons exhibit similar

behavior.
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structure of tissues, thus plays an important role in constitutive formulations. We

will consider soft tissue constitutive relations in Chap. 6.

In contrast, Fig. 2.27 shows results from a uniaxial test on bone. Note the

much smaller range of strain and the near linear behavior. Although not shown,

bone exhibits anisotropy and it is heterogeneous—cortical and cancellous bone

being very different, as discussed in Chap. 4. Quantification of the stress–strain

behavior of bone is discussed in Sect. 2.7. Although we could discuss much

more about the characteristic behaviors of these and other solids, we refer the

student to texts on material science and biomaterials (e.g., Askeland 1994;

Ratner 2003), which emphasize the need for biomechanics and material science

to go hand-in-hand. Here, we simply note that we will focus in Chaps. 2–5

primarily on a class of material behaviors that we refer to as LEHI:

Linear: linear stress-strain behavior and linearized kinematics

Elastic: no dissipation and the loading/unloading curve coincide

Homogeneous: same material behavior everywhere in the material/body

Isotropic: same material response in all directions at a point

2.6.2 Hookean LEHI Behavior

Due largely to A.L. Cauchy, S.D. Poisson, G. Lamé, L.M.H. Navier, and

G. Green in the early to mid nineteenth century, a constitutive relation was

established for LEHI behavior under small strains. It is,

εxx ¼
1

E
σxx � v σ yy þ σzz

� �
 �
þ βΔT, εxy ¼

1

2G
σxy,

εyy ¼
1

E
σyy � v σxx þ σzzð Þ

 �

þ βΔT, εxz ¼
1

2G
σxz,

εzz ¼
1

E
σzz � v σxx þ σ yy

� �
 �
þ βΔT, εyz ¼

1

2G
σyz;

ð2:69Þ

FIGURE 2.27 Schema of stress–strain data from bone prior to yield, which reveals an

initially linear, nearly elastic response. Note that bone (type I collagen impregnated with

hydroxyapatite) is much stiffer and less extensible than the chordae (Fig. 2.26; primarily

type I collagen).
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where T is the temperature and E, v, G, and β are material parameters, the

specific values of which vary from material to material. In particular, E is called

Young’s modulus (after T. Young, a physician interested in biomechanics, who,

for example, gave lectures in 1808 to the Royal Society of London on the

biomechanics of arteries); E is a measure of the extensional stiffness (i.e.,

change of stress with respect to strain) of a material, which can be inferred by

plotting normal stress versus extensional strain in a uniaxial stress test. The

parameter v is called Poisson’s ratio; it describes a coupling between orthogonal

directions and is often defined as v¼�εlateral/εaxial, which is to say that it

describes the thinning of a material that is extended. Thermodynamics shows

that�1< v< 1
2
, the value of 1

2
being associated with an incompressible behavior

(see below). G is called the shear modulus; it provides a measure of the

resistance to shear. It can be shown that G¼E/2(1 + v) for LEHI behavior.

Finally, β is a coefficient of thermal expansion; it tells us howmuch the material

expands/contracts due to changes in temperature from some reference temper-

ature To; that is, ΔT¼T – To and thus there is no thermal effect when the

material is isothermal at To. Although the body regulates temperature very

closely at ~37 
C, clinical interventions often involve local warming (e.g.,

hyperthermia treatment of cancerous cells) or cooling (e.g., cryosurgery). We

will focus on isothermal behavior, however. Table A2.1 (see Appendix 2) lists

values of some parameters for various materials.

Example 2.7 Given E¼ 14 GPa and v¼ 0.32, which are reasonable values for

bone, find the values of strain for a LEHI behavior and the 2-D state of stress in

Example 2.1: σxx¼ 120 kPa, σyy¼ 150 kPa, and σxy¼ 0. Note: l

GPa¼ 103 MPa¼ 106 kPa¼ 109 Pa, where 1 Pa¼ 1 N/m2.

Solution: From Eq. 2.69,

εxx ¼
1

14� 106
120� 0:32 150þ 0ð Þ½ 	 kPa

kPa
¼ 5:1� 10�6,

εyy ¼
1

14� 106
150� 0:32 120þ 0ð Þ½ 	 ¼ 8:0� 10�6

εxy ¼
1

2G
0ð Þ ¼ 0;

where G¼E/2(l + v). Unless the problem is treated as purely two dimensional,

εzz ¼
1

14� 106
0� 0:32 150þ 120ð Þ½ 	 ¼ �6:2� 10�6;
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which is to say that the material will thin in the z direction due to the (inplane)

stresses in the x and y directions. Note, too, that each value of strain is much less

than unity, consistent with the small strain requirement for Hooke’s law, and

positive values denote lengthening, whereas negative values denote shortening.

Moreover, strain is unitless (it represents normalized changes in length and

changes in angles) and a value of strain times 10–6 is often called a microstrain

(με), as, for example, 5.1� 10–6� 5.1 με.

Finally, it is important to note that Eq. (2.69) is called Hooke’s law (although

it is merely a constitutive relation, not a law) to commemorate R. Hooke’s

profound observation relating force and extension even though Hooke had no

concept of stress or strain. Hooke’s law can be derived mathematically because

of the assumptions of linearity, elasticity, homogeneity, and isotropy (LEHI),

but we did not do so here; we merely listed the final form. Hooke’s law can also

be established through a comprehensive battery of laboratory observations and

experiments; again, we did not provide the associated, detailed information.

Herein, therefore, we will focus on its use, not its formulation. Qualitatively, it

is also useful to note that for a 1-D state of stress, say σxx¼ f/A, under isothermal

conditions, εxx¼ σxx/E and εyy¼ εzz¼�v(σxx)/E¼�vεxx. Hence, it is easy

to see how one could/would design a uniaxial experiment to determine the

values of E and v for a LEHI behavior; the value of G could then be calculated

as E/2(1 + v) and verified via a shear test. For example, E is simply the constant

slope (stiffness) in the σxx versus εxx plot (cf. Fig. 2.27); that v is a measure of

the lateral thinning relative to the axial extension is seen by taking (for this 1-D

state of stress)

�εyy
εxx
¼ � �vσxx=Eð Þ

σxx=E
¼ v ¼ �εzz

εxx
; ð2:70Þ

which reveals how its value can be inferred from experiment.

Finally, let us consider Poisson’s ratio in more detail. Noting that εxx¼∂ux/

∂xffi∂ux/∂X where ux¼ x(X) – X, we can think of (roughly, but not rigorously)

an extensional strain εxx over a small region as a change in length divided by the

original length: that is, εxx ~ (Δx – ΔX)/ΔX=Δux/ΔX, where Δx is the current

length and ΔX is the original length. Now, if we consider a cube having initial

dimensions ΔX, ΔY, and ΔZ and deformed dimensions Δx, Δy, and Δz, then the

current (deformed) volume Δ�v¼ΔxΔyΔz can also be computed as
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Δ�v ¼ ΔxΔyΔz ¼ ΔX 1þ εxxð ÞΔY 1þ εyy
� �

ΔZ 1þ εzzð Þ

¼ ΔXΔYΔZð Þ 1þ εxxð Þ 1þ εyy
� �

1þ εzzð Þ

 �

¼ ΔVð Þ 1þ εzz þ εyy þ εyyεzz þ εxx þ εxxεzz þ εxxεyy þ εxxεyyεzz

 �

¼ ΔVð Þ 1þ εxx þ εyy þ εzz

 �

þ H:O:T:;

ð2:71Þ

or

Δ�v ¼ ΔVþ ΔV εxx þ εyy þ εzz
� �

! Δ�v� ΔV

ΔV
¼ εxx þ εyy þ εzz; ð2:72Þ

where H.O.T. stands for higher-order terms, terms that can be neglected in

comparison to other terms (i.e., given that εxx, εyy, εzz� 1, quadratic and cubic

terms are negligible with respect to linear terms). Now, if we let εxx be the axial

direction strain and εyy and εzz be the lateral direction strains, then by the above

definition,

εyy ¼ �vεxx, εzz ¼ �vεxx; ð2:73Þ

and, thus,

Δ�v� ΔV

ΔV
¼ �vεxx þ εxx � vεxx !

Δ�v� ΔV

ΔV
¼ εxx 1� 2vð Þ: ð2:74Þ

Hence, if there is no volume change, then v = 1
2
as alluded to earlier, which is to

say that the material deforms incompressibly. Determination of a value of a

material parameter from a thought experiment is thus possible, albeit uncom-

mon. In most cases, the value of a material parameter must be calculated

directly from experimental data. Note, therefore, that with respect to the steps

outlined in Sect. 1.7 for formulating a constitutive relation (DEICE), we must

delineate characteristic behaviors, here manifested as a LEHI behavior; estab-

lish a theory, here a linearized theory of elasticity in which stress σ and strain ε

are related; identify the functional form, here a linear relation (Hooke’s law);

and calculate values of the material parameters, here E, v, andG. Evaluating the

predictive capability is thus the final step, which is typically performed by

comparing computed and measured values of stress or strain for situations not

used to formulate the constitutive relation. For example, if we find values of E

and v for a particular material from a uniaxial test, we will want to ensure that

these values also provide a good description of the behavior of the material in

torsion and bending, particularly if these situations are experienced in service

conditions.
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2.6.3 Hooke’s Law for Transverse Isotropy

We emphasize that “Hooke’s law” as stated in Eq. (2.69) holds if the material

behavior is isotropic (i.e., the behavior is independent of the direction in which

the force is applied at a point within the material). This can be seen, for

example, by interchanging the subscripts x, y, and z in the equations, which

leaves them unchanged.

Whereas many metals exhibit an isotropic behavior under small strains, many

other materials do not. Wood, fiberglass, and other man-made composites as

well as tendons, ligaments, skin, bone and most other biological tissues exhibit

an anisotropy. Consider, for example, a piece of wood. It is clear that the

mechanical response in the direction of the grain is different from that across

the grain. The same is true of heart muscle (Fig. 2.24) due to the locally parallel

arrangement of the muscle fibers. When a material has a different behavior in

one direction compared to all directions in an orthogonal plane, the behavior is

said to be transversely isotropic (i.e., isotropic in a plane transverse to a

preferred or different direction). If the transversely isotropic behavior is other-

wise linear, elastic, and homogeneous under small strains, it is describable via a

transversely isotropic Hooke’s law of the form

εxx ¼
1

E
σxx � vσyy

� �
� v

0

E
0 σzz, εxy ¼

1

2G
σxy,

εyy ¼
1

E
σyy � vσxx
� �

� v
0

E
0 σzz, εxz ¼

1

2G
0σxz,

εzz ¼
1

E
0σzz �

v
0

E
σxx þ σ yy

� �
, εyz ¼

1

2G
0σyz;

ð2:75Þ

where, again,

G ¼ E

2 1þ vð Þ; ð2:76Þ

with the z direction (arbitrarily) taken to be the preferred direction. Note that in

contrast to the relation for isotropic behavior [Eq. (2.69)], which is described by

two independent parameters (E and v, with G related to these two), this relation

for transversely isotropic behavior is described by five independent parameters

(twoYoung’s moduliE and E0, two Poisson’s ratios v and v0, and a shear modulus

G0, where G is, again, related to E and v and thus is not independent). Again,

because of the linearity, this relation can be derived theoretically or determined

via a complex battery of experiments. We do not focus on either here; we will

simply consider in subsequent chapters how one can utilize this relation.
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2.6.4 Hooke’s Law for Orthotropy

Given the complexity of the microstructure of many materials in their solid

phase, it should not be surprising that there are many different types of anisot-

ropy. In addition to isotropy and transverse isotropy, however, the other most

common type of material symmetry is orthotropy. As the name implies, an

orthotropic response is one that differs in three orthogonal directions. It is

thought, for example, that an artery exhibits an orthotropic response: Its behav-

ior differs in the axial (due to axially oriented adventitial collagen), circumfer-

ential (due to the nearly circumferentially oriented smooth muscle in the

media), and radial directions. Bone, too, tends to exhibit an orthotropic

response, albeit nearly transversely isotropic in some cases. When the response

is otherwise linear, elastic, and homogeneous under small strains, Hooke’s law

can be generalized to account for the orthotropy via

εxx ¼
1

E1

σxx �
v21

E2

σyy �
v31

E3

σzz, εxy ¼
1

2G12

σxy,

εyy ¼
1

E2

σyy �
v12

E1

σxx �
v32

E3

σzz, εxz ¼
1

2G13

σxz,

εzz ¼
1

E3

σzz �
v13

E1

σxx �
v23

E2

σyy, εyz ¼
1

2G23

σyz;

ð2:77Þ

wherein there are now nine independent material parameters: three Young’s

moduli E1, E2, and E3, three shear moduli G12, G13, and G23, and six Poisson’s

ratios v12, v21, v13, v31, v23, and v32, only three of which are independent; that is,

it can be shown that

v12

E1

¼ v21

E2

,
v13

E1

¼ v31

E3

,
v23

E2

¼ v32

E3

: ð2:78Þ

2.6.5 Other Coordinate Systems

It is essential to recognize that Hooke’s law relates stress to strain at each

point with respect to a given coordinate system. Whereas Eqs. (2.69), (2.75),

and (2.77) are written in terms of Cartesians, they could also be written for

cylindrical coordinates. For example, Eq. (2.69) for LEHI behavior can be

written as
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εrr ¼
1

E
σrr � v σθθ þ σzzð Þ½ 	 þ βΔT, εrθ ¼

1

2G
σrθ,

εθθ ¼
1

E
σθθ � v σrr þ σzzð Þ½ 	 þ βΔT, εrz ¼

1

2G
σrz,

εzz ¼
1

E
σzz � v σrr þ σθθð Þ½ 	 þ βΔT, εθz ¼

1

2G
σθz:

ð2:79Þ

and similarly for sphericals and so forth.

Likewise, Hooke’s law can be written with respect to coordinate systems that

are transformed relative to one another. For example [cf. Eq. (2.69)], for

isotropy we may have, relative to (x0, y0, z0),

ε
0
xx ¼

1

E
σ
0

xx � v σ
0

yy þ σ
0

zz

� �h i
, ε

0

xy ¼
1

2G
σ
0

xy,

ε
0
yy ¼

1

E
σ
0

yy � v σ
0

xx þ σ
0

zz

� �h i
, ε

0

xz ¼
1

2G
σ
0

xz,

ε
0
zz ¼

1

E
σ
0

zz � v σ
0

xx þ σ
0

yy

� �h i
, ε

0

yz ¼
1

2G
σ
0

yz:

ð2:80Þ

Indeed, see Exercise 2.23, which asks that you prove this.

Finally, note from Eq. (2.69) that a 2-D state of stress necessarily requires a

3-D state of strain and vice versa for a 2-D state of strain. Indeed, even a 1-D state

of stress (e.g., an axial force which induces a stress σxx¼Eεxx) will generally

induce a 3-D state of strain (an extensional strain εxx plus thinning in two

orthogonal directions, given by εyy and εzz). Hence, we must be careful when

describing the dimension of a problem. A truly 1-D or 2-D problem is thus one

wherein we simply ignore the effects in certain directions, which can be useful in

some cases. For example, in a purely 1-D problem, σxx and εxx alone may exist.

Here, however, let us define a state of plane stress as one where

σxx σxy 0

σyx σyy 0

0 0 0

2
4

3
5,

εxx εxy 0

εyx εyy 0

0 0 εzz

2
4

3
5; ð2:81Þ

whereas a state of plane strain is defined by

σxx σxy 0

σyx σyy 0

0 0 σzz

2
4

3
5,

εxx εxy 0

εyx εyy 0

0 0 0

2
4

3
5: ð2:82Þ
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A state of plane stress is realized easily in thin planar structures that are loaded

only in-plane (Fig. 2.28) whereas a state of plane strain is realized easily in long

straight members that are constrained from deforming in the axial direction

(Fig. 2.29). Although we will not go into these cases in detail, note that they

each afford certain simplifications in formulation and solution (Timoshenko and

Goodier 1970).

FIGURE 2.28 Schema of a state of plane stress, which is characterized by in-plane

stresses only. Such states of stress also exist locally in curved membranes such as the

pericardium, urinary bladder, and saccular aneurysms. Indeed, to a first approximation,

many tissues (e.g., even skin in some situations) can be considered to be in a state of

plane stress.

FIGURE 2.29 Schema of a state of plane strain, characterized by nonzero values in a

single plane (often normal to the long axis of a prismatic structure). Although many have

assumed that arteries and airways are in a state of plane strain, given that they deform

primarily in the radial and circumferential directions due to internal pressurization, these

tissues are actually prestretched and thus the axial strain is not zero; they are in a fully

3-D state of strain.
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2.7 Mechanical Properties of Bone

Whereas most soft tissues (e.g., skin, tendons, arteries, lung tissue, myocar-

dium) exhibit nonlinear material behaviors over finite (large) strains, teeth and

bones tend to exhibit a linearly elastic behavior over small strains. Hooke’s law

is thus applicable and the associated stress analysis is easier than that for soft

tissues. Therefore, let us consider bone in some detail.

According to Dorland’s Medical Dictionary, bone is

the hard form of connective tissue that constitutes the majority of the skeleton

of most vertebrates; it consists of an organic component (the cells and matrix)

and an inorganic, or mineral component; the matrix contains a framework of

collagen fibers and is impregnated with the mineral component, chiefly

calcium phosphate (85 percent) and calcium carbonate (10 percent).

Specifically, the type I collagen fibers tend to be organized in layers, locally

parallel within a layer with the orientation varying approximately 90
 from

layer to layer. This layering may suggest a local transverse isotropy with the

preferred direction changing from layer to layer or, more grossly, an overall

orthotropic behavior at each point. Whereas the collagen endows bone with its

tensile stiffness, the embedded calcium endows it with a high compressive

stiffness.

Two primary cell types within mature bone are responsible for growth and

remodeling: the osteoblasts, which secrete bone matrix, and the osteoclasts,

which degrade it. These cells thus allow for a continuous turnover of the matrix

material (Alberts et al. 2008) (i.e., a continuous maintenance or, in times of

altered loading, a mechanism for adaptation). It is for this reason that bedridden

patients and astronauts each suffer bone atrophy, particularly in the legs and

arms, whereas athletes may have a buildup of bone. Indeed, as noted in Chap. 1,

it was the work of Meyer, Wolff, and Roux in the late nineteenth century on

bone that revealed a strong relationship between mechanical factors and bio-

logical growth and remodeling. For more recent work in this important and

active research area, see Mow and Hayes (1991), Cowin (2001) or Carter and

Beaupré (2001).

Bone typically consists of two to three layers, depending on its location

within the body: an outer, dense cortical layer, a middle trabecular layer, and,

in certain regions, an innermost layer of bone marrow. It is the marrow that

forms blood cells. Bone thus serves several important, diverse mechanical and

physiological functions: It supports and protects soft tissues and organs and it

serves as a primary store of calcium and producer of blood cells. We discuss the

associated microstructure further in Chap. 4.

The 206 distinct bones that constitute the adult human skeleton are often

classified into one of five groups according to their shape (see Table 1.2 from

Nigg and Herzog (1994)): long (e.g., femur), short (e.g., carpal), flat (e.g.,
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sternum), irregular (pubis), and sesamoid (e.g., patella). Table 2.1 lists some of

the physical properties of bone. In particular, the order of magnitude of the

stiffness (Young’s modulus) is ~16 GPa for cortical bone and ~1 GPa for

cancellous bone. As noted earlier, however, bone does not exhibit an isotropic

behavior. Rather, its linear, elastic, nonhomogeneous, and orthotropic response

is better described by Eq. (2.77) with values of the parameters on the order of

E1 ¼ 6:9GPa, v12 ¼ 0:49, v21 ¼ 0:62, G12 ¼ 2:41GPa,

E2 ¼ 8:5GPa, v13 ¼ 0:12, v31 ¼ 0:32, G13 ¼ 3:56GPa,

E3 ¼ 18:4GPa, v23 ¼ 0:14, v32 ¼ 0:31, G23 ¼ 4:91GPa

ð2:83Þ

for the tibia and

E1 ¼ 12:0GPa, v12 ¼ 0:376, v21 ¼ 0:422, G12 ¼ 4:53GPa,

E2 ¼ 13:4GPa, v13 ¼ 0:222, v31 ¼ 0:371, G13 ¼ 5:61GPa,

E3 ¼ 20:0GPa, v23 ¼ 0:235, v32 ¼ 0:350, G23 ¼ 6:23GPa

ð2:84Þ

for the femur, where 1 denotes the radial direction, 2 the circumferential, and 3

the axial (Cowin 2001). Separate values for the cortical and cancellous portions

can also be found in this reference. For more on the mechanobiology and in vivo

loading of bone, see Chap. 4.

Observation 2.3. When two or more materials are bonded together, delamina-

tion becomes a possible mechanism of failure. Simply put, delamination is a

load-induced separation between two mechanically distinct materials or layers.

One way to prevent, or at least to minimize, delamination is to create a 3-D

interaction (e.g., weave) at the interface. In the case of bone–metal interfaces,

for example, the surface of the metal implant is often made porous to allow in-

growth of the bone. Delamination often occurs due to interfacial shear stresses

TABLE 2.1 Physical

properties of bone.
Variable Bone Value

Density Cortical 1,700–2,000 kg/m3

Lumbar vertebra 600–1,000 kg/m3

Mineral content All 60–70 %

Elastic modulus Femur 5–28 GPa

Tensile strength Femur 80–150 MPa

Tibia 95–140 MPa

Compressive strength Femur 131–224 MPa

Tibia 106–200 MPa
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and thus there is a need to design experiments that impose shear stresses. One

simple experiment is a so-called “pull-out” test. Briefly, one material is bonded

to the inside of a hollow sample of the second material. The outer material is

then fixed in place and the inner material subjected to an axial load through its

centroid. A free-body diagram of the inner material reveals that the axial load

must be supported by the integrated manifestation of all the shear stresses acting

on its outer surface. Although the magnitude of these shears may vary from

point to point, one can determine the mean shear stress at which delamination

initiates. Subsequent design would then seek to protect the bonded surface from

experiencing damaging values of shear stresses.

Chapter Summary

Mechanics is the study of responses by materials and structures to applied

loads, the most familiar example of which is perhaps the simple linear spring,

first studied in detail by R. Hooke in the late seventeenth century. As we recall

from physics, Hooke said, as the force, so the extension (i.e., f¼ kδ, where f is

force, k the spring stiffness, and δ the displacement at the end of the spring).

Yet, during the period from the mid-eighteenth to the early nineteenth century,

savants such as L. Euler and A. Cauchy showed that it was much more

appropriate in continuum mechanics to work with the concepts of stress and

strain, not force and extension. Strictly speaking, stress is a mathematical

quantity that transforms an outward unit normal vector on a differential area

of interest into an associated traction vector in the direction of the applied force

but having units of force per area. Strain can similarly be defined in terms of a

transformation of a differential position vector from a reference to a current

configuration. See Humphrey (2001, 2002) for detailed derivations and descrip-

tions of the utility of the concepts of stress and strain in biology, including a

discussion of the fundamental utility of tensor calculus in continuum

biomechanics.

Herein, however, we introduced the concept of stress intuitively, not math-

ematically, and we noted that a component of stress represents the magnitude of

a component of force acting over an oriented area (i.e., stress is a force

intensity). We also noted that, relative to a single coordinate system (defined

by an origin and basis), one can define up to nine different components of stress

that act on a generic infinitesimal cube of material, which when reduced in a

limiting process becomes a point. Moreover, relative to each coordinate system,

one can associate nine different components of strain (defined by particular

combinations of displacement gradients, that is, changes in displacement with

position) with these nine different components of stress at each point. Albeit
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often not emphasized, it is vital to remember that there is nothing special per se

about a particular component of stress or strain; rather, each component results

from our choice of coordinate system, which we should select simply to render

the overall mathematical solution easier. Fortunately, transformation relations

allow components of stress or strain relative to one coordinate system to be

related to those of other coordinate systems. We found, for example, that a

judicious selection of coordinate system can yield the maximum/minimum

(e.g., principal) values of stress or strain at any point. Hence, our overall

strategy should be (1) determine components of stress and strain by selecting

that coordinate system which renders easiest the solution of the initial or

boundary value problem at hand and (2) transform these components of stress

or strain to those components that are most meaningful for experimental,

theoretical, or biological purposes.

Finally, recall that the aforementioned relation f¼ kδ for a linear spring is a

simple example of a structural constitutive relation, that is, it describes the

response (extension) of a spring (structure) to an applied load (force) under

conditions of interest (e.g., ranges of loading that allow the spring to recoil

elastically when unloaded). The spring constant k is thus the constitutive

parameter for this simple 1-D linear spring. Whereas the five basic postulates

of continuum mechanics (e.g., balance of linear momentum) hold for all

continua, constitutive relations hold for individual materials or structures

under particular conditions of interest (e.g., temperatures or time scales). We

introduced the 3-D Hooke’s law for linearly elastic material behaviors under

small strain, which can be a useful descriptor for materials ranging from

stainless steel to bone. It is essential, however, that one understand the limita-

tions of each relation. Because the formulation of appropriate constitutive

relations is perhaps the most important and challenging aspect of modern

continuum biomechanics, the reader should be especially attentive to related

discussions throughout.

Appendix 2: Material Properties

The properties of many materials can be found in textbooks on material

science (e.g., Askeland 1994) or biomaterials (e.g., Ratner 2003) as well as

many handbooks. Here, we simply tabulate a few of the properties that may

be useful in the examination of example and exercise problems in this book.
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Exercises

2.1 Find a general relation for σ0xx [Eq. (2.13)] when α¼ αs.

2.2 Show that αp¼ αs� 45
. In addition, show that Eq. (2.25) for αp can also

be determined via dσ0yy/dα¼ 0.

2.3 Rederive the transformation equation for σ0yy using the result for σ
0
xx and

the observation that σ0yy exists on a face at an angle π/2 + α from the x

direction.

2.4 Show that for a 2-D state of stress,

σxx þ σyy ¼ σ
0

xx þ σ
0

yy 8α:

This combination of the normal stresses is called an invariant; that is, its

numerical value at any point is independent of the coordinate system

even though its value will differ, in general, from point to point in a body

and, of course, with changes in load. Invariants have been found to be

useful in modeling material behavior, which, by definition, must be

independent of man and his coordinate systems.

2.5 Show that Eq. (2.80) can be determined directly from Eqs. (2.69) and the

transformation relations (2.13) and (2.57).

2.6 The results for the max/min normal stresses can also be found using

matrix equations. Using ideas from linear algebra, show that the 2-D

eigenvalue problem for the matrix equation

det
σxx � Λ p σxy

σyx σyy � Λ p

� 

¼ 0

yields eigenvalues Λ1� σ1 (with p¼ 1) and Λ2� σ2 (with p¼ 2). Hint:

Solve the quadratic equation for Λp, the two roots of which correspond to

p¼ 1 and p¼ 2. Also, if familiar with linear algebra, find the

eigendirections np, where |np|¼ 1, and discuss their relationship to αp.

TABLE A2.1 Physical properties of common engineering materials.

Material Young’s

modulus (GPa)

Shear modulus

(GPa)

Density

(kg/m3)

Yield strength

(MPa)

Ultimate

strength (MPa)

Tension Shear Tension Shear

Aluminum

2024-T4 73 27.6 2,770 300 170 414 220

6061-T6 70 25.9 2,770 241 138 262 165

Steel

0.2 % Carbon 200 83 7,830 250 165 450 330

0.6 % Carbon 200 83 7,830 415 250 690 550
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2.7 Given the state of stress in Example 2.1, σxx¼ 120 kPa, σyy¼ 150 kPa,

and σxy¼ 0 kPa, compute the values of σ0yy for all values of α from 0
 to
90
 and plot as a function of α. Compare the values of α at which σ0yy is
max/min versus those found using the formula for αp. Repeat for σ

0
xy and

compare the value of α at which the shear is max/min versus that using

the formula for αs.

2.8 A state of pure shear is one in which the normal stresses are zero.

Consider σxx¼ 0, σyy¼ 0, and σxy¼ σyx¼ 5 MPa. Find the values of the

principal stresses and denote them on an infinitesimal element with

orientation given by αp.

2.9 Given a hydrostatic state of stress, σxx¼ σyy¼ σzz¼�p, where p is a

pressure, we computed σ0xx, σ
0
yy and σ0xy for all α in Example 2.4.

Likewise, compute the principal stresses σ1 and σ2 [i.e., σ0xx)max/min

and σ0yy)max/min] as well as the maximum shear σ0xy)max/min using the

explicit formulas in the text. Discuss your findings.

2.10 Given σxx¼ 3 MPa, σyy¼ 1 MPa, and σxy¼ 2 MPa, find the values of the

principal stresses and the maximum shear stress. What are the associated

values of αp and αs? Draw a 2-D representation of the stress at a point p

relative to each set of coordinates (x, y) and those for αp and αs.

2.11 Given σxx¼ 3 MPa and σyy¼�3 MPa, find the maximum shear stress

and the plane on which it acts. Draw the 2-D representation of stress

about a point p.

2.12 Given ux¼ (Λ – 1)X and uy¼ 0, compute and compare the exact (EXX)

and the approximate/linearized (εxx) strains for Λ¼ 1.001, 1.01, 1.1, 1.5,

and 2.0. Calculate the error introduced by the linearization in each case

and determine those values of Λ for which the approximation is

reasonable.

2.13 Let

ux ¼ X þ 0:001Yð Þ � X,

uy ¼ Y � Y:

Compute the values of the components of the 2-D Green strain EXX, EYY,

and EXY and compare to those for the linearized strain εxx, εyy, and εxy.

Repeat with the value premultiplying Y in the expression for ux being 0.8.

2.14 Calculate the values of EYY and EXY for the rigid-body motion given by

Eq. (2.54) and compare to the results for εyy and εxy.

2.15 The transformation relations for strain [Eq. (2.57)] can be found directly

via coordinate transformations; recall Eqs. (2.62–2.68). Hence, if we

recall from calculus that

x
0 ¼ x cos αþ y sin α, y

0 ¼ �x sinαþ y cos α
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and note that similar relations hold for the displacement vector,

u
0

x ¼ ux cos αþ uy sin α, u
0

y ¼ �ux sin αþ uy cos α;

then show that

ε
0
yy ¼ εxx sin

2α� 2εxy sin α cos αþ εyy cos
2α,

ε
0
xy ¼ 2 sinα cos α

εyy � εxx

2

� �
þ cos 2α� sin 2αð Þεxy:

Hint: Note that the angle α, which relates the two coordinate systems, is

very different from the angle ϕ used in the text to represent a rigid-body

rotation. Moreover, for the linearized strain,

ε
0

yy ¼
∂u

0
y

∂y
0 ¼

∂u
0
y

∂x

∂x

∂y
0 þ

∂u
0
y

∂y

∂y

∂y
0 :

2.16 For the delta strain gauge rosette (α1¼ 0, α2¼ 60
, α3¼ 120
), show that

εxy ¼
1ffiffiffi
3
p ε60
 � ε120
ð Þ:

2.17 For the 0–45
–90
 strain rosette of Example 2.6, find general expressions

for the principal strains and maximum shear strains in terms of the

measurable values ε0, ε45
, and ε90
.

2.18 Whereas Eqs. (2.69), (2.75), and (2.77) are called strain–stress relations,

Hooke’s law can also be written as stress–strain relations. For example,

for isotropy, we have

σxx ¼ λ εxx þ εyy þ εzz
� �

þ 2μεxx, σxy ¼ 2μεxy,

σyy ¼ λ εxx þ εyy þ εzz
� �

þ 2μεyy, σyz ¼ 2μεyz,

σzz ¼ λ εxx þ εyy þ εzz
� �

þ 2μεzz, σzx ¼ 2μεzx;

where λ and μ are called Lamé constants (material parameters), after the

French scientist G. Lamé (1795–1870). Show that

λ ¼ vE

1þ vð Þ 1� 2vð Þ , μ ¼ E

2 1þ vð Þ � G;

where E and v are the Young’s modulus and Poisson ratio, respectively.

2.19 Note from the previous exercise and Eq. (2.69) that λ multiplies the first

invariant of strain e¼ εxx+ εyy+ εzz, which is a measure of volume

change. Show that
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e ¼ 1� 2v

E
σxx þ σyy þ σzz
� �

for isotropy. Note that there is no change in volume (i.e., e= 0) if v = 1
2
.

Moreover, if a cube of material is subjected to a hydrostatic pressure,

then σxx= σyy= σzz=�p. In this case, note that

e ¼ � 3 1� 2vð Þ
E

p! � p

e
¼ E

3 1� 2vð Þ � K;

where K is the so called bulk modulus; it represents the ratio of the

hydrostatic compressive stress to the decrease in volume.

2.20 For a LEHI behavior, show that a plane state of stress requires that

σzz ¼ 0 ¼ E

1þ vð Þ 1þ 2vð Þ 1� vð Þεzz þ v εxx þ εyy
� �
 �

;

or

εzz ¼ �
v

1� v
εxx þ εyy
� �

:

2.21 For a LEHI behavior, show that the principal stresses in a plane state of

stress can be written as

σ1 ¼
E

1� v2
ε1 þ vε2ð Þ, σ2 ¼

E

1� v2
ε2 þ vε1ð Þ;

where ε1 and ε2 are the principal strains.

2.22 Given σxx¼ 20 MPa, σyy¼�10 MPa, and σxy¼�20 MPa, find the

principal stresses and principal strains with LEHI behavior and

E= 16 GPa and v¼ 0.325.

2.23 Starting with Eq. (2.80) and using Eqs. (2.13), (2.17), (2.21), and (2.57),

show that you recover Eq. (2.69). Note: We assume a rotation about the

z-axis thus σ0zz� σzz.

2.24 Given reasonable values of the material parameters for bone, estimate the

axial stress in your femur due to standing, walking, and running. Toward

this end, estimate the increase in the applied load (in terms of body weight

and in comparison to the load due to standing) due to walking and

running. Once done, note that even though we did not discuss it, bone

exhibits viscoelastic, not just elastic, behavior under certain conditions.

In particular, the Young’s modulus increases with increases in strain rate.

It has been estimated, for example, that E � c _εd, where _ε is the exten-

sional strain rate and c and d are material parameters. If E¼ 16 GPa at _ε
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¼ 0.001 s–1 (slow walking) and d~ 0.06, find the value of c. Next,

compute the value of E for vigorous activity, with _ε~ 0.01 s–1, and discuss

how this would effect your first estimate for stress in your femur.

2.25 Research the different constitutive relations used to describe the behav-

ior of water in its solid, liquid, and gaseous phases (i.e., different

conditions of interest). Write a two-page report on your findings, show-

ing explicitly the different equations and discussing how the different

characteristic behaviors dictate the need to establish different theoretical

frameworks (DEICE).

2.26 Referring to Fig. 2.23a, note that the material can return to its original

configuration by releasing the energy that is stored in it due to deforma-

tion. This “strain energy” W can be computed (per initial volume) as the

area under the stress–strain curve. For the 1-D test in Fig. 2.23a,

σxx¼Eεxx and the stored energy is 1
2
(base)(height) = 1

2
εxxσxx=

1
2
εxxEεxx.

Show, therefore, that the stress can be determined as the change in energy

with respect to changes in strain (i.e., σxx¼∂W/∂εxx), whereas the stiff-

ness can be computed as the change in stress with respect to the change in

strain (∂σxx/∂εxx). Plot this stiffness as a function of stress and comment.

2.27 Although we chose not to derive the linearized strains directly, it is

common to relate them (for illustrative purposes) to changes in length

and changes in angle. The former was used to show that Poisson’s ratio

v¼½ if the behavior is incompressible. Here, note the following for

shear. Referring to Fig. 2.30, let point b displace upward an amount Δuy.

With point d displacing rightward byΔux, we call this a pure shear. Note,

therefore, that the angles α and β are given by

α ¼ tan
Δuy

Δx

� �
� Δuy

Δx
, β ¼ tan

Δux

Δy

� �
� Δux

Δy

for which we used the small-angle approximation for the tangent, and

thus the mean value is

FIGURE 2.30
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1

2
αþ βð Þ ¼ 1

2

Δuy

Δx
þ Δux

Δy

� �
! lim

Δx,Δy!0

1

2
αþ βð Þ ¼ 1

2

∂uy

∂x
þ ∂ux

∂y

� �
;

which we recognize equals εxy. Repeat this exercise for the y-z plane.

2.28 Common experimental setups include uniaxial extension or compression

of a rod, biaxial extension of a sheet, tension–torsion of a cylinder,

inflation–extension of a hollow cylinder, and inflation of an axisymmet-

ric membrane (Fig. 2.31). Identify tissues that would be appropriately

tested using these potential setups without excessive dissection

following removal from the body.

FIGURE 2.31
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2.29 Using Eqs. (2.13) and (2.21), it can be shown that, in two dimensions,

σxx+ σyy¼ σ0xx+ σ
0
yy. Show, in addition, that the principal stresses

σ1� σ0xx(max) and σ2� σ0yy(max) simultaneously add to yield

σxx þ σyy ¼ σ1 þ σ2:

2.30 A special 2-D state of stress is called an equibiaxial stress. It is defined

by σxx¼ σyy¼ σo and σxy¼ σyx¼ 0. Find the principal stresses and max/

min shear stresses in this case. Note that equibiaxial stretching tests are

particularly useful in determining the anisotropy of a planar tissue

(membrane). Why?

2.31 A uniaxial test was performed on a bone specimen having a central

(gauge) region initially 6 mm long and 2 mm in diameter. Five data

points were recorded:

Axial force (N) 94 190 284 376 440

Change in length (mm) 0.009 0.018 0.027 0.050 0.094

Plot the associated stress–strain relation, calculate a Young’s modulus,

and show that the yield stress is ~118 MPa. Recall that the yield stress

reveals the transition from elastic to plastic (cf. Fig. 2.25). Data from

Özkaya and Nordin (1999).

2.32 Data from a uniaxial tension test to failure (data point 4) for a human

cortical bone are

Stress (MPa) 0 85 114 128

Strain (mm/mm) 0 0.005 0.010 0.026

Plot the data and interpret. Estimate the Young’s modulus, yield stress,

and ultimate stress (cf. Fig. 2.26). Clearly, much more data are useful in

general. Data from Özkaya and Nordin (1999).

2.33 Data from a uniaxial tension test in the elastic region for a bone sample are

Stress (MPa) 0 60 120 180

Strain 0 0.0034 0.0066 0.0100

Referring to Exercise 2.32, were these tests performed on the same type

of bone? Compare the Young’s moduli.
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3
Equilibrium, Universal Solutions,
and Inflation

3.1 General Equilibrium Equations1

Let us begin by recalling three important observations from Chaps. 1 and 2.

First, equilibrium requires that ΣF¼ 0 and ΣM¼ 0. Second, if a body is in

equilibrium, then each of its parts are likewise in equilibrium. Third, there may

exist at each point p in a body (cf. Fig. 2.4) nine components of stress, six of

which are independent, which we denote as σ(face)(direction) relative to the

coordinate system of choice. Because stress may vary from point to point within

a body, the components at a nearby point q may have different values. (Note: It

is usually convenient to refer components at different points to the same

coordinate system.) Now, if we consider a small cube of material, centered

about point p which is located at (x, y, z) and has stresses σxx, σxy,. . ., σzz, then

the stresses on the faces of the cube may differ from those at the center; that is, if

the xx component at the center of the cube is σxx, then on the positive and

negative faces of the cube, at distances �Δx/2 from the center, we may have

σxx +Δσxx and σxx�Δσxx, respectively (i.e., values slightly greater than or less

than that at point p). The key question is thus: How can we evaluate this small

differenceΔσxx? As we shall do throughout this text, let us recall a Taylor series

expansion from calculus [f(x +Δx)¼ f(x) + (df/dx)Δx + . . .] and let

σxx xþ Δx

2

� �
¼ σxx xð Þ þ ∂σxx

∂x x

Δx

2

� ����� þ 1

2

∂
2
σxx

∂x2 x

Δx

2

� �2
����� þ . . . ð3:1Þ

1 Sections 3.1 and 3.2 may be considered optional by some instructors for a first course
in biosolids.
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and

σxx x� Δx

2

� �
¼ σxx xð Þ � ∂σxx

∂x x

Δx

2

� ����� � 1

2

∂
2
σxx

∂x2 x

Δx

2

� �2
����� � . . . ; ð3:2Þ

where other higher-order terms in Δx are not shown. Of course, the values of

each of the components of stress on each of the six faces can likewise differ

from those at the center.

For simplicity, however, let us consider a 2-D state of stress, as illustrated in

Fig. 3.1. We let σyy and σyx, which represent the mean value on their respective

faces, vary from the bottom to the top faces (because they are y-face stresses)

and thus their gradients (or changes) are with respect to y, whereas σxx and σxy,

which similarly represent mean values on their respective faces, are assumed to

vary from the left to the right faces (because they are x-face stresses) and their

gradients are with respect to x.

Now, to ensure equilibrium, we sum forces (which requires multiplying

appropriate components of stress by their respective areas) separately in the

x and y directions and set them individually equal to zero. In the x direction, this

yields (neglecting the |x notation because it is understood that our result will be

valid at x once we shrink the cube to the point p)

FIGURE 3.1 Representative stresses at a point p, with particular attention to those

components in the x-y plane at distances �Δx/2 and �Δy/2 from point p. Note,
therefore, that the components of stress may vary from point to point in general (because

of the differential areas, the value of stress on an given surface area is represented by its

mean over that area).
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σxx þ
∂σxx

∂x

Δx

2

� �
þ 1

2

∂
2
σxx

∂x2
Δx

2

� �2

þ . . .

" #
ΔyΔz

� σxx �
∂σxx

∂x

Δx

2

� �
� 1

2

∂
2
σxx

∂x2
Δx

2

� �2

� . . .

" #
ΔyΔz

þ σyx þ
∂σyx

∂y

Δy

2

� �
þ 1

2

∂
2
σyx

∂y2
Δy

2

� �2

þ . . .

" #
ΔxΔz

� σyx �
∂σyx

∂y

Δy

2

� �
� 1

2

∂
2
σyx

∂y2
Δy

2

� �2

� . . .

" #
ΔxΔz ¼ 0:

ð3:3Þ

Simplifying, dividing by ΔxΔyΔz, and taking the limit as ΔxΔyΔz! 0, we

have

lim
ΔxΔyΔz!0

1

ΔxΔyΔz

∂σxx

∂x
þ ∂

2
σxx

∂x2
Δx

4

� �
þ ∂σyx

∂y
þ ∂

2
σyx

∂y2
Δy

4

� � !
ΔxΔyΔz ¼ 0;

ð3:4Þ

or (because the Δx and Δy go to zero)

∂σxx

∂x
þ ∂σyx

∂y
¼ 0; ð3:5Þ

which is our final x-direction equation in two dimensions. Note, therefore, that

all higher-order terms (H.O.T.), quadratic and above, drop out because of the

limiting process. Such terms can thus be neglected in hindsight in all

similar derivations. Indeed, as an exercise, show that summation of forces in

the y-direction yields a similar equation:

∂σxy

∂x
þ ∂σyy

∂y
¼ 0: ð3:6Þ

Together, Eqs. (3.5) and (3.6) are the governing differential equations of

equilibrium for a 2-D state of stress relative to an (o; x, y) coordinate system.

Note that the x equation contains only x-direction stresses and the y equation

contains only y-direction stresses. This is another reason to remember the

simple aid, σ(face)(direction).

It is easy to show, of course, that relative to a (o; x0, y0) coordinate system, we

have

∂σ
0
xx

∂x
0 þ

∂σ
0
yx

∂y
0 ¼ 0 and

∂σ
0
xy

∂x
0 þ

∂σ
0
yy

∂y
0 ¼ 0: ð3:7Þ

3.1. General Equilibrium Equations 111



Finally, if we consider a fully 3-D state of stress, relative to (o; x, y, z),

summation of forces separately in x, y, and z yields our general 3-D

differential equations of equilibrium:

∂σxx

∂x
þ ∂σyx

∂y
þ ∂σzx

∂z
þ ρgx ¼ 0; ð3:8Þ

∂σxy

∂x
þ ∂σyy

∂y
þ ∂σzy

∂z
þ ρgy ¼ 0; ð3:9Þ

∂σxz

∂x
þ ∂σyz

∂y
þ ∂σzz

∂z
þ ρgz ¼ 0: ð3:10Þ

Note that we have added a possible body force vector g, which acts at point

p and is defined per unit mass (i.e., the force per volume is ρg, where ρ is the

mass density, and the force vector is ρgΔxΔyΔz).

At this juncture, it is instructive to review the restrictions associated with the

derivation of Eqs. (3.5)–(3.10). First, did we specify any particular material?

Actually, we did not; hence, these equations hold for all continua—solid or

fluid, man-made or biological. Thus these equations are very general and

powerful. Second, did we make any assumptions on the motion, such as the

magnitude of the strains? Again, the answer is no. The only requirement was

that the body be in equilibrium (i.e., not accelerating). In Chap. 8, we will relax

this restriction so that we can study (accelerating) fluid flows. Third, are these

equations restricted to a particular coordinate system? The answer here, of

course, is yes: These equilibrium equations are valid only for Cartesian coor-

dinate systems. Physical problems “exist” independent of coordinate systems,

however, which are introduced to engender convenience when we solve a

particular problem. In some cases, Cartesian coordinates will be the most

convenient, such as when finding bending stresses in a cantilevered straight

beam within a force transducer that is used to measure applied loads on a force

plate used in gait studies. In other cases, cylindrical coordinates (e.g., when

solving for stresses in an artificial artery) or spherical coordinates (e.g., when

solving for stresses in an intracranial saccular aneurysm) may be preferred.

Fortunately, it can be shown (although the algebra is more complex) that

similar equilibrium equations exist for cylindrical and spherical coordinates

(Humphrey 2002). We merely list them here. For cylindrical coordinates,

we have

∂σrr

∂r
þ 1

r

∂σθr

∂θ
þ ∂σzr

∂z
þ σrr � σθθ

r
þ ρgr ¼ 0; ð3:11Þ

112 3. Equilibrium, Universal Solutions, and Inflation

http://dx.doi.org/10.1007/978-1-4939-2623-7_8


∂σrθ

∂r
þ 1

r

∂σθθ

∂θ
þ ∂σzθ

∂z
þ 2σrθ

r
þ ρgθ ¼ 0; ð3:12Þ

∂σrz

∂r
þ 1

r

∂σθz

∂θ
þ ∂σzz

∂z
þ σrz

r
þ ρgz ¼ 0; ð3:13Þ

whereas for spherical coordinates, we have

∂σrr

∂r
þ 1

r

∂σθr

∂θ
þ 1

r sin θ

∂σϕr

∂ϕ
þ 1

r
2σrr � σθθ � σϕϕ þ σθr cotϕ
� �

þ ρgr ¼ 0;

ð3:14Þ

∂σrθ

∂r
þ 1

r

∂σθθ

∂θ
þ 1

r sin θ

∂σϕθ

∂ϕ
þ 1

r
2σrθ þ σθr þ σθθ � σϕϕ

� �
cot θ

� �
þ ρgθ ¼ 0;

ð3:15Þ

∂σrϕ

∂r
þ 1

r

∂σθϕ

∂θ
þ 1

r sin θ

∂σϕϕ

∂ϕ
þ 1

r
2σrϕ þ σϕr þ σϕθ � σθϕ

� �
cot θ

� �
þ ρgϕ ¼ 0:

ð3:16Þ

It should be obvious that solving coupled partial differential equations in three

dimensions for any coordinate system is generally nontrivial and often requires

sophisticated numerical methods for solution, such as the finite element method.

Nonetheless, to learn the methodology of approach, we should first seek

solutions that are tractable analytically; fortunately, such solutions can also be

very useful, as seen in Sect. 3.6.

3.2 Navier–Space Equilibrium Equations

Whereas the equations of Sect. 3.1 are valid for all continua, it is often useful to

derive specialized forms of the equilibrium equations for particular material

behaviors or classes of material behaviors.2 Here, let us do so for LEHI

(Sect. 2.6) behaviors {i.e., materials that exhibit a linear, elastic, homogeneous,

2 Indeed, note that Eqs. (3.5) and (3.6) represent two equations in terms of three
unknown stresses, whereas Eqs. (3.8)–(3.10) represent three equations in terms of six
unknown stresses. In each case, we need additional equations to render the mathematical
problem well posed, equations such as constitutive relations.

3.2. Navier–Space Equilibrium Equations 113

http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Sec6_2


and isotropic response under small strains—these materials are described by the

so-called Hooke’s Law [Eq. (2.69)]}.

Let us first consider the case for a purely 2-D state of stress and strain (which

is different from plane stress or plane strain, as noted in Chap. 2). From the

stress–strain equation in Exercise 2.18, we note that

σxx ¼ λ εxx þ εyy
� �

þ 2μεxx; ð3:17Þ

σxy ¼ 2μεxy ¼ σyx; ð3:18Þ

σ yy ¼ λ εxx þ εyy
� �

þ 2μεyy; ð3:19Þ

where λ and μ are material parameters (Lamé constants, with μ�G, the shear

modulus). The linearized strains are given by Eqs. (2.44) and (2.45):

εxx ¼
∂ux

∂x
, εyy ¼

∂uy

∂y
, and εxy ¼

1

2

∂ux

∂y
þ ∂uy

∂x

� �
: ð3:20Þ

Hence, substituting Eqs. (3.17) and (3.18) into Eq. (3.5), we have

∂

∂x
λ εxx þ εyy
� �

þ 2μεxx

 �

þ ∂

∂y
2μεxy
� �

¼ 0 ð3:21Þ

or, by using the strain–displacement relations in Eq. (3.20),

∂

∂x
λþ 2μð Þ∂ux

∂x
þ λ

∂uy

∂y

� 

þ ∂

∂y
2μ

1

2

� �
∂ux

∂y
þ ∂uy

∂x

� �� 

¼ 0: ð3:22Þ

Simplifying, note that we have

λ
∂
2
ux

∂x2
þ 2μ

∂
2
ux

∂x2
þ λ

∂
2
uy

∂x∂y
þ μ

∂
2
ux

∂y2
þ μ

∂
2
uy

∂y∂x
¼ 0: ð3:23Þ

If we (based on hindsight, which means after first trying multiple other possi-

bilities to no avail) note that the second term can be split into two equal parts,

then by collecting like terms, we have

μ
∂
2
ux

∂x2
þ ∂

2
ux

∂y2

 !
þ λþ μð Þ ∂

∂x

∂ux

∂x
þ ∂uy

∂y

� �
¼ 0: ð3:24Þ
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Similarly (show it), Eq. (3.6) can be written as

μ
∂
2
uy

∂x2
þ ∂

2
uy

∂y2

 !
þ λþ μð Þ ∂

∂y

∂ux

∂x
þ ∂uy

∂y

� �
¼ 0: ð3:25Þ

These two equations are the so-called 2-D Navier–Space equilibrium equations;

they represent two coupled partial differential equations in terms of two

unknowns, the displacements ux and uy, as well as the Lamé constants λ and

μ. Of course, relative to an (x, y) coordinate system, the displacement vector u

can be written as u ¼ ux î þ uy ĵ . This suggests, therefore, that these two

equations merely represent the x and y components of a more general vectorial

differential equation. Consequently, Eqs. (3.24) and (3.25) can be written much

more compactly in vector form as

μ∇
2uþ λþ μð Þ∇ ∇ � uð Þ ¼ 0; ð3:26Þ

where in two dimensions, relative to Cartesian coordinates, the del operator is3

∇ ¼ î
∂

∂x
þ ĵ

∂

∂y
: ð3:27Þ

The advantage of writing such equations in vector form is that the equation is

now very general: It can be shown that Eq. (3.26) holds for 3-D states of stress

and strain [which results in three coupled partial differential equations in terms

of the three components of the displacement vector (e.g.,u ¼ ux î þ uy ĵ þ uzk̂)]

as well as for any coordinate system (Cartesian, cylindrical, spherical, etc.).

Because of our use of Hooke’s law for linear, elastic, homogeneous, and

isotropic behavior as well as the use of the linearized strains, the Navier–

Space equilibrium equations are thus limited as well. It will be seen in

Chap. 8 that a similar differential equation will be derived for a restricted

class of (linear) fluids, an equation that is called the Navier–Stokes equation.

As one might expect, solutions to coupled partial differential equations are

generally challenging. Hence, rather than attempting to solve even some special

cases, let us first examine a much simpler class of solutions—ones that have

wide applicability despite increased restrictions due to additional assumptions.

After having done so, we will return to the differential equations of equilibrium

in Sect. 3.6.

3 Vector operations are reviewed in the Appendix in Chap. 7.
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Observation 3.1. The extracellular matrix (ECM) consists of many physically

and chemically interacting structural proteins, glycoproteins, glycosaminogly-

cans, and of course resident cells. Although engineers often think of the ECM as

a composite material whose mechanical properties must be quantified similar to

all engineering materials, the ECM is unique in that it experiences continual

turnover and it is capable of cell mediated growth (change in mass) and

remodeling (change in structure). Hence, we as engineers must develop new

approaches to describe the potentially evolving mechanical properties of living

tissue; that is, we must develop and extend our mechanics, not just apply it in

traditional ways.

Fundamental to the turnover of ECM is the production (synthesis) and

removal (e.g., degradation) of individual structural constituents. Matrix

metalloproteinases (MMPs) represent an important family of enzymes that

degrade components of the ECM. There are over 25 members of this family,

denoted MMP-1, MMP-2, and so forth, each of which can be produced by

different cells and degrade different but particular constituents. For example,

fibroblasts produce MMP-1, which degrades fibrillar collagens (e.g., types I, II,

and III) as well as certain proteoglycans. In contrast, macrophages produce

MMP-9, which degrades elastin, type IV collagen, denatured collagens, and so

forth. Although many have long thought of the action of MMPs primarily from

the perspective of biochemistry, it is now widely recognized that the rate of

degradation of a structural constituent by an MMP can depend upon the

mechanical loading experienced by that constituent. In particular, in many

cases it appears that increased mechanical stress increases the resistance of

the constituent to degradation. Although the mechanisms responsible for this

observation are not understood fully, stress likely changes the configuration of

the molecules, which in turn changes the accessibility of the MMP to particular

binding sites on the molecule. Regardless, we see yet again that solving initial

and boundary value problems in biomechanics to determine stress and strain

fields is fundamental to understanding diverse biological processes, in this case

the mechanochemistry of proteolysis.

3.3 Axially Loaded Rods

Perhaps the simplest problem in solid mechanics is equilibrium associated with

a uniform, 1-D state of stress in an axially loaded member having one dimen-

sion much greater than the other two. For example, if the member is rectangular

in cross section and x corresponds to the axial direction, then we posit that σxx is

constant but nonzero, whereas all other components of stress are zero. From

Eqs. (3.8)–(3.10), we see that equilibrium is thereby satisfied trivially at every
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point. Below, we will see how the numerical value of the σxx component of

stress is related to the applied axial force and the cross-sectional area and,

indeed, how the force must be applied to ensure an axial extension only (i.e., no

bending or twisting). First, however, let us consider some biomechanical

motivations for such problems.

3.3.1 Biological Motivation

Whereas many soft tissues in the body experience multiaxial states of stress

(e.g., skin, the cornea and sclera of the eye, arteries and veins, the heart, the

diaphragm and lungs), a few tissues experience primarily a uniaxial (or 1-D

state of) stress. Consider, for example, the chordae tendineae of the heart. This

thin, stringlike structure consists primarily of axially oriented type I collagen,

which endows it with significant stiffness (cf. Fig. 2.26). Functionally, the

chordae connects the valves in the heart to the papillary muscles, which appear

as fingerlike muscular projections from the endocardial surface (Fig. 3.2). In a

way then, the chordae can be thought of in an analogous way as the ropes that

connect a person (muscle) to a parachute (valves). Due to the action of the

pressure on the valve and the resisting force in the papillary muscle, the chordae

are subjected primarily to a 1-D tensile stress. The biomechanics of the chordae

tendineae is obviously important in understanding valvular diseases (which

affect some 96,000 Americans per year) as well as in the design of replacement

valves and associated surgical procedures.

FIGURE 3.2 Schematic cross section of the left ventricle of the heart, which reveals the

papillary muscle, chordae tendineae, and a heart valve. The chordae are thin, tendonlike

structures that consist primarily of oriented type I collagen (recall Fig. 2.26). They

function to prevent the valves from inverting as well as to augment the ejection of blood.
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Like the chordae tendineae, many papillary muscles (some being thin and

chordlike) are subjected to uniaxial loading, as are numerous tendons

and ligaments in major joints. Understanding joint biomechanics is similarly

important in the design of tissue repairs or replacements and, thus, surgical

procedures, as well as in the design of protective devices for athletes. For

example, some 170,000 athletes tear the anterior cruciate ligament (ACL)

each year in the United States.

Of course, to solve most problems in mechanics, we must know the geometry,

material properties, and applied loads. Whether it be traditional engineering

materials, biomaterials, or native tissue, uniaxial stress tests are the most

commonly performed test in the R&D laboratory. Figure 3.3 illustrates two

common test conditions. In the situation on the right, the specimen is machined

or cut into a so-called dumbbell shape so that the cross-sectional area in the

central region of the specimen is much less than that at the ends. This specimen

design ensures that the stresses will be highest in the central region, where

failure mechanisms such as fracture or yield may be studied. In the situation

illustrated on the left, the specimen is merely mounted in fixtures on each end to

permit it to be coupled to the loading device. This figure is typical of many

nonfailure tests on ligaments and tendons. In both cases, the state of stress can

be very complex near the ends (i.e., near the loading fixtures); hence, data are

collected away from the ends where the stresses are thought to be uniform

(Fig. 3.3, right). This “St. Venant’s Principle” can be proved mathematically

for certain materials and loading conditions by solving the full differential

equations of equilibrium. Below, we simply focus our attention on the uniform

1-D state of stress in the central region.

FIGURE 3.3 Schema of two typical types of specimens and mounting fixtures that are

used in uniaxial loading tests. Shown, too, are stresses in the dumbbell-shaped speci-

men, which reveal stress concentrations near the hole and a uniform distribution away

from the ends. It is for this reason that stress and strain are measured away from the

“ends” of the sample.

118 3. Equilibrium, Universal Solutions, and Inflation



3.3.2 Mathematical Formulation

To determine the value of σxx in a generic, axially loadedmember in equilibrium,

a specific cutting plane is introduced to divide the member into two sections

(Fig. 3.4), thereby exposing the stress of interest. For example, a free-body

diagram of the left section can be drawn, where at any section, the force

(magnitude) f passes through the centroid [shown below in Eqs. (3.34) and

(3.36)]. The reaction force f is balanced at the cut surface by uniformly distrib-

uted normal stresses σxx, which act over differential areas at each point in the

cross section; that is, the sum of each stress acting at each point, multiplied by

their respective differential areas to yield a quantity having a unit of force, must

balance the opposing force f to ensure equilibrium. Mathematically,

X
Fx ¼ 0!

ð
σxxdA� f ¼ 0: ð3:28Þ

Because the stress σxx is distributed uniformly (i.e., it is constant in the cross

section but of arbitrary value as needed to balance whatever f is applied), it can

be taken outside the integral, which can then be evaluated as follows:

σxx

ð
dA ¼ f ! σxx ¼

f

A
; ð3:29Þ

from which we see that the units of stress are clearly force per area, commonly

Pa (N/m2) or psi (lb/in.2). Recall that this simple result was used extensively in

Chap. 2.

FIGURE 3.4 A free-body diagram constructed by making a fictitious cut in the central

region of a test sample for isolating the x-face stresses of interest. We assume that only

the normal stress σxx acts on the cut face for shear stresses are not needed to balance the

applied axial load f. Moreover, although σxx is assumed to be uniform in the central

region, far enough away from the ends, we must remember that stresses act over

differential, not total, areas.
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That the applied force must pass through the centroid of the member to

ensure that σxx is uniformly distributed over the cross section is seen easily by

requiring that the sum of the moments vanish as well. Hence, let the applied

force f act through an arbitrary point (y*, z*), which locates the line of action of f

(Fig. 3.5). Considering the stress that acts over the differential area dA at (y, z),

equilibrium requires that the sum of the moments about the y axis must equal

zero; that is, using the right-hand rule to note the sign of each moment, we have

X
My

�
o ¼ 0!

ð
zσxxdA� f z* ¼ 0; ð3:30Þ

or if the stress is uniform,

σxx

ð
zdA ¼ f z*; ð3:31Þ

where

σxx ¼
f

A
¼ fð

dA

ð3:32Þ

from Eq. (3.29). Hence, Eq. (3.31) can be written as

fð
dA

ð
zdA ¼ f z*; ð3:33Þ

FIGURE 3.5 Cross section

of the x-face area in an

axially loaded member.

A fictitious cut reveals

σxx stresses, which act

over (cross-hatched)

differential areas dA
[centered at point (y, z)]
while the line of action of

the axial load is assumed

to go through the point

(y*, z*).
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or

z* ¼

ð
zdA
ð
dA

! z* ¼ z; ð3:34Þ

that is, the force must go through a point z* that coincides with the centroid z

[see the Appendix 3 for a discussion of first moments of area (centroids)].

Similarly, summing moments about the z axis,

X
Mz

�
o ¼ 0! �

ð
yσxxdAþ f y* ¼ 0; ð3:35Þ

whereby it can be shown (do it) that

y* ¼

ð
ydA
ð
dA

! y* ¼ y; ð3:36Þ

thus proving that the point (y*, z*) through which the applied force acts must

coincide with the centroid (y, z) to maintain equilibrium (ΣMy¼ 0 and ΣMz¼ 0)

in the presence of a uniform stress. We see, therefore, that a simple analysis can

help us design well a useful experiment (i.e., to determine how the load should

be applied). Finally, note that these equations hold for all cross sections—

rectangular, circular, or arbitrary. Indeed, because these results were also

obtained independent of the specification of particular material properties,

they are called universal solutions. Although not emphasized in most books

on the mechanics of materials, the generality of these universal solutions

[Eqs. (3.29), (3.34), and (3.36)] allow them to be applied equally to problems

involving the uniaxial extension of tendons, rubber bands, metallic wires, or

concrete. These results are thus very important.

Example 3.1 A chordae tendineae specimen initially 10 mm long is to resist an

axial tensile load f of 100 g. The specimen initially has a 1.0-mm diameter.

What is the maximum axial stress that the chordae will experience?

Solution: We recall that axial stress is computed via the applied force acting

over the cross-sectional area. Hence, consider
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f

Ao

¼ 100gð Þ 9:807� 10�3N=g
� �

π 0:5mmð Þ2
1000mm

m

� �2

¼ 1:25MPa:

As seen, such calculations are very easy. A key question to ask, however, is

whether a chordae tendineae can sustain a 1.25-MPa stress without tearing,

which is to say, How does this value compare to the range of stresses that would

be expected to exist in vivo? Toward this end, see Exercise 3.3, which should be

attempted only after completion of the next two sections on inflation problems.

At this juncture, however, let us recognize another very important issue.

The value of stress of 1.25 MPa in this example was computed using the applied

load and the original cross-sectional area Ao. Such stresses are called by various

names: the Piola–Kirchhoff stress (named after two nineteenth-century

investigators), the nominal stress, or, sometimes, the engineering stress. The

important observation though is that the derivation for σxx¼ f/A in Eq. (3.29) is

actually based on A, the current cross-sectional area over which the force

actually acts. This definition is often called a Cauchy stress, after the famous

mathematician/mechanicist A. Cauchy, or the true stress because one uses the

actual area over which the load acts. When the deformation (and thus strain) is

small, A ~Ao and the two definitions yield similar values. When the deformation

is large, however, as is the case for most soft tissues, the computed values can be

very different. To compute the Cauchy stress in Example 3.1, therefore, we

must measure A rather than Ao. Clearly, the latter is easier experimentally; thus,

the wide usage of the nominal stress Σ(face)(direction) by experimentalists. We will

in general prefer the Cauchy stress σ(face)(direction) herein, however, which

appears naturally in the equilibrium equations. Fortunately, we shall see in

Chap. 6 that the various definitions of stress are related. Indeed, Exercise 3.4

shows how the Cauchy and nominal stress are related in the simple case of a 1-D

state of stress and incompressibility.

Observation 3.2. Figures 2.24 and 2.26 reveal the characteristic nonlinear

behavior exhibited by many soft tissues: initially compliant at lower strains

but very stiff at higher strains. It has been suggested by many that this nonlinear,

perhaps exponential, behavior is due to the composite nature of such tissues and

the presence of undulated collagen fibers (Fung 1993); that is, the initially

compliant, sometimes nearly linear, behavior is often ascribed to the stretching

of amorphous elastin, whereas the gradual-to-rapid stiffening is ascribed to

the progressive recruitment (i.e., straightening) of previously undulated colla-

gen fibers that may exhibit a nearly linear behavior when straight. Consistent

with this thinking, many early investigators in cell mechanics assumed that

cytoskeletal filaments may exhibit a nearly linear behavior. However, recent

technological advances now enable investigators to perform mechanical tests

on single molecules, which has revealed diverse and unexpected findings.

122 3. Equilibrium, Universal Solutions, and Inflation

http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig26_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig24_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_6


Leckband (2000) briefly reviewed three techniques for studying the mechanics

of single molecules (e.g., proteins) as well as molecular interactions. Laser

tweezers enable force measurements over the range 1–200 pN, the atomic force

microscope (AFM) enables measurements over 10–1,000 pN, and micropipette

aspiration enables measurements over 0.01–1,000 pN (note: pico indicates 10�12,
whereas nano indicates 10�9). The AFM is discussed further in Chap. 5. Laser

tweezers, also known as optical traps, exploit the interaction of highly focused

laser light (e.g., from a Nd: YAG laser, at 1,065 nm) and small (1–3 μm) dielectric

particles. Briefly, light can exert a “pressure” on such particles, which when

directed against gravity can trap the particle in a suspended state. The net “trapping

force” depends on the laser power, the speed of light, and the properties of the

particle. For example, a biomolecule can be attached to and held between two

functionalized (to bind to the biomolecule) polystyrene microspheres, one of

which is trapped by laser light and the other ismounted on amovablemicropipette.

The micropipette can thus be used as an actuator and the laser tweezers as a force

transducer (Fig. 3.6). Conversely, the micropipette aspiration technique allows

force to be inferred from global deformations of membranous capsules having a

known surface tension. The specimen is held by suction between two opposing

micropipettes.

Figure 3.7a, b illustrate laser tweezer measurements of the 1-D force–exten-

sion behavior of chromatin, a DNA attached to a protein (histone) base that is

the carrier of genes. Similar to data at the tissue level, one sees a nearly linearly

FIGURE 3.6 Schema of a laser tweezer (i.e., an optical trap) that can be used to capture

and thus manipulate small particles using laser light. Functionalized particles (with

appropriate ligands) can, in turn, be used to manipulate various biological molecules and

thereby enable force–extension tests similar to those advocated by Hooke at the

macroscale.
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elastic response over small extensions but a non-linearly pseudoelastic (i.e., a

repeatable rate-independent hysteresis) response over larger extensions. Above

~20 pN, however, the force–extension curves were no longer reversible or

repeatable (not shown).

FIGURE 3.7 Schema of force–extension data for two different classes of molecules.

Panels a and b show the behavior of chromatin for continuous extensions and releases,

which reveal an elastic response or a pseudoelastic response depending on the degree of

extension. Panel c shows the behavior of tenascin under continuous extension: a familiar

nonlinear loading response is followed by an abrupt loss of force and a compliant

response, only to be repeated multiple times. It is thought that this complex behavior

is due to two different types of deformation of the molecule: The nonlinear response is

due to a straightening of the undulated molecule (panel d), whereas the abrupt change is

due to the complete unfolding of a portion of the molecule. The small oscillations in

panel c represent noise in the measurement of pico-Newton (pN) level forces.
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Figure 3.7c shows a very different behavior. AFM data on tenascin, an

extracellular matrix protein, reveals a “sawtooth” type of response with repeat-

ing compliant-to-stiffening curves at increasingly greater extensions. It has

been suggested that such responses are due to the breaking of bonds that

stabilize folded domains along the molecule; each abrupt loss of force corre-

sponds to an unfolding event (Fig. 3.7d). It should be noted that protein

unfolding exposes new chemical binding sites, thus explaining how mechanical

forces or deformations can change molecular activity. Hence, albeit with

sophisticated instrumentation like optical tweezers or the AFM, understanding

how to interpret simple 1-D extension tests is very important, even at the

molecular level. If we seek to compare behaviors from molecule to molecule,

however, there is a need to go beyond Hooke’s force-extension idea to concepts

like stress–strain, which has not been investigated in depth in molecular

biomechanics. For more on these studies, see Cui and Bustamante (2000) and

Oberhauser et al. (1998), and references therein.

Example 3.2 If f¼ 100 pN at the maximum extension in the first cycle of

loading on tenascin and if the original diameter is on the order of 10 nm, how

does the stress compare with that in tissue?

Solution: Given

f

Ao

¼ 100� 10�12N
1
4
π 10� 10�9m
� �2 ¼ 1:3� 106N=m2 ffi 1MPa;

we see that this value is on the order of that expected for ligaments or tendons,

which are regarded as very strong tissues.

3.4 Pressurization and Extension of a Thin-Walled Tube

Let us now consider another universal solution—a solution in which we can find

a relationship between the stresses and the applied loads and geometry without

specifying a particular constitutive equation for the material [cf. Eq. (3.29)].

Not only are such universal solutions useful because they allow the analysis of

boundary value problems involving a wide variety of materials—soft tissues,

rubber-like materials, metals, and so forth—they are also extremely important

in experimental design, for they provide a means of interpretation independent

of the yet unknown material behavior, which is essential when one is designing
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an experiment to identify and quantify a yet unknown constitutive relation.

As noted by Fung in 1973 and reiterated in his text (Fung 1990), performing the

right experiments to quantify the constitutive equations of living tissue remains

one of the most important tasks in biomechanics.

3.4.1 Biological Motivation

Many soft tissues are pressurized cylindrical tubes. Examples include blood

vessels, airways, and ureters. Moreover, many clinical devices include various

tubes for the transport of fluids—from mechanical ventilators to heart–lung

machines, from kidney dialysis units to catheters for balloon angioplasty, and

even from oxygen lines to simple IV (intravenous) pumps, pressurized tubes are

widespread in the hospital. Hence, quantifying the stresses in a cylindrical tube

that arise from an internal pressure is fundamental to biomechanical R&D.

As a specific example, consider the saphenous vein. The great saphenous vein

is one of the primary veins in the leg (along with the femoral vein); it runs along

the medial aspect of the leg from the groin to the foot. Understanding well the

biomechanics of the saphenous vein is not only important for understanding the

normal physiology and pathophysiology of veins, the saphenous vein has long

been used as an autologous graft in coronary bypass surgery for the treatment of

obstructive atherosclerotic lesions that are the cause of heart attacks. Although

balloon angioplasty and intravascular stents have become widely accepted

alternatives to bypass surgery (~1,000,000 percutaneous coronary procedures

per year in the United States alone), saphenous vein bypass surgery continues to

be performed widely (~400,000 procedures per year in the United States). As

shown in Fig. 3.8, a bypass procedure generally involves the suturing of the

distal end of a vein segment to the ascending aorta and suturing the proximal

end of the vein to a coronary artery distal to the obstruction/stenosis. Question:

Why are the directions important? The treated coronary stenoses and, indeed,

the continued patency of the graft are evaluated fluoroscopically via heart

catheterization and dye injection into the artery. The latter requires an under-

standing of the biofluids, which we address in Chaps. 7–10.

Whereas the first transplants of veins into the arterial system date back to the

early twentieth century, coronary bypass surgery became commonplace only

after basic, clinical, and biomedical engineering advances (such as the heart–

lung machine) provided surgeons with sufficient time and ease to perform the

surgery. More recently, findings in cell biology have opened up two additional

areas in which biomedical engineering can contribute significantly to bypass

surgery. First, as noted in Chap. 1, we now know that many cells in the body

(the mechanocytes) alter their structure and function in response to changes in

their mechanical environment. Given that the endothelial, smooth muscle, and

fibroblast cells in the venous wall (Fig. 3.9) are all very sensitive to mechanical

signals and that when transplanted into the arterial system, a vein goes from a
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low-pressure (5–15 mmHg) steady-flow environment to a high-pressure

(120/80 mmHg) pulsatile environment, understanding well the biomechanics

and associated mechanobiology becomes fundamental to designing the surgical

procedure. Second, also as noted in Chap. 1, realizing the importance

of mechanotransduction mechanisms in controlling cell and matrix biology

suggests that we may be able to engineer tissue replacements by applying the

appropriate loads to vascular cells and their biodegradable scaffolds as we

control their in vitro building of a replacement vessel for surgical implantation.

Given this motivation—the need to understand better both normal physiology

and pathophysiology, the potential to design better surgical procedures, and the

potential to engineer better replacement tissues—let us now investigate the

associated stress analysis of an inflated tube.

3.4.2 Mathematical Formulation

We will see in Sect. 3.6 that the intramural stresses in a pressurized, thick-

walled circular cylinder vary from point to point in general. For example, as

illustrated in Fig. 3.10, the circumferential (or hoop) stresses σθθ are often

FIGURE 3.8 Schema of possible bypass grafts for coronary arteries originating from the

ascending aorta. Coronary artery disease (i.e., the presence of an obstructive atheroscle-

rotic plaque) is a leading cause of morbidity and mortality. Although reduced flow to

distal tissue can cause ischemia and thus angina, rupture of the atherosclerotic plaque

and subsequent clotting at the site of rupture is responsible for most sudden cardiac

deaths. Understanding the solid mechanics (e.g., mechanisms of rupture) and fluid

mechanics (e.g., altered blood flow) are both essential to improving clinical care.
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FIGURE 3.9 Portion of the wall of a vein showing the major cellular (EC¼ endothelial,

SMC¼ smooth muscle, FB¼ fibroblast) and matrix (collagen and elastin) constituents;

a is the inner radius and b the outer radius. Although veins have the same three layers as

arteries (intima, media, adventitia), the thickness and composition of each layer are

different between the two classes of vessels, as would be expected based on their

different mechanical environments.

FIGURE 3.10 Schema of the radial distribution of the circumferential stress σθθ in a

thick-walled cylinder under the action of an internal pressure P. Most importantly, note

that the stress is nonuniform, in contrast to that in Fig. 3.4 for the axially loaded member.

Over a thin portion of the wall, however, the circumferential stresses can be represented

well by the local mean value. This observation suggests that stresses in thin-walled

pressurized cylinders may be represented well by their mean values.
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higher in the inner wall than in the outer wall due to pressurization alone.4 It is

easy to imagine, however, that if we consider only a thin segment of the thick-

walled structure or, better yet, if we have a thin-walled cylinder to begin with,

the normal stresses σ(theta face, theta direction) (i.e., σθθ), will still vary across the

wall, but the difference from the inner portion to the outer portion may be so

small that we can represent well this distribution by the mean value of the stress.

Hence, if the cylindrical tube is thin walled, it is reasonable to assume that the

stresses are approximately uniform across the thickness. Question: How thin is

thin enough? A general rule of thumb is that the ratio of the deformed wall

thickness h to the pressurized radius a should be 1/20 or less. In this case, by

making a judicious cut that separates the cylinder into halves (Fig. 3.11), we see

that a force balance in the vertical direction requires the following. The sum of

all internal uniform pressures acting at each point on the inner surface of the

tube multiplied by their respective differential areas dA generates a net vertical

force. This force is balanced by the vertical forces associated with the sum of

the circumferential stresses σθθ (when we cut the tube in half) at each point

multiplied by their respective differential areas; that is,

FIGURE 3.11 Free-body diagram of half of a thin cylindrical tube that is subjected to an

internal pressure. Although the cut face exposes three components of stress in general

(σθr, σθθ and σθz, given the face-direction nomenclature), σθθ alone is needed to balance

the net vertical force due to the pressure (because we cut the tube exactly in half). Note,

too, that a force balance on a finite part will yield the same result as that on an

infinitesimal part because σθθ is assumed to be uniform.

4 In biological tissues and organs, a growth and remodeling process tends to introduce a
so-called residual stress field that can homogenize the overall stresses (Humphrey
2002); this is discussed briefly in Chap. 6.
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X
Fv ¼ 0!

ð
PvdA� 2

ð
σθθdA ¼ 0: ð3:37Þ

(Note: The factor 2 is necessary because we must add all of the stresses acting

on each of the two cut edges.) Moreover, the “effect” of pressure in the vertical

direction Pv can be written in terms of the uniform internal pressure P via

sin θ¼Pv/P (Fig. 3.11). Thus, Pv¼P sin θ, which acts over the differential area

rdθdz, where r� a on the inner surface. Consequently, equilibrium requires

ðð
P sin θadθdz� 2

ðð
σθθdrdz ¼ 0: ð3:38Þ

Because the internal pressure and circumferential stress are both distributed

uniformly, both can be taken outside the integrals, leaving

Pa

ð l

0

ð π

0

sin θdθdz ¼ 2σθθ

ð l

0

ðaþh

0

drdz; ð3:39Þ

where l is the length of the tube, or

Pa

ð l

0

2dz ¼ 2σθθ

ð l

0

hdz! P 2að Þ lð Þ ¼ 2σθθ hð Þ lð Þ: ð3:40Þ

Thus, the basic equation for determining the circumferential (Cauchy) stress in

a thin-walled pressurized cylinder is

σθθ ¼
Pa

h
; ð3:41Þ

where P is the uniform internal pressure, a is the inner radius of the cylinder in

the pressurized configuration, and h is the thickness of the wall of the pressur-

ized (i.e., deformed) cylinder. That a and h are values in the pressurized

configuration cannot be overemphasized; numerous papers in the biomechanics

literature are in error because of a failure to recognize this.

Likewise, it is very important to appreciate the implications of Eq. (3.41),

which was derived independent of an explicit specification of the material

properties and thus is a universal solution. For example, this equation says

that if we have cylinders of different radii, but subjected to the same pressure

and having comparable wall thickness, then the larger cylinder will have a

higher stress. Although the thinness assumption may be questionable in the case

of many abdominal aortic aneurysms, portions of which may be cylindrical

(Fig. 3.12), many have argued based on Eq. (3.41) that the larger-diameter

aneurysms are more susceptible to rupture, given comparable blood pressures,

130 3. Equilibrium, Universal Solutions, and Inflation



because the stress is higher.5 Hence, this simple equation can have important

clinical ramifications. One important caution, however, is that although the

pressure P is assumed to be uniform and thus constant at each equilibrium

state defined by each pair a and h, Eq. (3.41) does not imply that σθθ necessarily

increases linearly with increases in P; that is, the radius that a tube assumes

under the action of a given (equilibrium) pressure will depend on the material

properties. For veins, for example, there is a highly nonlinear relation P¼P(a)

(see Fig. 3.13), where σθθ also depends directly on the value of a for each

pressure. Likewise, if the tube is subjected to an axial force f while pressurized,

an increasing f will tend to decrease a at a given P. Hence, to use Eq. (3.41)

correctly, we must use the correct values of a and h in the loaded configuration

at each pressure P [i.e., each equilibrium state, whereby we recognize further

that Eq. (3.41) can be used to compute stresses in a sequence of equilibria or

increasing values of P, as long as the states are achieved quasistatically.

Conversely, an illustrative example of elastodynamics is considered in

Chap. 11].

Although we will determine, below, the stresses in a tube under the action of

axial loads, let us first make two additional observations. First, the integralÐ Ð
sinθadθdz in Eq. (3.39) equaled 2al, which is the projected area over which

the pressure acts in the vertical direction. Recognizing this, Eq. (3.41) can be

FIGURE 3.12 Schema of an abdominal aortic aneurysm (AAA). These lesions tend to be

more prevalent in men, they tend to be most problematic in the elderly population, and

the vast majority are fusiform in shape. AAAs may expand at different rates, often

ranging from 0.1 to 1.5 cm/year. Traditional thinking has been that the rupture potential

increases with overall size (~40 % for lesions less than 5 cm in diameter and ~75 % for

lesions greater than 10 cm) although biomechanical analyses suggest that curvature may

be a more important predictor than size. The primary risk factors for AAAs are cigarette

smoking, diastolic hypertension, and chronic obstructive pulmonary disease. Among

others, Albert Einstein died from a ruptured AAA.

5 Detailed analysis of AAAs is very complex and typically requires numerical methods
(Humphrey 2002).
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rederived easily by balancing the pressure times its projected area with the

circumferential stresses times the area over which they act: P(2al)¼ 2σθθ(hl).

When the projected area is obvious, this permits a quicker derivation. Second, if

we recall that the uniform σθθ is actually the mean value that represents well the

distribution of stresses across the thin wall, note that by boundary conditions,

σrr equals �P at the inner surface and σrr equals 0 at the outer surface (in our

case although one could separately track an inner pressure Pi, and outer pressure

Po). Not knowing how σrr varies from�P to 0 (e.g., linearly or nonlinearly with

radial location r 2 [a, a+ h]), the mean value can nonetheless be estimated

simply as

σrr
�
mean ¼

�Pþ 0

2
! σrr ffi

�P
2

; ð3:42Þ

which is assumed to represent well the radial stresses within the wall of a thin-

walled cylinder. Because of the thinness assumption, however, a/h>> 1 and

thus σθθ will be much larger numerically than σrr. It is for this reason that σrr is

typically not considered in thin-walled inflated cylinders, although one must be

careful to ignore effects in mechanobiology based on order of magnitude

arguments alone.

FIGURE 3.13 Pressure–stretch data for veins. Excised cylindrical segments were

mounted vertically, plugged at the bottom, and inflated from the upper end. Panel a

compares results in the circumferential direction between human (dashed line) and

canines (solid line) vessels, whereas panel b compares data from canines in the axial

(dashed line) and circumferential (solid line) directions. Note the nonlinear responses,

similar to the stress–strain response of many soft tissues and of course, the species-

species differences. It is also important to note that because the current radius a (where

the circumferential stretch λθ¼ a/A, with A the original radius) is dictated by the

distending pressure, the pressure is thus a function of the radius [say P¼P(radius)].
This simple realization aids greatly in the interpretation of the equilibrium result for

stress in veins if treated as a thin-walled tube. [Data from Wesley et al. (1975) Circ Res

37: 509–520].
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Finally, let us consider two cases with regard to the axial stress σzz in an

inflated thin-walled cylinder. Ask any vascular surgeon, for example, what

happens to an artery or vein when it is transected. The answer is that many

vessels retract considerably when cut (e.g., the murine carotid artery will

shorten �80 % when cut), which reveals that significant axial loads are present

in vivo. These “preloads” probably arise during development, but this is

speculative. Regardless, the axial stress is computed easily using the methods

in Sect. 3.3, provided the line of action of the axial force f goes through the

centroid of the overall cross section (i.e., provided f induces extension but not

bending or twisting). From Fig. 3.14, therefore, we have

� f þ
ð2π

0

ðaþh

a

σzzrdrdθ ¼ 0: ð3:43Þ

If, consistent with Eqs. (3.41) and (3.42), we consider the mean value of σzz to

represent well the distribution of stresses across a thin wall, then

σzz 2π aþ hð Þ2 � a2
� � 1

2

� �� 

¼ f ! σzz ffi

f

2πah
ð3:44Þ

if h� a. Because the deformed cross-sectional area over which f acts is

Affi 2πah, Eq. (3.44) is thus consistent with Eq. (3.29) for axially loaded rods

of arbitrary cross section.

Conversely, if the ends of the cylinder are closed, then the internal pressure,

which acts normal to and into all surfaces, will exert a net axial load as well. In

this case (Fig. 3.15), we again sum the forces in the z direction. The sum of the

internal pressures acting at each point in the z direction multiplied by their

respective differential areas dA is balanced by the force developed by the sum of

the stresses σzz acting at each point in the wall multiplied by their respective

differential areas. To satisfy equilibrium, therefore,

X
Fz ¼ 0!

ð
σzzdA�

ð
PdA ¼ 0; ð3:45Þ

FIGURE 3.14 Free-body diagram of a cylindrical tube that has been cut to expose z-face
stresses, only one of which (σzz) is needed to balance the axial force f. Question: Under
what type of loading would we also need a z-face, θ-direction stress σzθ? Could such a

stress exist in the aorta, popliteal artery, or middle cerebral artery?
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or

ðð
σzzrdθdr �

ðð
Prdθdr ¼ 0: ð3:46Þ

Again, because the internal pressure and the axial stress are assumed to be

uniformly distributed, both can be taken outside the integral, thus leaving

σzz

ð2π

0

ðaþh

a

rdrdθ ¼ P

ð2π

0

ð a

0

rdrdθ,

σzz

ð2π

0

1

2
aþ hð Þ2 � a2

h i
dθ ¼ P

ð2π

0

1

2
a2dθ,

σzz
1

2
aþ hð Þ2 � a2

h i� �
2πð Þ ¼ P

1

2
a2

� �
2πð Þ,

σzz 2ahþ h2
� �

¼ Pa2:

ð3:47Þ

Again assuming that the term h2 is small compared to 2ah and thus that it

contributes little to the overall solution, the basic equation for estimating the

pressure-induced axial stress in a thin-walled closed cylinder is

σzz ¼
Pa

2h
; ð3:48Þ

where P is the internal pressure, a is the inner radius when pressurized, and h is

the associated thickness of the wall. Note that this value is one-half that in the

circumferential direction [cf. Eq. (3.41)].

Finally, in the case in which the ends are closed and there is an applied axial

load,

σzz ¼
Pa

2h
þ f

2πah
: ð3:49Þ

Superposition of solutions is allowed because the governing equations are

linear. This, too, is a universal result.

FIGURE 3.15 Similar to Fig. 3.14 except for the case of an internal pressure acting on a

closed-ended tube. The cut exposes the stress of interest but does not depressurize the

tube because it is fictitious.
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Example 3.3 If a thin-walled, closed-end pressure vessel is subjected to inter-

nal pressure P (with radius a and thickness h), find the value of an additional end

load f such that σθθ� σzz (cf. Fig. 3.16).

Solution: From the above results [Eqs. (3.49) and (3.41)], the associated axial

and circumferential stresses are

σzz ¼
Pa

2h
þ f

2πah
, and σθθ ¼

Pa

h
:

Now, set the two stresses equal (σθθ¼ σzz) and solve for f:

Pa

h
¼ Pa

2h
þ f

2ahπ
! f ¼ Pa2π;

which is seen to equal the pressure times the internal projected area over

which it acts.

It is important to recognize that if we neglect σrr in comparison to σθθ and σzz,

then the state of stress in a thin-walled inflated tube is two-dimensional relative

to (θ, z). As shown in Chap. 2, however, we know that 2-D stresses also exist

relative to other coordinates, as, for example, (θ0, z0). Indeed, it can be shown

that,6 perfectly analogous to Eqs. (2.13), (2.21), and (2.17),

FIGURE 3.16 Schema of a small portion of a tube that could be subjected to an internal

pressure and an axial force. Note that the 2-D state of stress at a point p depends on the

coordinate system of choice.

6 Note that z is like x and θ is like y on a 2-D block of material.
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σ
0

zz ¼ σzz cos
2αþ 2σzθ sinα cos αþ σθθ sin

2α; ð3:50Þ

σ
0

θθ ¼ σzz sin
2α� 2σzθ sin α cos αþ σθθ cos

2α; ð3:51Þ

σ
0

zθ ¼ σθθ � σzzð Þ sinα cos αþ σzθ cos 2α� sin 2α
� �

: ð3:52Þ

Hence, we can again ask questions, such as: What is the maximum normal

stress? What is the maximum shear stress? At what angle α, relative to z, is the

principal direction? For example, for a closed-end pressurized tube in the

absence of an externally applied axial force,

σ
0
zθ

�
max=min ¼ σ

0
zθ α ¼ αsð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σθθ � σzz

2

� �2
þ σzθð Þ2

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

Pa

h
� Pa

2h

� �2

þ 0

s

¼ Pa

4h
;

ð3:53Þ

which is to say that the maximum possible shear stress in two dimensions is

one-half the axial stress. This shear occurs at

αs ¼
1

2
tan �1

σθθ � σzz

2σzθ

� �
¼ 1

2
tan �1 1ð Þ ! αs ¼ �45
: ð3:54Þ

Such calculations are extremely important in design and analysis and they serve

to remind us that stresses exist relative to particular coordinates.

Observation 3.3. According to Butler et al. (2000), “The goal of tissue engi-

neering is to repair or replace tissues and organs by delivering implanted cells,

scaffolds, DNA, proteins, and/or protein fragments at surgery.” Much of the

early research in this field was directed toward the design of bioreactors to keep

dividing cells alive ex vivo, the engineering of biodegradable synthetic scaf-

folds on which these cells could adhere, migrate, and grow, and the growing of

tissue in desirable shapes such as cylindrical plugs, flat sheets, or tubes.

For obvious reasons, biochemical engineering played a significant role in the

beginning of this exciting frontier. Fortunately, there have been many successes

in this regard; thus, attention is turning more toward issues of “functionality”;

that is, now that we can make tissuelike materials in desired shapes, we must

focus on making them functional. Some tissues, like the liver, have a primarily

biochemical function, but many tissues of interest (e.g., arteries, cartilage,

ligaments, heart, skin, and tendons) have mechanical as well as biological

functions. Hence, biomechanics will play a central role in functional tissue

engineering. For example, early work on arteries sought primarily to develop a
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nonthrombogenic tube that would withstand arterial pressures and have

sufficient suture-retention strength. Normally functioning arteries do much

more, however. For example, they vary their smooth muscle tone to control

the diameter of the lumen and, thus, regional blood flow and they grow and

remodel so as to function well under the inevitable changes in load experienced

throughout changes in life. Tissue-engineered arteries should thus do more than

pass simple “burst” and “suture-retention” tests.

Tissue-engineered tendons for the surgical repair of damaged joints play

primarily a mechanical role, thus their material properties must likewise

mimic well those of the native tissue. Butler and Awad (1999) reported that

mesenchymal stem-cell-based tissue-engineered repairs of tendon defects

exhibited load-carrying capabilities from only 16–63 % of the maximum

force experienced by the tendon during normal activity (Fig. 3.17). The need

for continued improvement in structural integrity is thus clear. The use of

biomechanical analysis will be essential, of course, in the continued evaluation

of such tissue constructs.

FIGURE 3.17 Uniaxial stress–strain behavior of rabbit patellar tendons wherein surgi-

cally created defects were treated with either a collagen gel filler or a collagen gel filler

augmented with mesenchymal stem cells (MSCs). Data are shown 4 weeks after the

repair. Clearly, augmentation of the filler with MSCs improved the stiffness and strength

of the repair. Nonetheless, the repaired tendons could still support only 16 % of the

maximum stress borne by a native tendon. [From Butler and Awad (1999), with

permission from Lippincott Williams & Wilkins].
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3.5 Pressurization of a Thin Spherical Structure

Here, we consider a situation very similar to that in Sect. 3.4: the uniform,

quasistatic pressurization of a thin-walled spherical structure composed of an

arbitrary material. That is, we seek another universal solution that relates wall

stresses to the applied loads and geometry. Because of the spherical symmetry,

only two stresses will be independent. The radial stress σrr at the surfaces will,

by boundary conditions, be equal and opposite the pressure acting on either the

inner or the outer surface of the sphere. Hence, as in the case of the cylinder, the

mean value of radial stress σrr will be �P/2 if P is the distending (inner)

pressure and the outer pressure is zero [cf. Eq. (3.42)]. Note, too, that if we

cut a sphere in half from top to bottom, we expose intramural stresses σϕϕ
whereas if we cut it in half from side to side, we expose the σθθ component.

Because top to bottom and side to side are actually indistinguishable (i.e., you

cannot discern a true change in orientation if you rotate a sphere), σϕϕ¼ σθθ in a

perfect sphere. Hence, our objective again is to relate this mean “hoop” stress to

the applied load (distension pressure) and geometry (deformed radius and wall

thickness).

3.5.1 Biological Motivation

In 1892, R. Woods presented an analysis of stresses in the wall of the heart

based on the assumptions that the left ventricle is nearly spherical and thin

walled. Although both of these assumptions are obviously crude, advances in

cardiac mechanics came slowly: First in the late 1960s, when analyses were

based on the assumption of a thick-walled sphere and material isotropy, to

studies in the late 1970s to mid-1980s that focused on the nearly circular, thick-

walled geometry of the equatorial region and transverse isotropy, to recent

numerical studies based on more realistic geometries and material behaviors

(see Humphrey 2002). Whereas the heart cannot be modeled as a thin-walled

spherical structure, many pressurized cells, tissues, and organs can be well

approximated within this context. Examples may include the eye, the sphering

of red blood cells, intracranial saccular aneurysms, and the urinary bladder.

Indeed, in 1909, W. Osborne reported pressure-volume data on excised, intact

urinary bladders that revealed the characteristic nonlinear behavior exhibited by

soft tissues over large strains (cf. Fig. 3.13); his data are interpreted easily

within the context of the spherical assumption. Here, however, let us consider a

pathologic condition that is responsible for significant morbidity and mortality.

Intracranial saccular aneurysms are focal balloonlike dilatations of the arterial

wall that often occur in or near bifurcations in the circle of Willis (the primary

network of arteries that supplies blood to the brain; see Fig. 1.1). Although these

lesions present in myriad sizes and shapes, a subclass of intracranial aneurysms
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can be treated reasonably well as thin-walled pressurized spherical structures

(Fig. 3.18). For example, wall thickness is often on the order of 25–250 μm,

whereas the pressurized inner radius is often on the order of 1.5–5 mm. Thus,

h/a� 1. A dilemma faced by neurosurgeons is that the rupture potential of these

FIGURE 3.18 Schema of a subclass of intracranial saccular aneurysms (cf. Fig. 1.1) that

can be modeled, to a first approximation, as a thin-walled pressurized sphere of radius a.
Although pressure gradients are associated with the blood flow within the lesion

(Chap. 8), these gradients tend to be small in comparison to the mean blood pressure

(~93 mmHg); hence, we can often assume a uniform internal pressure P. Also shown is a
picture from the author’s laboratory of a human circle of Willis with bilateral aneu-

rysms, one ruptured and one not—the rupture being the cause of death. This reminds us

that biomechanics is not just intellectually challenging and fun, it has potential to affect

the lives of individuals and families.
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aneurysms is very low, less than 0.1–1.0% per year, but when they rupture, 50%

of the patients die and 50 % of the survivors will have severe, lasting neurolog-

ical deficits. A key question then is: How can we better predict the rupture

potential of a given lesion, knowing that rupture appears to occur when wall

stress exceeds strength locally? There is, therefore, a real need for biomechanical

analysis in this case.

3.5.2 Mathematical Formulation

Similar to the analysis of the cylindrical tube, consider a free-body diagram in

which we cut the thin-walled sphere in half to expose the internal stresses

σϕϕ¼ σθθ, which we will assume to be uniform (i.e., the mean values). Equi-

librium thus requires force balance in the vertical direction, which is to say, a

balance between all the pressures acting over their oriented differential areas

and all the stresses acting over their differential areas. Mathematically

(Fig. 3.19) and because the sphere is cut in half,

FIGURE 3.19 Free-body diagram of half of a pressurized spherical membrane, the

associated coordinate system (ρ, θ, ϕ), and a convenient differential area for force

balance. σθθ¼ σϕϕ simply because of spherical symmetry—in other words, because a

force balance and free-body diagram that separates the sphere into left and right halves

yields the same result as one that separates it into top and bottom halves.
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X
Fv ¼ 0!

ð
PvdA�

ð
σθθdA ¼ 0; ð3:55Þ

where the vertical component of the pressure is Pcosϕ, which acts over a

differential area dA¼ ρ dϕρsin(ϕ)dθ, as seen in Fig. 3.19. Thus,

ðð
P cosϕρ sinϕdθρdϕ ¼

ðð
σθθρdθdρ ð3:56Þ

where, in the pressure integral, ρ¼ a, the inner radius in the pressurized state.

Thus,

Pa2
ðπ=2

0

ð2π

0

cosϕ sinϕdθdϕ ¼ σθθ

ðaþh

a

ð2π

0

ρdθdρ,

Pa2
ðπ=2

0

2π cosϕ sinϕdϕ ¼ σθθ

ðaþh

a

2πρdρ,

Pa2
ðπ=2

0

1

2
sin 2ϕdϕ ¼ σθθ

ðaþh

a

ρdρ,

Pa2
1

2

� �
1ð Þ ¼ σθθ

1

2
2ahþ h2
� �� 


,

Pa2 ¼ σθθ 2ahþ h2
� �

;

ð3:57Þ

or because the deformed wall thickness h<< a,

σθθ ¼
Pa2

2ahþ h2
! σθθ ¼

Pa

2h
¼ σϕϕ: ð3:58Þ

At this point, it is useful to recall that the vertical effect of the pressure is given

by the pressure times the projected area over which it acts, Pπa2, which must

balance the stress acting over its area, ~σθθ2πah. Together, these yield

Eq. (3.58).

Example 3.4 Modeling a saccular aneurysm as a thin-walled sphere, assume

that it has an inner radius of 2.5 mm and a thickness of 15 μm at a mean blood

pressure of 120 mmHg. Calculate the stress σθθ or σϕϕ and determine if rupture

is likely if the critical stress is on the order of 5 MPa.

Solution: GivenP¼ 120mmHgffi 16,000N/m2, where 1mmHgffi 133.32N/m2,

a¼ 2.5 mm¼ 2.5� 10�3 m, and h¼ 15 μm¼ 15� 10�6 m, we have, by

Eq. (3.58),
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σθθ ¼ σϕϕ ¼
Pa

2h
¼ 16000N=m2ð Þ 2:5� 10�3m

� �

2 15� 10�6m
� � ffi 1, 333, 333 N=m2

ffi 1:3MPa

which, albeit less than the critical stress, is of the same order of magnitude.

The factor of safety in prediction is thus only ~4. Given the 50 % mortality rate

associated with rupture and the sparseness of data on the mechanical behavior

of saccular aneurysms, this may not be a sufficient factor of safety—one may

well prefer a factor of at least 10. Note, therefore, that if the same size lesion

were 60 μm in thickness rather than 15 μm, the stress decreases proportionately

to 0.33 MPa, which is an order of magnitude less than the stated failure stress. In

this case, because of the morbidity associated with such delicate neurosurgery

(Humphrey 2002), one may feel that such a lesion could simply be monitored

over time rather than surgically treated right away. In this simple example,

therefore, we see the potential utility of biomechanical analyses in surgical

planning, the importance of high-resolution medical imaging (to resolve

between 15- and 60-μm-thick lesions), and perhaps, most importantly,

the need for better data and theories for studying saccular aneurysms

(Humphrey 2002).

3.6 Thick-Walled Cylinders

Before proceeding, let us reflect briefly on the results of the previous three

sections in which we obtained universal solutions for the stresses in (1) an

axially loaded member, (2) a thin-walled cylinder under axial load and pressure,

and (3) a thin-walled pressurized sphere. Specifically, in each case, we were

able to find relations for the stresses in terms of the applied loads and geometry,

namely [cf. Eqs. (3.29), (3.41), (3.49), and (3.58)]:

σxx ¼
f

A
; σθθ ¼

Pa

h
, σzz ¼

Pa

2h
þ f

2πah
; σθθ ¼

Pa

2h
¼ σϕϕ; ð3:59Þ

each independent of an explicit specification of the constitutive behavior.

Moreover, because each is a uniform stress (i.e., they do not vary with position),

the differential equations of equilibrium [Eqs. (3.8)–(3.16)] are satisfied iden-

tically. Although these results are very general, despite the associated restric-

tions such as loading through the centroid or thinness of the wall, in no case did

we determine the associated strains or specific measures of the deformation

(e.g., displacement of the end of the rod). Of course, given the value of the

stress, one can use an appropriate constitutive (e.g., stress–strain) relation to
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find the corresponding strain. By using a constitutive relation, however, the

associated result will not be universal, but instead will apply only to the

particular class of material behaviors modeled by the constitutive relation. In

this section, therefore, let us consider a case in which we determine both stress

and strain for a particular material behavior by satisfying the differential

equation for equilibrium.

Some veins, aneurysms, and other tissues may be analyzed by assuming that

the thickness of the wall is much less than the inner radius; in other cases, the

thick-walled structure must be addressed. Examples include the aorta and the

equatorial region of the left ventricle of the heart. Because of the nonlinear

material behavior (cf. Fig. 2.24) and large deformations, however, solving the

thick-walled problem (for which universal solutions do not exist) is challenging

and generally beyond the scope of an introductory text. For details on such

problems, see Humphrey (2002), as well as the one example in Chap. 6.

Nonetheless, it is good to gain an appreciation of some of the complexities of

the thick-walled solution and, indeed, to draw comparisons between the thick-

wall and thin-wall approaches and results. Toward this end, therefore, let us

consider the simplest thick-walled inflation problem: pressurization of a cylin-

der that exhibits a linearly elastic, homogeneous, and isotropic (LEHI) behavior

under small strains. Moreover, let us assume complete axisymmetry and that

there are no axial variations in stress; that is,

∂

∂θ
¼ 0 and

∂ σ faceð Þ directionð Þ
� �

∂z
¼ 0: ð3:60Þ

By restricting our attention to a uniform pressure, plus possibly a single axial

load applied through the centroid, the only possible stresses relative to (r, θ, z)

are σrr σθθ, and σzz, which may vary with radial location at most. Hence, in the

absence of body forces, the cylindrical equilibrium equations [e.g., Eq. (3.11)]

reduce to

dσrr

dr
þ 1

r
σrr � σθθð Þ ¼ 0; ð3:61Þ

which is a first-order, linear ordinary differential equation. Now, for LEHI

behavior [recall Eq. (2.79)],

εrr ¼
1

E
σrr � v σθθ þ σzzð Þ½ 	,

εθθ ¼
1

E
σθθ � v σrr þ σzzð Þ½ 	,

εzz ¼
1

E
σzz � v σrr þ σθθð Þ½ 	;

ð3:62Þ
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where [Eq. (2.47)]

εrr ¼
∂ur

∂r
, εθθ ¼

ur

r
, εzz ¼

∂uz

∂z
: ð3:63Þ

Furthermore, let the axial strain εzz be either zero or a constant. From the first

two of these strain–displacement relations, note that

d

dr
rεθθð Þ ¼ εrr: ð3:64Þ

This equation is called an equation of “compatibility,” which is to say that

strains must be such that gaps or voids are not allowed to form (in other words,

the continuum theory must be augmented to described situations such as

fracture, which we do not consider, for which such incompatibilities do arise).

Now, from this compatibility equation, combined with Eq. (3.62), we have

d

dr
r

1

E
σθθ � vσrr � vσzzð Þ

� �� 

¼ 1

E
σrr � vσθθ � vσzzð Þ; ð3:65Þ

which can be written as (using the product rule),

r
dσθθ

dr
� v

dσrr

dr
� v

dσzz

dr

� �
þ σθθ � vσrr � vσzzð Þ

¼ σrr � vσθθ � vσzzð Þ; ð3:66Þ

or

r
dσθθ

dr
� v

dσrr

dr
� v

dσzz

dr

� �
¼ σrr � σθθð Þ 1þ vð Þ: ð3:67Þ

Now, if we constrain the ends to not move in the axial direction, then εzz¼ 0 for

all r and

dεzz

dr
¼ 0 ¼ 1

E

dσzz

dr
� v

dσrr

dr
� v

dσθθ

dr

� �
; ð3:68Þ

or

dσzz

dr
¼ v

dσrr

dr
þ dσθθ

dr

� �
: ð3:69Þ

Substitution of this equation as well as Eq. (3.61) (the radial equilibrium

equation) into Eq. (3.67) yields

144 3. Equilibrium, Universal Solutions, and Inflation

http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ47_2


r
dσθθ

dr
� v

dσrr

dr
� v v

dσrr

dr
þ dσθθ

dr

� �� 
� �
¼ �r dσrr

dr
1þ vð Þ; ð3:70Þ

or

1� v2
� � d

dr
σrr þ σθθð Þ ¼ 0: ð3:71Þ

Hence, dividing through by 1� v2 and integrating with respect to r, we find

σrr þ σθθ ¼ c ¼ constant: ð3:72Þ

Now, recognizing (show it) that the equilibrium equation (3.61) can be written as

d

dr
rσrrð Þ ¼ σθθ; ð3:73Þ

we can obtain a single differential equation in terms of one component of stress,

namely

σrr þ
d

dr
rσrrð Þ ¼ c ¼ r

dσrr

dr
þ 2σrr; ð3:74Þ

which reveals (show it) that we can write this equation as

1

r

d

dr
r2σrr
� �

¼ c: ð3:75Þ

Multiplying through by r and integrating, we have

ð
d

dr
r2σrr
� �

dr ¼
ð
crdr ! σrr ¼

c

2
þ c1

r2
; ð3:76Þ

which requires two boundary conditions, say σrr(r¼ a)¼�Pi and σrr(r¼ b)¼
�Po. Solving the associated two algebraic equations for two unknowns,

we have

c1 ¼
Po � Pið Þa2b2
b2 � a2

,
c

2
¼ Pi � Poð Þb2

b2 � a2
� Pi ð3:77Þ

and, thus,

σrr ¼ �Pi þ
Pi � Poð Þb2
b2 � a2

þ Po � Pið Þa2b2
b2 � a2
� �

r2
; ð3:78Þ
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which can also be written as

σrr ¼
Pia

2 � Pob
2

b2 � a2
� Pi � Poð Þa2b2

b2 � a2
� �

r2
: ð3:79Þ

Note that at r¼ a and r¼ b, we recover (show it) the boundary conditions as we

should. Finally, from Eq. (3.73), the circumferential stress is

σθθ ¼
Pia

2 � Pob
2

b2 � a2
þ Pi � Poð Þa2b2

b2 � a2
� �

r2
: ð3:80Þ

Together, Eqs. (3.78) and (3.80) are known as Lamé solutions. Note that, as in

the previous sections, we have related the stresses to the applied loads (pres-

sures) and geometry (radii). Remembering this common goal in each of these

different problems—axially loaded rod, thin-walled cylinders and spheres, and

now thick-walled cylinder—is helpful as we attempt to formulate new problems

that may not be well defined. Note, too, that

σrr þ σθθ ¼ 2
Pia

2 � Pob
2

b2 � a2

� �
; ð3:81Þ

which is constant given uniform static pressures Pi and Po. Moreover, if Po¼ 0,

which is often the case, then

σrr ¼
Pia

2

b2 � a2
1� b2

r2

� �
, σθθ ¼

Pia
2

b2 � a2
1þ b2

r2

� �
; ð3:82Þ

which reveals that σrr increases monotonically from �Pi to 0 (i.e., it is always

compressive) and σθθ decreases monotonically as 1/r2 from its maximum value

at r¼ a. See Fig. 3.20 and compare to Fig. 3.10 while remembering the earlier

assumption of thinness to eliminate this radial dependence. It is interesting to

compute (do it) the mean value of σθθ, namely

σθθh i ¼ 1

b� a

ð b

a

Pia
2

b2 � a2
1þ b2

r2

� �
dr ¼ Pia

b� a
; ð3:83Þ

which is seen to equal exactly (with wall thickness h¼ b� a) the universal

result for the inflation of a thin-walled cylinder; that is, the thin-walled assump-

tion yields the correct mean value of the stress regardless of the material

properties or the thickness. Nonetheless, how well the mean value approximates

the radial distribution of stresses must be assessed in each problem.
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Finally, note that the stress σzz required to maintain the inflated cylinder at a

fixed length [cf. Eq. (3.43)] is given by

2π

ð b

a

σzzrdr ¼ Piπa
2 � Poπb

2 þ f ; ð3:84Þ

FIGURE 3.20 Computed transmural distributions of stress in a potentially thick-walled

cylinder based on the Lamé solution with Po¼ 0 [i.e., Eqs. (3.82)]. To evaluate the role

of wall thickness, we normalize the circumferential and radial stresses by the inner

pressure Pi and thus plot σθθ/Pi (solid curves) and σrr/Pi (dashed curves) as a function of
r. Consider results for four different sets of inner and outer radii: panel a for a¼ 1.0 and

b¼ 2.0; panel b for a¼ 1.0 and b¼ 1.5; panel c for a¼ 1.0 and b¼ 1.1; and panel d for

a¼ 1.0 and b¼ 1.01. Observe the following. First, we see that the thicker the wall (e.g.,

panel a), the more dramatic the radial gradient in the wall stress; a corollary, therefore, is

that a truly thin-walled cylinder has a nearly uniform wall stress, which is represented

well by its mean value (e.g., panel d). Second, although the radial stress must always

satisfy the boundary condition at the inner wall, σrr(a)¼�Pi, its value becomes smaller

in comparison to that of the circumferential stress as the wall gets thinner [recall the

discussion near Eq. (3.42)]. Third, given the same pressure and inner radius, the

thinnest-walled cylinder will have the highest stress, which is intuitive for it has less

material to resist the same load. Nondimensional parametric studies such as this can

often provide considerable insight and thus should be examined when possible.
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where

εzz ¼ 0! 1

E
σzz � v σrr þ σθθð Þ½ 	 ¼ 0; ð3:85Þ

or

σzz ¼ v σrr þ σθθð Þ; ð3:86Þ

a constant from Eq. (3.72). Specifically, from Eqs. (3.82), we have for the case

of internal pressure only:

σzz ¼ v
Pia

2

b2 � a2
1� b2

r2

� �
þ Pia

2

b2 � a2
1þ b2

r2

� �� �
ð3:87Þ

or

σzz ¼
2vPia

2

b2 � a2
� 2vPia

2

2ahþ h2
: ð3:88Þ

This relation, which depends on the material property v, is in contrast to

Eq. (3.48) for the thin-walled case. In particular, if the wall is incompressible,

v ¼ 1
2
, and if h<< a, then Eq. (3.88) recovers the earlier result, which did not

require incompressibility. Regardless, the axial stress is uniform even though

the radial and circumferential components are not.

In summary, we see that the solution of the thick-walled pressurized cylinder,

even for a simple LEHI material behavior, is much more involved

[Eqs. (3.61)–(3.88)] than the universal solution for the thin-walled cylinder

[Eqs. (3.37)–(3.49)]. This is not surprising, of course, for we had to solve

differential equations to find the pointwise distribution of stress in the thick-

walled cylinder, whereas we solved simple gross force balance equations to find

the uniform (mean) stresses in the thin-walled case. The decision to determine

pointwise distributions versus mean values must be addressed individually in

each problem, based on the desired or required detail needed to study the

biomechanics or the mechanobiology. As we noted earlier, in the case of

nonlinear material behavior over large strains (which is typically the case for

soft tissues), solving the differential equations is nontrivial and we must often

resort to numerical methods that are beyond the present scope. Moreover,

because of the sensitivity of mechanocytes to changes in their mechanical

environment, determination of the distribution of stress (i.e., the stress field)

is most likely much more important than estimating the mean values.
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Finally, we noted in the beginning of this section that we often desire to know

the strains as well as the stresses. Having computed the values of stress, we can

use the constitutive relations to determine the strains. For example,

εθθ ¼
1

E
σθθ � v σrr þ σzzð Þ½ 	 ð3:89Þ

is easily computed and so too the radial displacement because ur¼ rεθθ from

Eq. (3.63). The radial strain is similarly calculated easily via

εrr ¼
1

E
σrr � v σθθ þ σzzð Þ½ 	: ð3:90Þ

Of course, if the displacements were of primary interest, one could have

alternatively solved the Navier–Space equilibrium equation [Eq. (3.26)] given

displacement boundary conditions.

Chapter Summary

Whereas Chap. 2 introduced the general concepts of stress and strain as well as

an illustrative stress–strain relation (Hooke’s law) that relates them constitu-

tively in small strain solidlike responses, the focus of Chaps. 3–5 is very

different. In these three chapters, we introduce five canonical problems of

introductory biosolid mechanics that are useful theoretically and experimentally

in analysis and design. They are,

• Axial Loading of Structures often referred to as Rods (Chap. 3);

• Pressurization of Hollow Cylindrical and Spherical Structures (Chap. 3);

• Extension of Rods and Torsion of Cylindrical Structures (Chap. 4);

• Bending of Structures often referred to as Beams (Chap. 5); and

• Buckling of Structures often referred to as Columns (Chap. 5).

In particular, note two things. First, in each of these five classes of problems

we select coordinate systems that enable components of stress to be determined

easily by satisfying linear and/or angular momentum balance in the absence of

inertial effects, which is to say the equilibrium equations. Moreover, we typi-

cally seek to find stress in terms of the applied load and geometry. Only in a few

cases do we find that material properties appear explicitly in the solution for

stress in these canonical problems. In cases wherein we seek to find strain, or the

associated deformation, we find that the deformation depends on the applied

load, geometry, and material properties. Hence, as noted before, be attentive to

parallels for they reinforce common methods of approach, which ultimately are

needed when seeking solutions to new problems.
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Second, note that three situations in this chapter give rise to very special

solutions, called universal. Stresses resulting from the axial loading of a

uniform rod, the inflation and extension of a thin-walled cylindrical tube, or

the inflation of a thin-walled hollow sphere can each be determined by solving

equilibrium equations alone, that is, without introducing a constitutive equation.

These statically-determinate solutions, referred to as universal solutions herein,

are thus applicable to any material independent of its constitutive response. That

is, these solutions are equally good for metals, elastomers, soft or hard biolog-

ical tissues, or other materials exhibiting a solidlike behavior under particular

conditions. Universal solutions are thus very useful experimentally; they are

guaranteed to exist and are known a priori independent of the material tested.

They are, therefore, particularly useful in the formulation of a stress–strain

relation provided that the strain can be measured (cf. Chap. 2).

It is also important to note that simply increasing the thickness of a hollow

tube (Sect. 3.6), or similarly a hollow spherical structure (see Humphrey 2002),

can change dramatically the method of solution and applicability of the find-

ings. As illustrated in Fig. 3.20, the transmural distribution of stress can change

progressively from nearly uniform for a thin-walled structure to highly

non-uniform for a thick-walled structure, the latter of which cannot be solved

by equilibrium independent of a constitutive relation. Again, therefore, it is

essential to remember the range of applicability of the solution of an initial or

boundary value problem just as it is essential to remember the conditions of

interest over which a constitutive relation holds. Of course, the average wall

stress can be determined similarly for thin- or thick-walled tubes, independent

of a constitutive relation, it is just that the average value better represents the

transmural distribution in the thin-walled tube. There is a need, therefore, to

motivate solutions based on the need.

By way of foreshadowing, it is remarkable that biology appears to have

addressed the problem of highly non-uniform transmural stresses that tend to

develop in pressurized hollow organs such as arteries and the heart. That is, via

differential growth and remodeling processes, it appears that cells can establish

a residual stress field (i.e., stresses that exist independent of external loading)

within hollow organs, which tends to homogenize the transmural stress field as

illustrated in Figs. 6.21 and 6.22. Homogenizing this stress field would effec-

tively render the local cellular mechanical environment independent of position

within the wall, which seems advantageous mechanobiologically because many

cells seek to establish, maintain, or restore a homeostatic target mechanical

environment (cf. Humphrey 2008). This example is another reminder that

biomechanics is much more than simply applying mechanics to biology; it

must include the development, extension, and then application of mechanics

in a way that both combines established and reveals new mechanical and

biological principles.
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Appendix 3: First Moments of Area

Consider the cross section shown in Fig. 3.21 and the associated (y0, z0) and (y, z)
coordinate axes. The first moments of area with respect to the y0 and z0 axes are
defined as

Qz
0 ¼

ðð
y
0
dA, Qy

0 ¼
ðð
z
0
dA: ðA3:1Þ

These quantities may be positive, negative, or zero depending on the position of

the coordinate system relative to the cross section. The centroid of the cross

section is determined as

y
0 ¼

ðð
y
0
dA

ðð
dA

, z
0 ¼

ðð
z
0
dA

ðð
dA

: ðA3:2Þ

Once the centroid is located relative to (y0, z0), it is often useful to introduce a

centroidal coordinate system (o; x, y, z) located at the centroid. Relative to this

coordinate system, y, zð Þ¼ (0,0); that is

0 ¼
ðð
ydA, 0 ¼

ðð
zdA: ðA3:3Þ

To illustrate, consider the rectangular cross section in Fig. 3.22. First, let us find

y
0
, z

0� �
. Note, therefore, that

Ay
0 ¼
ð b

0

ð h

0

y
0
dy

0
� �

dz
0 ¼ b

1

2
y
0

� �2��h
0

� �
¼ 1

2
bh2; ðA3:4Þ

FIGURE 3.21 General

cross section for the

determination of the first

moment of area.
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where

A ¼
ð b

0

ð h

0

dy
0
dz
0 ¼ bh: ðA3:5Þ

Hence, the centroid relative to (y0, z0) is

y
0 ¼

1
2
bh2

bh
¼ 1

2
h, z

0 ¼
1
2
b2h

bh
¼ 1

2
b: ðA3:6Þ

Moreover, relative to (y, z), we have

Ay ¼
ðb=2

�b=2

ðh=2

�h=2
ydy

 !
dz ¼ b

1

2
y2
��h=2
�h=2

� �
¼ 0; ðA3:7Þ

and, similarly, Az ¼ 0, as expected. With regard to first moments of area,

therefore, the coordinate system of interest must be chosen carefully.

Example A3.1 Determine the centroid x, yð Þ for the triangle shown in

Fig. 3.23.

Solution: Although there are multiple ways to perform the requisite integration,

let us first do so with a differential area dA¼ dxdy noting that y¼ (h/b)x (i.e., the

slope, or rise over run, is h/b and the intercept is zero). Hence,

FIGURE 3.22 Determine

a general formula for the

first moment of area for

this rectangular cross

section.
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A ¼
ð b

0

ðhx=b

0

dy

 !
dx ¼

ð b

0

hx

b
dx ¼ h

b

x2

2

����
b

0

 !
¼ 1

2
bh;

as expected. Similarly,

ðð
xdA ¼

ð b

0

x

ðhx=b

0

dy

 !
dx ¼

ð b

0

hx2

b
dx ¼ h

b

b3

3

� �
¼ 1

3
b2h

and

ðð
ydA ¼

ð b

0

ðhx=b

0

ydy

 !
dx ¼

ð b

0

1

2

h2x2

b2

� �
dx ¼ 1

2

h2

b2
b3

3

� �
¼ 1

6
bh2:

Consequently,

x ¼

ðð
xdA
ðð
dA

¼
1
3
b2h
1
2
bh
¼ 2

3
b, y ¼

ðð
ydA
ðð
dA

¼
1
6
bh2

1
2
bh
¼ 1

3
h;

as expected. Show that the same result is obtained by considering a differential

area dA¼ ydx¼ (h/b)x dx.

Example A3.2 Show that the centroid x, yð Þ for the circular region shown in

Fig. 3.24 is (0, 0).

Solution: Knowing that x2+ y2¼ a2, or y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

, we can compute

FIGURE 3.23 Determine

a general formula for the

first moment of area for

this triangular cross

section.
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A ¼
ð a

�a

ð ffiffiffiffiffiffiffiffiffia2�x2
p

�
ffiffiffiffiffiffiffiffiffi
a2�x2
p dy

 !
dx ¼ 2

1

2
a2

� �
π

2
��π

2

� �
¼ πa2:

Note from integral tables that

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

dx ¼ x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

þ a2

2
sin �1

x

aj j

� �
:

Alternatively, knowing that x¼ r cos θ and y¼ r sin θ, we can compute

A ¼
ð a

0

ð2π

0

rdθ

� �
dr ¼ 2π

r2

2

����
a

0

� �
¼ πa2:

Likewise, we can compute the centroid x, yð Þ in either Cartesian or cylindrical

coordinates. In cylindricals,

ðð
xdA ¼

ð a

0

ð2π

0

r cos θrdθ

� �
dr ¼

ð a

0

r2dr

ð2π

0

cos θdθ ¼ a3

3

� �
sin 2π � sin 0ð Þ ¼ 0

and, similarly,

ðð
ydA ¼

ð a

0

ð2π

0

r sin θrdθ

� �
dr ¼

ð a

0

r2dr

ð2π

0

sin θdθ ¼ a3

3

� �
� cos 2π � cos 0ð Þ ¼ 0;

therefore,

x ¼ 0, y ¼ 0;

as expected. Repeat using Cartesians alone.

FIGURE 3.24 Determine

the first moment of area

for this circular cross

section relative to two

different coordinate

systems.
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First moments of area are additive; thus, they can be used to find the centroids

of composite areas. A composite area is simply defined as an area that can be

well described via the addition or subtraction of well-defined geometric shapes

(squares, rectangles, triangles, circles, ellipses, etc.).

It can be shown that the centroid for a composite area is given by

x ¼
X

xiAiX
Ai

, y ¼
X

yiAiX
Ai

; ðA3:8Þ

where xi and yi are the centroids of the individual parts i¼ 1, 2,. . ., N, all

relative to the same coordinate system. These simple formulas are best appre-

ciated via numerical examples.

Example A3.3 Find the centroid, relative to x and y, for the cross section

shown in Fig. 3.25.

Solution: It is easiest to formulate these solutions in tabular form. Hence, note

that

Area xiAi yiAi

Part 1 20 (6)¼ 120 10 (120) 13 (120)

Part 2 2 (10) ¼20 10 (20) 5 (20)

Therefore,

FIGURE 3.25 Compute the first moment of area of this composite section.
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x ¼
X

xiA
iX

Ai

¼ 10 120ð Þ þ 10 20ð Þ
120þ 20

¼ 10,

y ¼
X

yiAiX
Ai

¼ 13 120ð Þ þ 5 20ð Þ
120þ 20

¼ 11:86:

Note, too, that we could obtain the same result by computing values for a

rectangular area 20� 16 and then subtracting out small rectangular areas to

yield the T-shape, namely

Area xiAi yiAi

Part 1 20 (16)¼ 320 10 (320) 8 (320)

Part 2 9 (10)¼ 90 4.5 (90) 5 (90)

Part 3 9 (10)¼ 90 15.5 (90) 5 (90)

whereby

x ¼
X

xiAiX
Ai

¼ 10 320ð Þ � 4:5 90ð Þ � 15:5 90ð Þ
320� 90� 90

¼ 10,

y ¼
X

yiAiX
Ai

¼ 8 320ð Þ � 5 90ð Þ � 5 90ð Þ
320� 90� 90

¼ 11:86:

which is the same as found above.

Exercises

3.1 Do a literature review to find the failure strength of the anterior cruciate

ligament (ACL), which is commonly torn by athletes. Given typical

dimensions (e.g., cross-sectional area) of an ACL in a male college

athlete, what is the maximum safe axial force that the ACL can sustain?

With increased numbers of women competing in NCAA sports, however,

there are increasingly more reports of ACL injuries in females than

males. Why is this the case and how can this problem be addressed?

3.2 Repeat the derivation of Eqs. (3.34) and (3.36) by assuming that the line

of action of the force f goes through the point (�y*, �z*); that is, show
that the final result is independent of the starting point.
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3.3 Design an experiment to determine the failure strength of a chordae

tendineae. Additionally, outline a method of analysis to estimate the

range of stresses experienced by the chordae in vivo under physiologic

values of intraventricular pressures.

3.4 Recall from Example 3.1 and the subsequent discussion that there are at

least two “types” of stress: the true (Cauchy) stress, which is a measure

of forces acting over a deformed oriented area A, and the nominal (Piola–

Kirchhoff) stress, which is a measure of forces acting over the

undeformed oriented area Ao. Note, too, that the chordae, like many

soft tissues, often conserves its volume when deforming (i.e., it behaves

incompressibly, which because of the large strains cannot be accounted

for via v ¼ 1
2
). If the original length is L and the current length is l, volume

conservation requires LAo¼ lA!A¼Ao(L/l) assuming uniform stress

and strain. Hence,

σxx ¼
f

A
¼ f

Ao

l

L

� �
¼ ΛΣxx;

whereΛ¼ l/L is a stretch ratio andΣxx is the nominal stress. If L¼ 10mm,

compare the values of σxx and Σxx for all l from 10.001 to 10.7 mm.

3.5 Repeat Exercise 3.4 for a rubber band, which also conserves its volume

as it is extended by up to 50 % of its original length. Note, therefore, the

potential difference between the Cauchy and Piola–Kirchhoff stresses.

3.6 What is the maximum shear stress, in terms of the applied load f and cross-

sectional area A, in a uniaxially stressed structure [Eqs. (3.29)–(3.36)] and

what is the associated angle αs, relative to an axial direction x?

3.7 Based on the type of analysis in Exercise 3.6, if an investigator correlates

the proliferation and migration of fibroblasts in an injured tendon with the

value of axial stress during the test (e.g., no stress, nonzero but

subphysiological stress, physiological stress, or supraphysiologic stress),

how can one know that the mechanotransduction is induced by the exper-

imentally convenient axial stress rather than the maximum shear stress

given that both exist simultaneously (i.e., their calculation depends only on

the choice of the coordinate system introduced by the investigator)?

3.8 Write a three-page summary on the history of saphenous vein bypass

surgery, noting, in particular, the histological changes in the wall of the

vein graft due to the biomechanics-mediated growth and remodeling.

3.9 Find the dimensions of and pressures within the human inferior vena

cava. Estimate the mean wall stress σθθ. Even though the aorta is not thin

walled, estimate its mean wall stress σθθ in the human abdominal aorta.

Discuss structural differences between the vena cava and aorta given

their different functions and mechanical environments.
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3.10 Compare the maximum shear stress σ0zθ in a smooth muscle cell in the

wall of an arteriole (a ~ 75 μm and P ~ 45 mmHg) of the thickness of one

smooth muscle cell if the mean radial stress is ignored or included.

Neglect possible σrθ and σrz shear stresses.

3.11 Referring to Example 3.3, show that the maximum shear stress σ0zθ
(α¼ αs) is zero in a closed-end pressurized tube when σθθ¼ σzz due to

the judicious choice of the applied load f and because σzθ¼ 0. Indeed,

note the significant ramifications of this; if the maximum shear stress,

relative to (z0, θ0 with α¼ αs), is zero, then all shear stresses σ
0
zθ are zero

for any α. This is seen easily from the formula

σ
0

zθ α ¼ αsð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σθθ � σzz

2

� �2
þ σzθð Þ2

r
;

which reveals that if the stresses are principal and equal, then there is no

shear stress relative to any 2-D coordinates.

3.12 If a vascular surgeon wishes to implant an arterial graft such that there

will exist no shear stress σ0zθ relative to any 2-D coordinate directions

(z0, θ0), find the required axial load f. Hint: See Exercise 3.11.

3.13 Let the pressure in a normal vein be denoted by Pv and likewise its

normal geometry by av and hv. If this vein is used as an arterial graft, its

pressure will increase to value P and its radius to value a; associated

thinning of the distended wall to h is expected as well. Hence, with

P>Pv and a> av with h< hv we expect that σθθ)graft>> σθθ)vein simply

due to the transplantation. Extensive laboratory evidence suggests that

the vascular wall seeks to maintain the circumferential stress nearly

constant. If this is so and the mechanotransduction mechanisms opera-

tive in the endothelial, smooth muscle, and fibroblast cells allow the wall

to respond to the increased stress, what do you expect the vein to do?

If you said that you expect the wall to thicken, you are exactly right.

In fact, consider the following data from Zwolak et al. (1987):

Tissue EC activity SMC activity h (μm) a (mm)

Artery 0.02 0.05 50 0.89

Vein 0.02 0.05 19 1.69

VG—1 week 8.10 10.30 23 1.55

VG—2 weeks 2.90 1.70 44 1.91

VG—4 weeks 1.50 0.80 77 2.36

VG—12 weeks 0.02 0.20 116 2.90

VG—24 weeks 0.10 0.20 123 2.65

where VG� vein graft at the various times post-transplantation and cell

activity reflects the percent turnover in cells. Plot Pa/h for the adaptation
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of the vein and compare it to that for the homeostatic value for the artery.

Plot the cell turnover rates and discuss.

3.14 Similar to the discussion in Exercise 3.13, the arterial wall will also

thicken in response to chronic hypertension: systolic/diastolic pressures

such as 160/90 mmHg versus the normal values of 120/90 mmHg. See

data on wall thickening in Fung and Liu (1991). Discuss in terms of σθθ
noting that their discussion of stress is wrong; that is, the formula

σθθ¼Pa/h must be based on values of a and h in the deformed (pressur-

ized) configuration. You may note, in addition, that this formula is

strictly valid only for h/a<< 1. It can be shown, however, that the

mean wall stress in even a thick-walled tube is estimated reasonably

well by the simple formulas (cf. result in Sect. 3.6), which is why this

relation is widely used in vascular mechanics.

3.15 The balloons used on angioplasty catheters tend to be long and cylindri-

cal. If one performed an experiment in the laboratory in which a balloon

catheter is inflated within a healthy cylindrical artery, what measure-

ments would be needed to determine the radial stress exerted on the

endothelium by the balloon?

3.16 Referring to Example 3.3, compute the maximum shear stress σ0zθ if

f¼ 0; that is,

σθθ ¼
Pa

h
, σzz ¼

Pa

2h
:

Compare it to the case when

f ¼ Pa2π:

3.17 What is the maximum shear stress in a thin-walled pressurized sphere?

What does this imply with regard to the potential rupture criterion for

intracranial saccular aneurysms?

3.18 Similar to the analysis of the thick-walled pressurized Hookean cylinder

in Sect. 3.6, formulate and solve for the stresses in a thick-walled sphere.

This may require library research on spherical coordinates. Note, too,

that this is a non-trivial problem.

3.19 Given the solution in the previous exercise, find the average wall stress in

the thick-walled Hookean sphere and compare to the results from the

thin-walled analysis.

3.20 Although Eq. (3.41) was derived for a thin-walled cylinder, it can be

shown that it provides a reasonable estimate of the mean circumferential
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stress in a thick-walled tube as well. Note, therefore, that in hypertension

(i.e., a persistent increase in blood pressure), the aorta distends (i.e.,

a increases) and the wall thins (i.e., h decreases). Hence, σθθ increases

tremendously. If the hypertensive pressure PH¼ nP, where n is a number

and the luminal radius returns to σθθ due to smooth muscle contraction

and a shear-stress-mediated vaso-constriction (see Chap. 9), how much

does the aorta need to thicken to restore σθθ back to its original value?

Find data in the literature on aortic morphology in hypertension to see if

this is borne out by data.

3.21 In the thick-walled cylinder problem, we found that σzz¼ v(σrr + σθθ).

If we use this result in Hooke’s law, then

εrr ¼
1

E
σrr � v σθθ þ v σrr þ σθθð Þ½ 	f g,

εθθ ¼
1

E
σθθ � v σrr þ v σrr þ σθθð Þ½ 	f g:

Show that these two equations can be inverted to yield

σrr ¼
E

1þ vð Þ 1� 2vð Þ 1� vð Þεrr þ vεθθ½ 	,

σθθ ¼
E

1þ vð Þ 1� 2vð Þ vεrr þ 1� vð Þεθθ½ 	:

3.22 Given the result from the previous exercise that σrr¼ f(εrr, εθθ) and

σθθ¼ g(εrr, εθθ), where εrr¼ dur/dr and εθθ¼ ur/r, show that equilibrium

requires

dσrr

dr
þ 1

r
σrr � σθθð Þ ¼ 0! ∂

2
ur

∂r2
þ 1

r

∂ur

∂r
� ur

r2
¼ 0:

3.23 Verify via substitution that ur¼C1r+C2/r is a solution for the differen-

tial equation in the previous exercise. Moreover, show that

C1 ¼
1þ vð Þ 1� 2vð Þ

E

Pia
2 � Pob

2

b2 � a2

� �
,

C2 ¼
1þ vð Þ
E

Pi � Po

b2 � a2

� �
a2b2:

Hint: Use the boundary conditions that
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σrr r ¼ að Þ ¼ �Pi, σrr r ¼ bð Þ ¼ �Po;

with σrr and σθθ written in terms of ur (� C1r+C2/r) via the constitutive

relation (cf. Exercise 3.21) and strain–displacement relation (cf. Exercise

3.22). Verify that the final result for stress is consistent with that found in

Sect. 3.6.

3.24 Consider the two following experimental setups (Fig. 3.26), both of

which are designed to impose an axial load on a thin tendon (from a

laboratory rat) for purposes of studying the stress–strain behavior.

Assuming a coefficient of friction μs between the wire and the rough

cylinder, determine the axial load f that is applied to the tendon, in terms

of W, in each case. Hint: recall Appendix 1.

3.25 If the axial first Piola–Kirchhoff stress Σ¼ f/Ao in Exercise 3.24, what is

the axial Cauchy stress σ if the tendon has an original cross-sectional

area Ao and length L and the tendon is incompressible? Let the current

area and length be A and l, respectively (Fig. 3.26).

FIGURE 3.26
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3.26 If a single protein molecule is tested in tension, what complications may

arise with regard to assuming a continuum to compute the stress. See

Fig. 3.27.

3.27 Find the centroid using the method of composite sections for the cross-

sectional area in Fig. 3.28.

FIGURE 3.27

FIGURE 3.28
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4
Extension and Torsion

The deformations experienced by some biological tissues and biomaterials can

be very complex. For example, we have seen that all six components of the

Green strain [cf. Eq. (2.42), but relative to cylindrical coordinates] are nonzero

in the wall of the heart, and each varies with position and time throughout the

cardiac cycle (cf. Fig. 2.20). In such cases, we must often resort to sophisticated

numerical methods to measure or compute the strain fields. Nevertheless, there

are many cases in which the deformations are much simpler, as, for example, in

chordae tendineae within the heart, which experience primarily an axial exten-

sion with associated lateral thinning (cf. Fig. 3.2). Indeed, as an introduction to

biomechanics, it is often best to study simple motions such as extension,

compression, distension, twisting, or bending, which allow us to increase our

understanding of the basic approaches and which also apply to many problems

of basic science or clinical and industrial importance. Whereas we considered

small strains that occur during a simple inflation of a thick-walled tube in the

last section of Chap. 3, here we consider in some detail small strains associated

with axial extension and torsion, with an associated complete stress analysis for

the latter for a linear, elastic, homogenous, and isotropic (LEHI) behavior of a

circular member. Such analyses will be particularly relevant in bone mechanics.

Observation 4.1. The reader is encouraged to consult Carter and Beaupré (2001)

for a description of the mechanobiology of skeletal development. Here, we

simply recount some of their observations. For example, they write: “The flat

bones of the skull and face are formed by intramembranous ossification within a

condensation of cells derived from the neural crest. In the limb bones and most

of the postcranial skeleton, however, mesenchymal cell condensations

chondrify, creating the endoskeletal cartilage anlagen. These cartilage
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rudiments form the templates for the future skeleton and subsequently, in the

process of growth, undergo a bony transformation.” In particular, “The cartilage

cells within the rudiments therefore undergo a characteristic process of cell

proliferation, maturation, hypertrophy, and death, followed by matrix calcifica-

tion and ossification. Variations within the cartilage growth and ossification

rates in different directions within the anlage result in shape changes of devel-

oping bones . . . Once a region of cartilage mineralizes and it is either resorbed

or replaced by bone, further bone growth occurs by osteoblastic apposition on

mineralized surfaces.” As noted in Chap. 12, Developmental Biomechanics is

one of the exciting frontiers of our field, one that is clearly complex.

Many factors affect the development as well as the subsequent maintenance

and adaptation of bone. For example, biological factors that affect the metabo-

lism of chondrocytes include bone-derived growth factor (BDGF), bone

morphogenetic proteins (BMP), cartilage-derived morphogenetic protein

(CDMP), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs),

interleukins (ILs), sex hormones, prostaglandins, matrix metalloproteinases

(MMPs) and their inhibitors (TIMPs), and even vitamins A, C, and D. In

addition, of course, mechanical stimuli also play a major role in the develop-

ment, maintenance, and adaptation of bone. In many cases, strains have proven

convenient to correlate with the mechanotransduction. Let us now consider

measures of the deformation in the simple case of axial loading.

4.1 Deformations Due to Extension

4.1.1 Biological Motivation

Figure 4.1 illustrates some of the important structural and biological features of

a representative mature long bone. Grossly, the three primary regions are the

central long hollow shaft, the end caps, and the transitional regions between the

two. These three regions are referred to respectively as the diaphysial, epiphys-

ial, and metaphysial regions. The central core of the diaphysial region is called

the medullary canal; it contains the bone marrow, which produces different

types of blood cells and their precursors. Of primary concern here, however, is

that there are two primary classes of bone tissue: cortical (or compact) and

cancellous (or trabecular). Cortical bone constitutes most of the outer portion of

a whole bone, including the majority of the wall of the diaphysis. Except in a

few regions, the cortical bone is invested by a specialized covering, the perios-

teum, which is rich in collagen and fibroblasts and has an underlying osteogenic

layer that contains active bone cells. During development and in periods of

trauma and repair, cortical and cancellous bone can be of the woven type, which

is often poorly structured, highly mineralized, and appears to serve as a

temporary scaffolding for the development of another type of bone tissue.
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In maturity and following healing, cortical bone consists primarily of two types

of bone: Lamellar bone is characterized by concentrically arranged layers

(or laminae), each about 20 μm thick, with networks of blood vessels between

layers; osteonal, or Haversian, bone is characterized by nearly cylindrical units

(or osteons) ~200 μm in diameter and ~2 cm long, which contain centrally located

blood vessels connected to radial channels called Volksmann’s channels. Each of

these channels, which allow the transport of blood and bone fluid within compact

bone, contribute to an overall porosity despite the otherwise dense constitution of

cortical bone (specific gravity ~2). Uniformly distributed throughout the intersti-

tial substance of cortical bone are lenticular cavities, called lacunae, each

containing a bone cell called an osteocyte. Radiating in all directions from

each lacunae are anastomosing tubular passages, called canaliculi, which further

contribute to the porosity and are essential to nutrient exchange.

FIGURE 4.1 Schema of the structure of a typical long bone, which consists of the

diaphysial (shaft) region, the metaphysial (transition) region, and the epiphysial (end)

regions. Note, too, the two primary types of bone tissue: cortical, which is found along

the outer surface, and cancellous, which is found in the inner portion of the end regions.

The cartilage forms as a protective covering at the end of the articulating bones;

cartilage is discussed in Chap. 11.
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Cancellous bone has a very different microstructure. It is much more porous,

consisting of a three-dimensional lattice of branching trabeculae, which are

thin-walled and of lamellar type. Cancellous bone is found, for example, near

the ends of long bones. Recall from Chap. 1 that research in the late nineteenth

century by vonMeyer, Culmann, andWolff suggested that the orientation of the

trabeculae in the femur appeared to follow the directions of the principal

stresses (Fig. 4.2). This ultimately led to “Wolff’s law of bone remodeling,”

FIGURE 4.2 Correspondence between the trabecular structure in the femur and Wolff’s

envisioned lines of tension. [From Wolff (1986), with permission from Springer].
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a topic that continues to be of interest, particularly with recent advances in

mechanobiology.

In contrast to other tissues, which experience interstitial growth, bone growth

occurs only via deposition on cell-laden surfaces. Such appositional growth

thus occurs at the periosteal surface, the endosteal surface that lines the med-

ullary canal, and on all surfaces of the tubular cavities as well as the surfaces of

the trabeculae. Note, too, that trabecular growth is evidenced by an increased

number of trabeculae or an increase in their thickness. Whereas skeletal devel-

opment occurs over periods of years, stress- or strain-mediated adaptation

occurs over months to years; fortunately, in cases of injury, such as a fracture,

bone growth and thus repair can occur in weeks to months.

Although bone consists primarily of type I collagen impregnated with

hydroxyapatite, Ca10(PO4)6(OH)2, an inorganic compound that endows bone

with its high compressive strength, it is the bone cells that govern overall

growth and remodeling. There are four primary types of cells in bone:

osteoprogenitor cells, osteoblasts, osteoclasts, and osteocytes. As noted earlier,

like other connective tissues, most bone derives from the mesenchyme.

Osteoprogenitor cells are relatively undifferentiated cells found on many of

the free surfaces; they are particularly active during normal development and in

times of repair. Osteoblasts are responsible for forming bone, which is to say

that they actively synthesize the collagen and appear to regulate the uptake and

organization of the mineral component. Osteoclasts, in contrast, are responsible

for the resorption of bone; they are giant cells 20–100 μm in diameter that

contain many nuclei. The primary cells of fully formed bone are the osteocytes,

which derive from the osteoblasts and reside in the lacunae within the interstitial

space (Fig. 4.3). Once encased in calcified bone matrix, the osteocytes no longer

divide; rather, they form gap junctions with neighboring osteocytes via the

canaliculi, and probably participate in the control of the osteoblasts and osteo-

clasts. For more on the biology of bone, see Alberts et al. (2008) and

Fawcett (1986).

One of the key questions in bone mechanobiology is how the embedded

osteocytes or surface osteoblasts/osteoclasts sense and respond to changes in

mechanical stimuli. We know, for example, that there is tremendous bone loss

in load-bearing bones (particularly in the legs) in bedridden patients and

astronauts in a microgravity environment. Conversely, there is significant

increase in bone mass in athletes such as weight lifters and even tennis players

(e.g., the humerus can have a 30 % greater cross-sectional area in the playing

versus the nonplaying arm). Such examples of decreased and increased bone

mass are likewise common when applied loads are altered clinically, such as

due to bone screws, plates, or implanted prostheses. For more examples, see

Carter and Beaupré (2001). It is not clear, however, if the causative cellular

activity correlates best with changes in stress, strain, strain rate, strain energy, or

similar metric. Again, we emphasize that cells cannot directly sense these
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volume-averaged continuum quantities, yet they will likely be very useful for

identifying such empirical correlations (Humphrey 2001). Although strains can

be measured on the outer surface of some bones, it is not possible to measure

internal strains or any stresses. Hence, we must resort to the methods of

mechanics to calculate the stress or strain fields experienced by the bone of

interest, which, in turn, requires knowledge of the geometry, material proper-

ties, and applied loads. As noted in Chap. 2, bones can be described by Hooke’s

law for stress analysis in many circumstances, yet a detailed study of the

mechanobiology may require structural models that account for the fine trabec-

ular architecture or material models that account for the porosity and, indeed,

the internal flow of blood or bone fluid due to applied loads. The latter

necessitates modeling of the solid–fluid coupling, which is addressed briefly

in Chap. 11 in a different context. Solid–fluid coupling in bone is an advanced

topic of current research. Here, therefore, let us consider the simplest approach,

assuming on average that bone exhibits a linear, elastic, locally homogenous,

and isotropic (i.e., LEHI) behavior under some circumstances. In this case,

effective bone properties can be assumed to be E ~ 15 GPa and v ~ 0.33. Indeed,

let us consider the stress and strain fields in the diaphysial region of a long bone,

consisting of cortical bone only and subject, first, to an axial compressive load

and, second, to a twisting moment as suggested by Fig. 4.4; of course, the bone

could also experience bending loads, but these are considered in Chap. 5.

FIGURE 4.3 Schema of three of the four primary bone cells. The osteogenic cell, the

osteoblast (or bone-forming cell), and the osteocytes, which are former osteoblasts that

are trapped within calcified bone matrix. Not shown are the osteoclasts, which remove

bone tissue.
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4.1.2 Theoretical Framework

Envision a case in which a rod of negligible weight is suspended vertically from

a fixed support and loaded from the lower end by a constant force that is applied

through its centroid and uniformly over the cross-sectional area. Intuitively, the

axial displacement (say, ux) will be zero at the fixed support, nonzero in the

middle, and maximum at the lower end (Fig. 2.18); that is, the displacement will

vary along the length of the rod (even though the stress is assumed to be

constant throughout), from which we can compute the axial strain, namely

ux ¼ ux xð Þ ! εxx ¼
∂ux

∂x
: ð4:1Þ

Reminder: This formula for strain is restricted to small values, consistent with

our desired use of Hooke’s law as a descriptor of LEHI behavior. Clearly,

integration of εxx with respect to x can provide the displacement at any point x,

including that at the lower end x¼ L; that is,

ð x

0

εxxdx �
ð x

0

∂ux

∂x
dx ¼ ux xð Þ � ux 0ð Þ; ð4:2Þ

where ux(0)¼ 0 is the displacement boundary condition (for this case) at the

fixed end. Now, εxx can be related to the stress via Hooke’s law [Eq. (2.69)],

FIGURE 4.4 Schema of a

portion of the femur

isolated in the laboratory

for mechanical testing to

induce torsion via the

application of a couple

2fd.
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where the uniform 1-D state of stress in an axially loaded rod is σxx¼ f/A from

Eq. (3.29). Hence, we have

εxx ¼
1

E
σxx � v 0þ 0ð Þ½ 	 ¼ f

AE
! ux xð Þ ¼

ð x

0

f

AE
dx; ð4:3Þ

where, in general, the force, cross-sectional area, and even Young’s modulus

could vary with x. In the special case in which all three quantities are indepen-

dent of x and we seek only the value of ux at the lower end (the so-called end

deflection δ), we have the simple result

ux x ¼ Lð Þ � δ ¼ f L

AE
: ð4:4Þ

In general, however, it is best to remember the primary result of Eq. (4.3), which

determines a deformation in terms of the applied loads, geometry, and material

properties. It can be written generally as

ux x ¼ cð Þ � ux x ¼ að Þ ¼
ð c

a

f xð Þ
A xð ÞE xð Þdx; ð4:5Þ

which emphasizes that the applied axial force, cross-sectional area, and Young’s

modulus may each vary with x. Of course, the integral is a linear operator

and, thus,

ð c

a

f xð Þ
A xð ÞE xð Þ dx ¼

ð b

a

f xð Þ
A xð ÞE xð Þ dxþ

ð c

b

f xð Þ
A xð ÞE xð Þ dx ð4:6Þ

and so forth. This division of the integral over separate domains can be very

helpful in cases in which f(x), A(x), or E(x) are constant over such subdomains.

Let us illustrate via a few examples how this might be useful. First, however,

note some terminology: If a rod is homogeneous, then E 6¼E(x); if a rod has a

constant cross section, then A 6¼A(x); and if the rod is under a constant load,

then f 6¼ f(x).

Example 4.1 Consider a vertically mounted, axially loaded member subject

to its own distributed weight w N/m (see Fig. 4.5a). Assume that the member

has a constant cross-sectional area A and a constant elastic modulus E. The total

weight of the member of length L is thus W¼wL. Find the displacement ux at

the free end [i.e., δ� ux (x¼ L)].
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Solution: First, let us construct a free-body diagram of the whole structure and

ensure equilibrium to find the reactions (Fig. 4.5b):

X
Fx ¼ 0, � Rx þW ¼ 0! Rx ¼ W ¼ wL,

X
Fy ¼ 0, Ry ¼ 0,

X
Mz ¼ 0, Mwall ¼ 0:

Next, construct a free-body diagram of the parts (Fig. 4.5c) recalling that if a

structure is in equilibrium, then each of its parts is in equilibrium. The force f(x)

due to the weight of the member is w(L� x) at any cross section cut at a distance

x from the support; at x¼ 0, f(0)¼Rx¼wL, the entire weight, as it should.

Alternatively, in terms of the total weight of the member, the force becomes

W(1� x/L) and thus

X
Fx ¼ 0!

ð
σxxdA� f ¼ 0! σxx ¼

f

A
¼ W

A
1� x=Lð Þ:

Note that the stress is largest at x¼ 0, where all of the weight must be borne by

the material, and the stress is zero at the free end, which is free of applied loads

(i.e., traction-free). Given the stress, the strain and the axial displacement can

now be computed using Hooke’s law and Eq. (4.5); namely

εxx ¼
1

E
σxx � v σ yy þ σzz

� �
 �

FIGURE 4.5 A vertically loaded member subject to its own weight, given as w (force per

unit length) and thus a total weightW¼wL, which acts at the center of gravity. Shown is
the physical problem, a free-body diagram of the whole to isolate reaction Rx at the fixed

support, and a free-body diagram of a part to isolate the internal force f(x).
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with σyy and σzz each zero. Thus,

εxx ¼
σxx

E
!
ð L

0

εxxdx ¼ ux x ¼ Lð Þ � ux x ¼ 0ð Þ ¼
ð L

0

W 1� x=Lð Þ
AE

dx;

where ux¼ 0 at x¼ 0 (a displacement boundary condition) and the end dis-

placement is

δ � ux x ¼ Lð Þ ¼ W

AE
x� x2

2L

����
L

0

 !
¼ WL

2AE
:

Of course, the displacement at any value of x is found by integrating from 0 to

x rather than from 0 to L.

Example 4.2 Find the end displacement δ in each of the members illustrated in

Fig. 4.6.

Solution: The first structure (Fig. 4.6a) is homogenous and subject to a constant

axial load P, but it does not have a constant cross-sectional area. The area

changes abruptly from A1 to A2 at x¼ L/2. Thus, A¼A(x) and the end displace-

ment is determined via

ux xð Þ � ux 0ð Þ ¼
ð x

0

P

A xð ÞE dx! δ ¼ ux 0ð Þ þ P

E

ð L

0

dx

A xð Þ:

The integral must be separated at the point of discontinuity in the cross-

sectional area to give the following results [with ux(0)¼ 0 via a boundary

condition]:

δ ¼ P

E

ðL=2

0

dx

A1

þ P

E

ð L

L=2

dx

A2

! δ ¼ P

A1E

ðL=2

0

dxþ P

A2E

ð L

L=2

dx;

or

δ ¼ PL

2A1E
þ PL

2A2E
¼ PL

2E

1

A1

þ 1

A2

� �
:

The second structure (Fig. 4.6b) has a constant cross-sectional area and is

subjected to a constant axial load P, but it is not homogenous. The material
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properties change at x¼L/3 from the wall. Therefore, E¼E(x) and the

displacement becomes

ux xð Þ � ux 0ð Þ ¼ P

A

ð x

0

dx

E xð Þ ! δ ¼ ux 0ð Þ þ P

A

ð L

0

dx

E xð Þ:

FIGURE 4.6 Axially loaded rods having a nonconstant cross section (panel a), a

nonconstant material composition (panel b), and multiple applied loads (panel c).

Although we need to draw free-body diagrams of the whole and multiple parts for

each case, we show only the free-body diagram of the whole structure and one free-body

diagram for a part of the rod of panel c.
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Again dividing the integration over judicious domains, we have

δ ¼ P

A

ðL=3

0

dx

E1

þ P

A

ð L

L=3

dx

E2

;

where ux(x¼ 0)¼ 0 again. Hence, we find

δ ¼ PL

3AE1

þ 2PL

3AE2

¼ PL

3A

1

E1

þ 2

E2

� �
:

For the third problem (Fig. 4.6c), we must first solve the statics problem.

Equilibrium of the whole requires that the reaction force Rx be given by

�Rx � Pþ 2Pþ P ¼ 0! Rx ¼ 2P;

whereas equilibrium of parts requires that we consider three separate cuts. For

the first part,

�Rx þ f xð Þ ¼ 0! f xð Þ ¼ 2P, 0 
 x <
L

3
:

Similarly, for the second part,

�Rx � Pþ f xð Þ ¼ 0! f xð Þ ¼ 3P,
L

3
< x <

2L

3
:

Finally, for the third required part,

�Rx � Pþ 2Pþ f xð Þ ¼ 0! f xð Þ ¼ P,
2L

3
< x 
 L:

Indeed, the last result can be seen easily given a small part near the end.

Regardless, given constants E and A and ux(x¼ 0), we have

δ ¼ 1

AE

ðL=3

0

2Pdxþ
ð2L=3

L=3

3Pdxþ
ð L

2L=3

Pdx

 !
¼ 2

PL

AE
:

174 4. Extension and Torsion



4.1.3 Clinical Application

Now that we have some experience with the full axial load problem for LEHI

behavior, let us consider an important clinical problem. Each year in the United

States, ~120,000 artificial hips are implanted surgically to relieve pain and

restore ambulatory motion. Figure 4.7 shows a typical prosthesis and its inser-

tion into the host femur. As seen at Section D-D, we have nearly concentric

cylindrical cross sections over part of the bone–metal interface. Although the

femoral head experiences complex loads that may subject the prosthesis to

compression, torsion, and bending, here let us focus on the axial load alone

(other loads will be considered subsequently). This special case could be

produced in the laboratory. Moreover, although the actual loads, geometry,

and material properties demand a numerical (e.g., finite element) method

(Fig. 4.8), let us consider a simple analysis to gain some insight into the overall

problem. In particular, as a first approximation, let us assume that the bone and

prosthesis each exhibit LEHI behaviors. Bone is, of course, better characterized

as nonhomogeneous and anisotropic, but these simplifying assumptions have

been used by many and they allow us to begin to explore the problem.

Our model problem, therefore, is simply the axial loading (through the

overall centroid) of a circular cylinder consisting of two LEHI materials

(Fig. 4.7b). Like most biological tissues, bone will grow and remodel in

response to changes in mechanical stimuli. Therefore, one of the key questions

FIGURE 4.7 Schema of a metallic prosthetic hip that has been implanted to replace a

damaged femoral head. One of the most common causes of femoral damage is fracture

associated with osteoporosis. Defined as a reduction in bone mass, osteoporosis is a

particularly debilitating disease in elderly women. If we focus on the region near

Section D-D in the figure and consider the action of an axial load only, then panel b

shows an appropriate free-body diagram for analysis to relate the axial stress to the

applied loads and geometry. Although the stress may (as a first approximation) be

assumed to be uniform within each constituent, metal and bone, these mean values

need not be the same.
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with regard to prosthesis design is: How will the implant redistribute the

stresses within the bone? Again, this is a complex question; we will consider

the much simpler question here. On average, how does the applied load f in

Fig. 4.7b distribute (i.e., partition) between the metal implant and the remaining

bone? Toward this end, let the radius of the prosthesis be a and the outer radius

of the bone be c. If we let that part of the load carried by the prosthesis and bone

be denoted as fp and fb, respectively, then axial equilibrium requires that

fp+ fb¼ f. The associated mean axial stresses are thus σ p
xx ¼ fp=Ap for the

prosthesis and σ b
xx ¼ f b=Ab for the bone. The key question then is: What are

fp and fb?

With fp+ fb¼ f, we have one equation and two unknowns, thus rendering this

problem statically indeterminate; that is, we cannot determine how the load or

the stress partitions using statics alone—we must seek a second equation. This

can be accomplished from kinematics if we simply assume that the axial

displacements are the same in each component [i.e., that there is no relative

movement (e.g., delamination as discussed in Observation 2.2) between the

prostheses and bone as desired of a painless implant]. Hence, if ε p
xx � εbxx, with

uniform properties along the length of the prosthesis, then we have

FIGURE 4.8 Illustrative finite element mesh used to analyze stresses in the femur for

determining the state of stress in health, which should be mimicked as well as possible

following an implant surgery. Each triangle represents a local computational domain, or

element, in which equilibrium is enforced. Certain continuities, such as displacement,

are also enforced from element to element. Albeit for a 2-D analysis of a normal femur,

finite element studies can be conducted similarly in three dimensions, and for the case of

a prosthesis, a poly(methyl methacrylate), or PMMA, bone cement, and bone. Finite

element analyses are extremely powerful, and the student is encouraged to take at least

one course in this area. With permission, from Prof. B. Simon.
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ux x ¼ Lð Þ � ux x ¼ 0ð Þ ¼
ð L

0

ε p
xxdx ¼

ð L

0

σ p
xx

Ep

dx ¼
ð L

0

fp

ApEp

dx ¼
fpL

ApEp

; ð4:7Þ

or, with ux(x¼ 0)¼ 0,

δp ¼
fpL

ApEp

: ð4:8Þ

Similarly, for the bone,

ux x ¼ Lð Þ � ux x ¼ 0ð Þ ¼
ð L

0

ε bxxdx ¼
ð L

0

σ b
xx

Eb

dx ¼
ð L

0

fb
AbEb

dx ¼ fbL

AbEb

; ð4:9Þ

or

δb ¼
fbL

AbEb

: ð4:10Þ

Hence, to ensure compatible displacements, δp¼ δb requires that

fpL

ApE p

¼ fbL

AbEb

! fp ¼
ApEp

AbEb

fb: ð4:11Þ

Thus, we have a second equation in terms of the unknown “partitioned forces.”

From equilibrium, we have

f ¼ ApEp

AbEb

fb þ fb ¼ fb 1þ ApEp

AbEb

� �
; ð4:12Þ

or

fb ¼
f AbEb

AbEb þ ApEp

; ð4:13Þ

and, similarly,

fp ¼
ApEp

AbEb

f AbEb

AbEb þ ApEp

� �
¼ f AbE p

AbEb þ ApEp

: ð4:14Þ
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Finally, the stresses in the prosthesis and bone are

σ p
xx ¼

1

Ap

ApEp f

ApEp þ AbEb

� �
¼ Ep f

ApEp þ AbEb

,

σ b
xx ¼

1

Ab

AbEb f

ApEp þ AbEb

� �
¼ Eb f

ApEp þ AbEb

:

ð4:15Þ

We see, therefore, that the load partitions according to the respective cross-

sectional areas and the material properties. In the special case that Ep¼Eb¼E

and Ap+Ab¼A, we recover the original homogeneous solution (σxx¼ f/A), as

we should. Whether the bone will resorb (atrophy) or grow will depend on

whether its stress (or strain) following implantation is less than or greater than

the normal physiological values. Early on, artificial implants were designed

primarily to be geometrically mimicking of the native femoral head and to be

strong enough that they would not fail (i.e., yield, deform plastically, or

fracture; cf. Fig. 2.25) under the demands of physiological loading. Yet, the

associated designs failed to consider how the stress or strain in the bone

redistributed and how functional adaptation might lead to a weakening of the

remaining bone over time. This flaw in the analysis and design resulted in many

prosthetic failures in the early days, thus necessitating much more careful

biomechanical study. The interested reader is encouraged to review the current

literature on prosthesis design to appreciate the development of the field. With

regard to the present (simple) analysis, a take-home message is that although we

were only interested in the stresses, equilibrium alone did not permit a complete

solution. This is in stark contrast to the (statically determinate) universal

solutions in Chap. 3. Rather, to obtain a sufficient number of equations in this

statically indeterminate problem, we sought additional equations via use of

strain–displacement and stress–strain relations. We will see below and in

Chap. 5 that this general approach is helpful in many different statically

indeterminate problems.

4.2 Shear Stress Due to Torsion

4.2.1 Introduction

Although the analysis in Sect. 4.1.2 was restricted to LEHI material behaviors

and thus small strain, there was no restriction on the cross-sectional area; that is,

the developed equations held equally well for rectangular, circular, elliptical,

indeed general cross sections. As we begin our study of torsion, however, the

situation is very different. It has long been known that if you subject a straight

member of circular cross section to a small twist, the originally parallel cross

sections remain parallel. In other words, small twisting of a circular member
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(shaft) does not warp the cross section. For any other cross section, such

as elliptical or rectangular cross sections, torsion induces both a twist (i.e.,

material particles have a uθ displacement) and a warping motion (e.g., uz
displacements that are nonuniform). In the next two subsections, we focus

solely on small twisting motions in solid or hollow members that have a circular

cross section and exhibit a LEHI behavior. As in the other problems, we will

seek to relate the developed stress(es) to the applied loads and geometry

[cf. Eq. (3.59)] and the deformations to the applied loads, geometry, and

material properties [cf. Eqs. (3.89) or (4.5)].

4.2.2 Biological Motivation

Many biological tissues and implants are subjected to twisting loads

(or torsion). Most notably, the twisting action of the heart is fundamental to

the ejection of blood during each cardiac cycle; that is, consistent with Fig. 2.20,

the heart shortens, constricts, twists, and shears as the muscle fibers contract

during the ejection phase. In particular, the twisting action comes from a unique

arrangement of the cardiac muscle fibers (Fig. 4.9), which was noticed many

years ago by anatomists, but not fully appreciated until the 1970s and 1980s

based on biomechanical models. It is now clear that the twisting action of the

heart is not only effective in aiding the ejection of blood, it also tends to

homogenize the distribution of stress across the wall of the ventricle. The latter

is very important within the context of mechanobiology because a homogenized

stress (or strain) field would allow the cardiac myocytes and fibroblasts to

experience similar (perhaps optimal) mechanical stimuli regardless of their

position within the wall of the heart. Because of the large strains and nonlinear

material behavior in the heart, however, the reader is referred to Humphrey

(2002) for a discussion of cardiac mechanics. Here, let us simply consider a

small strain example. Figure 4.10 shows the geometry of and loads acting on the

hip. Complex (compressive, bending, and twisting) loads occur naturally during

daily activities as well as in the laboratory during material testing.

4.2.3 Mathematical Formulation

Recall from Sects. 3.3–3.5 that we began each stress analysis by introducing a

judicious cut to isolate (or expose) the stress σ(face)(direction) of interest in the

free-body diagram. Once done, we enforced equilibrium and related the com-

ponent of stress of interest to the applied loads and geometry. Let us take the

same approach here. Consider, a solid circular cylinder that is fixed on one end

and free on the other; moreover, let the free end be subjected to a positive

twisting moment Mz� T (or torque). Equilibrium of the whole (Fig. 4.11)

requires an equal and opposite reaction torque T at the fixed wall, remembering,

4.2. Shear Stress Due to Torsion 179

http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec9_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Sec3_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Fig20_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ89_3
http://dx.doi.org/10.1007/978-1-4939-2623-7_3#Equ59_3


FIGURE 4.9 Schema of the heart with a cutout section from the ventricular wall showing

the alternating directions of the muscle fibers (which vary smoothly throughout the wall)

within the myocardium plus the delimiting connective tissue membranes on the inner

(endocardial) and outer (epicardial) surfaces. The transmural splay in the muscle fibers

gives rise to the twisting action of the heart upon contraction. Also shown is a scanning

electron micrograph (magnification 3,000�) of two connected muscle fibers that

emphasize the locally parallel structure. [From Humphrey (2002), with permission].
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of course, the right-hand rule for the positive sign convention. Next, consider

equilibrium of the parts. In particular, from Fig. 4.12, we see that z-face,

θ-direction stresses σzθ act on the cut face to balance the net applied torque T.

Knowing that each σzθ acts over its respective differential area, with dA¼ rdθdr

in the circular cross section and that a torque is a force acting at a distance (i.e., a

twisting moment), we must add up the effects of all stresses acting on their

differential areas. Hence,

X
Mz

�
0 ¼ 0! �T þ

ð
r
arm

σzθdA|fflffl{zfflffl}
df

¼ 0! T ¼
ð c

0

ð2π

0

σzθr
2dθdr: ð4:16Þ

Because stress can vary from point to point, in general, we must know σzθ as a

function of position before we can evaluate the integral. Recall that we avoided

this “issue” in the axially loaded rod in Sect. 3.3 by assuming that far enough

from the ends, the stress σxx was uniform (i.e., constant) over the cross section;

likewise, we avoided this issue in Sects. 3.4 and 3.5 for the inflated cylinders

FIGURE 4.10 Schema of the femur and acetabulum, a cup-shaped cavity in which the

head of the femur articulates. Because the line of action of the loads applied on the

femoral head do not coincide with the long axis of the mid-shaft of the femur, these

forces can cause both bending and twisting moments in addition to axial compression.

Bending is addressed in Chap. 5 so we simply focus on the combined axial load and

associated torque. Because of the linearity of the problem in small strain, we can use the

principle of superposition and thus solve each aspect separately (compression, torsion,

and bending).
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FIGURE 4.11 Schema of a solid circular cylinder (i.e., shaft) subjected to an applied

torque T on the otherwise free end. (Note: The positive sign convention is consistent

with the right-hand rule whereby the thumb points in the positive coordinate direction

and the fingers wrap around the associated coordinate axis). Shown, too, is a free-body

diagram of the whole structure to isolate the reaction at the fixed end, and a free-body

diagram of two parts to isolate the internal torques. Equilibrium requires that the internal

torques balance the applied and reaction torques.

FIGURE 4.12 Alternate free-body diagram for the circular cylinder shown in Fig. 4.11,

this time isolating a σzθ stress, on a cut z face, which serves to balance the applied torque.
This balance is achieved, of course, via the net effect of all such stresses acting on their

respective cross-sectional differential areas dA and at a distance from the axis called the

moment arm.
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and spheres by assuming thin walls and, consequently, that the stress was well

represented by its mean (i.e., constant) value. Here, however, we will soon find

that σzθ varies with radial location and that this spatial dependence cannot be

ignored. Although we addressed this issue of nonuniform stress in the thick-

walled cylinder in Sect. 3.6 by solving the full differential equations, here we

seek an alternate, easier “strength of materials” approach. In hindsight (which

means, after trying multiple approaches to no avail), it will prove convenient to

employ the kinematics and constitutive relation directly.

Hence, consider the general element in Fig. 4.13 in which the angle γ is

introduced to measure the circumferential motion of all material particles along

a line drawn along the length of the cylinder. Moreover, let γ(r¼ c) be denoted

by γc for a line drawn on the outer surface. From trigonometry,

tan γc ¼
cΔθ

Δz
at r ¼ cð Þ

where

lim
Δz!0

cΔθ

Δz
¼ c

dθ

dz
at r ¼ cð Þ: ð4:17Þ

FIGURE 4.13 Schema of a circular cylinder subjected to equal and opposite end torques

(assume that the torque is applied on the right end and that the torque at the left end is a
reaction at a fixed boundary condition). Imagine that a straight line is drawn on the outer

surface in the axial direction in the unloaded configuration. Upon the application of the

torque, this line would rotate (i.e., points would displace uθ) differently at different axial
locations (cf. Fig. 2.18 for the axial load). If either the angle γ is small or the length Δz is
small, then the line may be assumed to remain nearly straight and thus be describable via

a single angle γ.
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Next, let us restrict our attention to small changes in angles whereby the

following small-angle approximation holds:

tan γc ffi γc ! γc ¼ c
dθ

dz
at r ¼ cð Þ: ð4:18Þ

Likewise, it can be shown by the same assumptions that a similar relation holds

at any radius, namely

tan γr ffi γr ! γr ¼ r
dθ

dz
at any rð Þ: ð4:19Þ

Having these relations, obtained from simple trigonometric arguments, we

should ask: What are γc and γr? As it turns out, because of the linearization of

the Green strain (Sect. 2.5), the linearized strains are related directly to small

changes in length or angle; thus, γc and γr are related to a linearized shear strain.

Here, εzr, εzθ, and εrθ are candidate measures of shear or angle change. Of these,

the strain εzθ is the measure of interest because it alone is induced by the stress

σzθ, which is needed to resist the torque T. Recall, therefore, from Hooke’s Law

for LEHI behavior [Eq. (2.79)] that

εzθ ¼
1

2G
σzθ; ð4:20Þ

where G is the shear modulus. Moreover, it can be shown that (cf. Exercise

2.27)

εzθ ¼
1

2
γ þ 0ð Þ ! γ ¼ 2εzθ ð4:21Þ

for any r; that is,

γc ¼ 2εzθ r ¼ cð Þ and γr ¼ 2εzθ rð Þ: ð4:22Þ

These results can be substituted into Eq. (4.20), and using Eqs. (4.18) and

(4.19), we obtain

σzθ rð Þ ¼ 2Gεzθ rð Þ ¼ Gγr ¼ Gr
dθ

dz
,

σzθ cð Þ ¼ 2Gεzθ cð Þ ¼ Gγc ¼ Gc
dθ

dz
:

ð4:23Þ

184 4. Extension and Torsion

http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Equ79_2
http://dx.doi.org/10.1007/978-1-4939-2623-7_2#Sec5_2


Hindsight reveals that it is useful to take the ratio of these two stresses:

σzθ rð Þ
σzθ cð Þ ¼

Grdθ=dz

Gcdθ=dz
¼ r

c
! σzθ rð Þ ¼ σzθ cð Þ

c
r: ð4:24Þ

Whereas σzθ(r) is still an unknown function of radius, in general, σzθ(c) is just

the value of this function at one point, r¼ c; hence, it is just a number. Likewise,

c is just a number, the value of the outer radius; hence, via kinematics and

constitutive relations, we can now evaluate the equilibrium equation (4.16):

T ¼
ð
σzθ cð Þ
c

r2dA ¼ σzθ cð Þ
c

ð
r2dA: ð4:25Þ

By recognizing the second polar moment of area (see Appendix 4) J¼
Ð
r2dA,

where dA¼ rdθdr, we can write,

T ¼ σzθ cð Þ
c

J $ σzθ cð Þ ¼ Tc

J
: ð4:26Þ

By Eq. (4.24), however, we have

σzθ rð Þ ¼ r

c

Tc

J
! σzθ rð Þ ¼ Tr

J
: ð4:27Þ

Note, therefore, that we have succeeded in finding the stress (relative to r, θ, z)

in terms of applied load (torque T) and a measure of the geometry (second polar

moment of area J). This is similar to our previous (universal) results for stress in

axial loading and pressurization of a thin-walled cylinder or sphere [summary in

Eq. (3.59)]:

σxx ¼
f

A
; σθθ ¼

Pa

h
, σzz ¼

Pa

2h
þ f

2πah
; σθθ ¼

Pa

2h
¼ σϕϕ:

There are two significant differences between the present and prior findings,

however. Whereas these prior relations for stress were universal results, good

for all materials, Eq. (4.27) holds only for a small-strain LEHI behavior.

Moreover, in contrast to these prior results whereby the stress was uniform

(i.e., independent of position within the body), Eq. (4.27) reveals a nonuniform

distribution of stress; that is, the shear stress varies linearly with radial position

within a circular cylinder under torsion, the stress being zero at r¼ 0 and largest

at the outer radius r¼ c. Hence, if the particular “LEHI material” of interest

fails due to shear, it would be expected that failure would initiate on the outer

surface.
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4.3 Principal Stresses and Strains in Torsion

As in Chap. 2, the components of stress at any point relative to one coordinate

system can be related to those relative to another coordinate system via trans-

formation relations like those in Eq. (2.13):

σ
0

xx ¼ σxx cos
2αþ 2σxy sin α cos αþ σyy sin

2α:

To rewrite this equation in terms of the cylindrical-polar coordinates, let x! z

and y! θ; thus,

σ
0

zz ¼ σzz cos
2αþ 2σzθ sinα cos αþ σθθ sin

2α; ð4:28Þ

where α is the now the angle between z and z0 and likewise between θ and θ0

(recall Eq. 3.53). For members subjected to pure torsion, σzz and σθθ equal zero,

thus giving the following:

σ
0

zz ¼ 2σzθ cos α sin α: ð4:29Þ

By substituting Eq. (4.27) into this transformation relation, we obtain

σ
0

zz ¼ 2
Tr

J
cos α sin α: ð4:30Þ

Similarly, from Chap. 2, Eq. (2.21),

σ
0

yy ¼ σxx sin
2α� 2σxy sin α cos αþ σyy cos

2α

can be rewritten as

σ
0

θθ ¼ σzz sin
2α� 2σzθ sinα cos αþ σθθ cos

2α ð4:31Þ

or for our case,

σ
0

θθ ¼ �2σzθ sinα cos α! σ
0

θθ ¼ �2
Tr

J
sin α cos α: ð4:32Þ

Finally, Eq. (2.17) can be written as

σ
0

zθ ¼ sinα cos α σθθ � σzzð Þ þ cos 2α� sin 2α
� �

σzθ; ð4:33Þ
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or

σ
0

zθ ¼
Tr

J
cos 2α� sin 2α
� �

: ð4:34Þ

See Fig. 4.14. As in Chap. 2, the principal stresses can be computed as

σ1,2 ¼
σ
0
zz

�
max=min ¼

σzz þ σθθ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σzz � σθθ

2

� �2
þ σ2zθ

r

σ
0
θθ

�
max=min ¼

σzz þ σθθ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σzz � σθθ

2

� �2
þ σ2zθ

r

8
>><
>>:

ð4:35Þ

but for members subject to pure torsion, σzz and σθθ are zero; thus,

σ
0

zz

�
max=min ¼ �σzθ, σ

0

θθ

�
max=min ¼ �σzθ; ð4:36Þ

which is to say that the maximum/minimum normal stresses are numerically

equal to the original value of the shear stress σzθ:

σ1 ¼ þ
Tr

J
and σ2 ¼ �

Tr

J
; ð4:37Þ

as seen in Fig. 4.15. The plane on which the maximum normal stress acts is

given by an equation similar to Eq. (2.25):

2α p ¼ tan �1
σzθ

σzz � σθθð Þ=2

� �
; ð4:38Þ

FIGURE 4.14 For pure torsion of a circular LEHI cylinder, the only nonzero component

of stress at a point p is σzθ relative to z and θ. Relative to z
0 and θ0 however, we may have

additional components of stress, including normal and shear. We are reminded, there-

fore, that components of stress at a point depend on the coordinate system that is

employed; they are not unique physical measurables or quantities that are “felt” directly

by a cell or tissue.
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where σzz and σθθ are zero; hence,

α p ¼
1

2
tan �1 1ð Þ ¼ π

4
¼ 45
 ð4:39Þ

(i.e., the maximum/minimum normal stresses will act in a direction 45
 from the

original z or θ axis).

Similarly, the maximum shear stress can be rewritten as (from Chap. 2)

σ
0

zθ

�
max=min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σθθ � σzz

2

� �2
þ σ2zθ

r
! σ

0

zθ

�
max=min ¼ �

Tr

J
; ð4:40Þ

which occurs at

αs ¼
1

2
tan �1

σθθ � σzz

2σzθ

� �
! αs ¼

1

2
tan �1 0ð Þ ¼ 0; ð4:41Þ

that is, the shear stress is a maximum relative to the original (z, θ) coordinate

system. Finally, note that Eqs. (4.37) and (4.40) show the maximum/minimum

values relative to (z, θ) and (z0, θ0) coordinate systems; because the stress varies

with radial direction, the largest max/min values occur at r¼ c. Hence, whether

the material fails first due to shear or normal stresses, we would expect failure to

initiate on the outer surface (r¼ c), in the absence of internal defects of course.

Example 4.3 A hollow LEHI cylinder has an inner radius a¼ 15 mm, an outer

radius c¼ 20 mm, and a length L¼ 0.5 m. The applied torque T is 600 Nm with

an angle of twistΔθ(z¼ L)¼ 3.57
. Calculateσ
0
zθ

�
max andσ

0
zz

�
max, find the value

of the shear modulus G, and calculate ε
0
zθ

�
max and εzz.

FIGURE 4.15 Principal stresses σ1 and σ2 at point p for the state of stress shown in

Fig. 4.14. Note that the principal values are equal in magnitude but opposite in direction

(i.e., one is compressive and one is tensile). Moreover, note that their magnitude is equal

to the magnitude of the σzθ shear stress. This reminds us that components of stresses can

be of the same magnitude, but different because of either the different faces on which

they act or the different directions in which they act.
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Solution: From Eqs. (4.37) and (4.40),

σ
0

zθ

�
max ¼

Tr

J
and σ

0

zz

�
max ¼

Tr

J
;

where

J ¼
ð
r2dA ¼

ðð
r2rdθdr ¼

ð2π

0

ð c

a

r3drdθ ¼ π

2
c4 � a4
� �

:

Given

a¼ 15 mm¼ 0.015 m

c¼ 20 mm¼ 0.02 m

L¼ 0.5 m

T¼ 600 Nm

Δθ¼ 3.57
¼ 0.0623 rad

first calculate σ
0
zθ

�
max and σ

0
zz

�
max:

σ
0
zθ

�
max and σ

0
zz

�
max ¼

Tc

π c4 � a4ð Þ=2 ¼
2 600N mð Þ 0:02mð Þ

π 0:02mð Þ4 � 0:015mð Þ4
h i

ffi 6:98� 107
N

m2
¼ 69:8MPa:

Second, calculate G. Assuming γc� 1, we have

tan γc ffi γc ¼ c
dθ

dz
ffi c

Δθ

Δz
¼ 0:02mð Þ 0:0623radð Þ

0:5mð Þ ¼ 0:00249rad:

Hence, σzθ(r¼ c)¼ 2Gεzθ(r¼ c)¼Gγc implies that

G ¼ σzθ

γc
¼ 6:98� 107N=m2

0:00249
¼ 2:80� 1010Pa ¼ 28:0 GPa:

Third, calculate ε
0
zθ

�
max and εzz using Hooke’s law:

ε
0

zθ

�
max ¼

1

2G
σ
0

zθ

�
max ¼

69:8MPa

2 28:0GPað Þ ¼ 0:00125

and, finally,

εzz ¼
1

E
σzz � v σrr þ σθθð Þ½ 	 ¼ 0:
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Thus, the shaft does not extend and the maximum shear strain is indeed small,

consistent with our small-strain assumption in the derivation of the governing

equations and our use of a LEHI descriptor of the behavior. Also note that in

reference to Table A2.1, a shear modulus G ~ 28 GPa suggests that the material

is a 2024-T4 aluminum. The yield strength of this material is ~170 MPa in

shear; hence, we would not expect that yield would have occurred.

Example 4.4 A solid circular member is to be subjected to an applied torque of

500 Nm. Find the required diameter of the member so as not to exceed the

maximum stress σzθ of 125 MPa.

Solution: Given

σzθ ¼ 125, MPa ¼ 1:25� 108
N

m2
, T ¼ 500 Nm;

let the maximum radius r¼ c. From Eq. (4.27),

σzθ ¼
Tr

J
or σzθ r ¼ cð Þ ¼ Tc

J
;

where

J ¼
ð
r2dA ¼

ðð
r2rdθdr ¼

ð2π

0

ð c

0

r3drdθ ¼ π

2
c4:

Hence,

σzθ cð Þ ¼ Tc

π=2ð Þc4 ¼
2T

πc3
! c3 ¼ 2T

πσzθ
! c ¼ 2T

πσzθ

� �1=3

;

or

c ¼ 2 500Nmð Þ
π 1:25� 108N=m2
� �

 !1=3

¼ 0:0137m ¼ 13:7mm;

and thus the minimum allowable diameter is 2c¼ 27.4 mm, which is just

over 1 in.

Observation 4.2. Not all bones serve the same function. Some serve primarily to

protect underlying soft tissue (e.g., the skull and sternum); thus, they have

significant strength but carry little load most of the time. Conversely, other
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bones serve intermittently as load-bearing structures (e.g., the humerus, radius,

and ulna of the arm), whereas still others consistently bear significant loads

(e.g., the spine as well as the femur, tibia and fibula of the leg). We would

expect, therefore, that the strains experienced by these different bones differ

significantly throughout a normal day. Much of the attention in the

mechanobiology of bone has focused on load-bearing long bones.

Regardless of their primary function, from the perspective of mechanics,

bones tend to experience small strains. Hence, given that bones are also

relatively stiff, standard strain gauges can be used to measure the surface strains

that they experience under either in vitro or in vivo loading conditions. Given

material properties, of course, stresses can then be computed from measured

strains without the need to solve the equilibrium problem (for that point). Note,

therefore, that the magnitude of peak compressive strains measured in vivo on

the outer surface of load-bearing bones (e.g., cortical bone of the diaphysial

region of the femur) have been reported on the order of 0.001 or less during

normal walking (often ~0.0004) and between 0.002 and 0.004 during vigorous

exercise. It is interesting to note, therefore, that Rubin and Lanyon (1985)

reported a maintenance of cortical bone (i.e., a balanced production by osteo-

blasts and removal by osteoclasts) when the compressive strain is between

0.0005 and 0.0015. Above a strain of ~0.0015, there tends to be a net growth

whereby production exceeds removal. Microdamage may occur, however,

when the strains are greater than 0.0025 in tension or 0.004 in compression.

Microdamage is also thought to stimulate a bone growth/healing response.

Yield may occur at strains of ~0.006 in tension and 0.009 in compression,

whereas cracks can occur when strains exceed ~0.03, which will also elicit a

bone growth/healing response. Of course, sustained inactivity (e.g., bedridden

patients) or gross unloading (e.g., in astronauts in a microgravity environment)

leads to a net loss of bone material in bones that normally support loads. We

conclude, therefore, that consistent, vigorous exercise promotes bone growth by

increasing the strains (or stresses) and, through mechanotransduction mecha-

nisms, increasing the production and organization of bone material by the

osteoblasts. Let us now look at small strain deformations in torsion, one load

seen daily by bones such as the femur.

4.4 Angle of Twist Due to Torque

Recall from Sect. 4.1 that in axial load problems, it is often useful to find the

maximum displacement (extension), denoted as δ, as well as the displacement

vector and strain fields. So, too, with torsion, it is often useful to determine the

maximum angle of twist
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Θ ¼
ð
dθ

dz
dz at r ¼ c: ð4:42Þ

4.4.1 Basic Derivation

From Eqs. (4.19)–(4.21), we recall that

γr ¼ r
dθ

dz
, εzθ ¼

1

2
γr, εzθ ¼

1

2G
σzθ: ð4:43Þ

Hence, from Eq. (4.27), we have

dθ

dz
¼ 1

r
γr ¼

1

r
2

1

2G
σzθ

� �
¼ 1

rG

Tr

J

� �
¼ T

JG
; ð4:44Þ

and, consequently, the angle of twist Θ can be computed via

Θ zð Þ � Θ 0ð Þ ¼
ð z

0

dθ

dz
dz ¼

ð z

0

T zð Þ
J zð ÞG zð Þ dz; ð4:45Þ

where, similar to Eq. (4.5), we allow the torque, second polar moment of (cross-

sectional) area, and shear modulus to vary with position z along the length in

general. It is important to note, therefore, that if the shaft is homogeneous, then

G 6¼G(z); if the shaft has a constant cross-sectional area, then J 6¼ J(z); and if the

shaft is under a constant torque, then T 6¼ T(z). The direction of the angle of twist

Θ coincides with the direction of the applied torque T.

Example 4.5 Find the total twist at a distance z in each of the members in

Figs. 4.16 and 4.17.

Solution:

Θ zð Þ � Θ 0ð Þ ¼
ð z

0

dθ, dθ ¼ T

JG
dz:

The first shaft is homogeneous and acted upon by a constant torque; it does not

have a constant cross-sectional area however. The area changes from A1 to A2 at

a length of L/2 from the wall. Therefore, J¼ J(z) and the angle of twist becomes

Θ Lð Þ � Θ 0ð Þ ¼
ð L

0

T

J zð ÞGdz ¼
T

G

ðL=2

0

1

J1
dzþ T

G

ð L

L=2

1

J2
dz:
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Because the integral was broken into a sum of integrals for the discontinuity in

cross-sectional area, each new integral contains terms that are constant along

the range of integration and can be moved outside the integral and evaluated.

Given that the twist at the fixed end is zero [i.e., Θ(0)¼ 0], we have

FIGURE 4.16 Two idealized circular cylinders of length L are acted upon by a single,

constant end torque T. The cylinder on the left has a nonconstant cross section, whereas
the one on the right is nonhomogeneous in composition.

FIGURE 4.17 A LEHI circular cylinder subjected to multiple applied torques. A free-

body diagram of the whole allows the reaction support Tw to be determined; free-body

diagrams of judiciously selected parts allows internal torques to be determined as a

function of z. Remember that judicious cuts are typically those taken between abrupt

changes in applied loads.
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Θ Lð Þ � Θ 0ð Þ ¼ T

J1G

ðL=2

0

dzþ T

J2G

ð L

L=2

dz! Θ Lð Þ ¼ TL

2J1G
þ TL

2J2G
:

The second shaft has a constant cross-sectional area and is acted on by a

constant torque; it is not homogeneous however. The material properties change

at a distance of L/2 from the wall. Therefore, G¼G(z) and the twist becomes

Θ Lð Þ � Θ 0ð Þ ¼
ð L

0

T

JG zð Þdz ¼
T

J

ðL=2

0

1

G1

dzþ T

J

ð L

L=2

1

G2

dz;

or

Θ Lð Þ ¼ TL

2J

1

G1

þ 1

G2

� �
:

The third shaft is homogeneous and has a constant cross-sectional area; it is

not under a constant loading however. The applied load changes at a distance of

L/2 from the wall; thus, T¼ T(z). Before we solve for the twist at the end of the

shaft, we must determine the internal torques at each z. From equilibrium of the

whole (Fig. 4.17b), we see that the reaction torque at the wall Tw must balance

the combined effects of the 2T and the T that are applied at z¼ L/2 and z¼ L,

respectively. Equilibrium of parts (note: when we have discrete changes in

loads, geometry, or properties, judicious cuts are those between the abrupt

changes) reveals further that the left half has an internal torque 3T and the

right half only T. Hence, the end twist becomes

Θ Lð Þ � Θ 0ð Þ ¼ 3T

JG

ðL=2

0

dzþ T

JG

ð L

L=2

dz! Θ Lð Þ ¼ 3TL

2JG
þ T

JG

L

2

� �
¼ 2

TL

JG
:

4.4.2 Statically Indeterminate Problems

Just as in the case of the axially loaded rods, cases in which we do not have a

sufficient number of equations from statics for the number of unknowns arise

naturally and frequently in torsion problems. Such cases are called statically

indeterminate because all quantities cannot be determined from statics alone.

Here, let us return to the bone–prosthesis experiment of Sect. 4.1.3, but now

focus on shear stresses induced by torsion. Referring to Fig. 4.18, we know that

if we assume separate LEHI behaviors for the prosthesis and bone that
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σ
p
zθ ¼

Tpr

Jp
, 0 
 r < a, and σ b

zθ ¼
Tbr

Jb
, a < r 
 c; ð4:46Þ

where Tp and Tb are those portions of the overall torque T carried by the

prosthesis and bone, respectively, and

Jp ¼
π

2
a4, Jb ¼

π

2
c4 � a4
� �

: ð4:47Þ

From equilibrium, we know that T¼ Tp+ Tb, but we do not yet know how the

torque partitions. For a painless prosthesis, we require that there be no relative

motion and, consequently, that all overall rotations, including the total end

rotation, be equal; that is,

Θ p ¼
TpL

JpG p

¼ TbL

JbGb

¼ Θb ! Tp ¼
Tb JpGp

JbGb

; ð4:48Þ

which, with Θ(0)¼ 0, yields our second equation for our second unknown.

Hence,

Tb ¼
TJbGb

JbGb þ JpG p

, Tp ¼
TJpG p

JbGb þ JpGp

; ð4:49Þ

and, therefore,

σ
p
zθ ¼

TGpr

JbGb þ JpGp

, 0 
 r < a,

σ b
zθ ¼

TGbr

JbGb þ JpGp

, a < r 
 c:

ð4:50Þ

In summary, we see again that if statics alone does not provide sufficient

information, we should appeal to remaining equations (e.g., kinematics, con-

stitutive, and boundary conditions).

FIGURE 4.18 Similar to

Figure 4.7, at section

D-D, except that the

bone-prosthesis system

is subjected to a constant

end torque T (i.e., a

twisting moment having

units of force times

length).
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Example 4.6 Consider the simple shaft shown in Fig. 4.19, which has uniform

LEHI properties and is fixed on both ends. Find the torque T in each section.

Solution: Because the shaft is fixed at both ends, the problem is statically

indeterminate. If we let the end torques be denoted by TA and TC, overall

equilibrium requires that To+TC+TA¼ 0 (where To is the known, applied

torque). We need another equation to find the reactions however. Note, there-

fore, that

Θ L=2ð Þ � Θ 0ð Þ ¼
ðL=2

0

� TA

J1G
dz ¼ � TAL

2J1G
, Θ Lð Þ � Θ L=2ð Þ ¼ TCL

2J2G

where Θ¼ 0 at both z¼ 0 and z¼L. Moreover, Θ(L/2) is but a single value;

thus,

Θ L=2ð Þ ¼ � TAL

2J1G
¼ � TCL

2J2G
! TA ¼ TC

J1

J2

and therefore, having two equations and two unknowns, we can solve for the

two reactions

FIGURE 4.19 Statically

indeterminate shaft,

fixed on both ends, and

subjected to a single

applied torque To at

z¼ L/2. Free-body

diagrams of the whole

structure and the parts

allow the reaction and

internal torques to be

isolated but not

determined because we

have only one nontrivial

equation (the sum of the

twisting moments equals

zero) for the two reaction

torques TA and TC. There
is, therefore, a need for

an additional equation.
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TC ¼ �To

J2

J1 þ J2

� �
, TA ¼ �To

J1

J1 þ J2

� �
:

As a special case, note that if J1¼ J2 (i.e., the shaft has a constant cross section),

then TC¼�To/2 and TA¼�To/2, as expected.

Observation 4.3. One of the main complications with metallic implants (i.e.,

prostheses) is a gradual loosening of the device over time. Although infection

and the associated degradation of bone material can cause loosening, aseptic

loosening (i.e., mechanical failure) remains the most common cause of failure.

PMMA, or poly(methyl methacrylate), is commonly used as a cement to fix

metallic implants within bone. Because loosening is often due to the develop-

ment of microcracks within the PMMA, there is a need to understand the

associated mechanics. PMMA has a stiffness (i.e., Young’s modulus) of

2–3 GPa, a Poisson’s ratio of 0.35, a mass density of 1,220 kg/m3, a yield stress

of about 28 MPa, and a tensile strength of about 83 MPa. Tensile strength is the

maximum stress attained by a material on a σ versus ε curve. A particularly

important characteristic, however, is the fracture toughness of the PMMA bone

cement (i.e., its ability to withstand applied loads in the presence of flaws,

including cracks). Whereas the load-carrying capability of a material containing

defects or cracks is not compromised much in compression, which tends to

close the defect, the behavior in tension and shear is very important. Indeed,

excessive shear stresses at the bone–cement interface are thought to play a key

role in the loosening of a hip implant.

A typical fracture toughness test consists of applying known axial stresses on

a uniaxial sample that has a well-defined flaw in the central region (Fig. 4.20);

this flaw experiences increased stress at its tip, which serves to nucleate and

possibly to propagate a crack. For this simple test, a stress intensity factor K is

often defined asK ¼ f σ
ffiffiffiffiffi
πa
p

;where f is a geometric factor for the specimen and

flaw, σ is the applied axial stress, and a is a measure of the width of the flaw. The

critical value of K at which the flaw begins to propagate is known as the fracture

toughness Kc. Values of Kc for PMMA are around 990MPa
ffiffiffiffi
m
p

: Whereas

increased rates of loading or the presence of large defects reduce the fracture

toughness, increasing the presence of very small inclusions tends to increase Kc.

Such inclusions, including grains in metals, tend to arrest the propagation of a

microcrack because more energy is needed to divert the crack around the

inclusion. For this reason, small whiskers of titanium are sometimes added to

the bone cement. These whiskers not only increase the fracture toughness of the

bone cement, they also improve its radio-opacity and thus permit an easier

examination of the integrity of the cement with X-rays. We have not considered

fracture mechanics or the associated material science herein, but the student

must know that many real life problems require advanced methods and the
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expertise of many to understand fully the clinical problem and its most effective

solution. We emphasize again, therefore, that this text is but an introduction; the

interested student must pursue advanced courses in applied mechanics and

biomechanics.

4.5 Experimental Design: Bone Properties

We recall from Chap. 2 that bones are typically heterogeneous (cortical and

cancellous bone being very different); here, we consider a simple experiment to

determine a first-order approximation for the shear modulus G in the diaphysial

region of the femur based on the assumptions of homogeneity and isotropy.

Pretend, however, that we do not have access to a tension–torsion device, which

would allow us to perform a torsion test on a cylindrical sample and thereby to

measure the end rotationΘ(z¼ L), applied torque To, length L, and second polar

moment of area J that are needed to calculate G¼ TL/JΘ. Rather, assume that

we have available a much less expensive axial load device. We are thus faced

with the dilemma of determining the value of the shear modulus G via an axial

load experiment; let us employ our theoretical framework for help.

Actually, there are various ways to overcome this problem. First, we could

recall that for isotropy, G¼E/2(1 + v) and therefore we simply need to deter-

mine E and v. If we perform a uniaxial load test, we can infer σxx and εxx (with

σxx¼Eεxx) from measurables: σxx¼ f/A, which can be determined by measuring

the applied load and the cross-sectional area, and εxx, which can be obtained

directly from an axially oriented strain gauge (because the bone will experience

FIGURE 4.20 Schema of

a specimen used for

determining the fracture

toughness of a material.
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small strains in its elastic range). Indeed, if εxx � εaxial, then a second strain

gauge placed orthogonal to the first would yield εlateral whereby

G ¼ E

2 1þ vð Þ ¼
σxx=εxx

2 1� εlateral=εxxð Þ ¼
f=Aεaxial

2 εaxial � εlateralð Þ=εaxial
; ð4:51Þ

or

G ¼ f

2A εaxial � εlateralð Þ: ð4:52Þ

Alternatively, we could recall our transformation equations for stress and

strain (Chap. 2). For example,

σ
0

xy

�
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
, ε

0

xy

�
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxx � εyy

2

� �2
þ ε2xy

r
; ð4:53Þ

where, for a uniaxial test, σyy¼ 0, σxy¼ 0, and εxy¼ 0. Thus, we simply need to

invoke the constitutive relation relative to the primed coordinates, namely

σ
0

xy

�
max ¼ 2Gε

0

xy

�
max ! G ¼ 1

2

σxx=2

εxx � εyy
� �

=2
; ð4:54Þ

or with σxx¼ f/A, εxx� εaxial, and εyy� εlateral,

G ¼ f

2A εaxial � εlateralð Þ; ð4:55Þ

which is the same result as obtained earlier. We see again, therefore, that theory

helps us to determine what to measure—that is to say, how to design a good

experiment. If we were working in industry, our boss would be particularly

pleased if our knowledge of theory would allow the desired result (here, the

value of G) to be determined using available instrumentation (a standard axial

load frame) rather than necessitating the expense and delay associated with the

purchase of more specialized equipment.

4.6 Experimental Design: Papillary Muscles

4.6.1 Biological Motivation

The wall of the heart consists primarily of myocardium, which is delimited on

its inner and outer surfaces by thin endocardial and epicardial membranes

(Fig. 4.9). Whereas these delimiting membranes consist primarily of a 2-D
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plexus of collagen with admixed elastin, the myocardium consists primarily of

locally parallel cardiomyocytes that are embedded in a 3-D collagenous matrix.

Clearly, then, the myocardium and delimiting membranes exhibit very different

mechanical behaviors (recall Fig. 2.24) consistent with their very different

biomechanical functions. Fundamental to understanding overall cardiac func-

tion, therefore, is a detailed knowledge of the mechanical properties of the

various tissues that constitute the heart. Quantification of the mechanical prop-

erties of the myocardium is complicated, however, by its ability to contract as a

muscle and the observation that it experiences multiaxial finite extensions,

shortening, and shears throughout the normal cardiac cycle (recall Fig. 2.20).

There is a need, therefore, for tests that address both of these complexities.

The papillary muscles are thin, fingerlike projections within the ventricles of

the heart (cf. Fig. 3.2). They consist of locally parallel myocardial fibers that are

oriented along the axial direction, plus a thin delimiting endocardial membrane.

Because some papillary muscles (e.g., from the right ventricle of the rabbit) are

thin, nearly circular in cross section, and of modest taper along a significant

portion of their length, they have proven to be ideal specimens for experiments

that seek to quantify behavior in extension (i.e., axial loading) and shear (i.e.,

torsion) in both active and passive states; that is, the thinness of such specimens

allows one to induce muscular contraction by bathing the papillary muscle in an

appropriate solution, such as a normal physiologic solution augmented with

barium to induce contracture or, likewise, to induce relaxation by changing the

bathing solution to one containing an appropriate cardioplegic (e.g., high

potassium and 2,3-butanedione 2-monoxime, or BDM). From the perspective

of mechanics, therefore, one can design a tractable experiment: the combined

axial extension and torsion of a cylindrical specimen having either active or

passive properties. Given that we have derived formulas for axial extension and

torsion, it may seem that it would be easy to design and interpret such an

experiment to determine the stress–strain behavior of a papillary muscle and,

thus, myocardium. Here, however, we must be very careful: Whereas the

formula for Cauchy stress in an axially loaded member (σzz¼ f/A) is a universal

solution and thus applicable to any material and any degree of strain, the

analogous formula for Cauchy stress in the torsion of a circular member

(σzθ¼Tr/J) holds only for LEHI behavior and small strains. Likewise,

the formulas for end deflection (e.g., δ¼ fL/AE) and that for end rotation

(Θ¼TL/JG) are both restricted to small strains. The characteristic nonlinear,

inelastic, heterogeneous, and anisotropic behavior exhibited by myocardium

thus prohibits the use of three of our otherwise four seemingly applicable

formulas.

Although we discuss some aspects of the quantification of nonlinear material

behavior in Chap. 6, here let us see that how our simple results can still be used

to design an appropriate experiment on a complex soft tissue.
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4.6.2 Experimental Design

Consider Fig. 4.21, which illustrates a possible setup for an extension–torsion

test on a papillary muscle. In particular, we need actuators to induce both

extension and torsion; this can be accomplished with computer-controlled

stepper motors, which are commercially available at the appropriate resolution

in motion. We also need a method to measure the strain in the central region;

although standard strain gauges cannot be used, strains can be inferred by

affixing small markers to the surface of the specimen and tracking their motion

with a video camera and computer image analysis system. From marker dis-

placements, of course, we can compute the requisite displacements and their

gradients (by introducing interpolation functions) to compute surface strains as

discussed in Chap. 2. Although papillary muscles are small and thus subject to

relatively small axial loads, commercial load cells are available with the

requisite resolution. Measurement of the applied torque is not so simple

FIGURE 4.21 Possible experimental setup for performing an extension–torsion test on a

thin, long, circular soft tissue. Shown are two actuators (a linear motor and torque motor

to induce the extension and twisting, respectively), a standard axial load cell, a custom

laser lever for measuring the torque, and a specimen in a physiologic solution. Note that

the specimen has markers affixed to its surface to allow noncontacting measurements of

displacements and then, via interpolation, calculation of displacement gradients and

thus strains.
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however because a torque is a force acting at a distance. For a papillary muscle

from the right ventricle (RV) of the rabbit or rat heart, this means a small force

acting at a very small distance; hence, the applied torque will be very small.

Therefore, let us see how the results of this chapter can be used to design an

appropriate torque transducer.

Figure 4.22 is a free-body diagram of the bottom fixture, specimen, upper

fixture, and thin connecting wire assembly. Because equilibrium of the whole

implies equilibrium of the parts, each member of this assembly has a similar

free-body diagram. In particular, there must be continuity of the applied loads

throughout each member of this specimen–fixture assembly. In other words, if

we can measure the torque acting on either the bottom or the upper fixture, we

will know the torque that acts on the papillary muscle. In a Ph.D. dissertation,

Sten-Knudsen (1953) recognized this and suggested that the upper fixture be

connected to a thin metallic wire that exhibits a LEHI behavior. Consequently,

if one measures the rotation at two points along the wire, say ΘA and ΘB, and if

one knows the radius c and the shear modulus G of the wire, then the torque on

the wire is [from Eq. (4.45)]

FIGURE 4.22 Free-body diagrams of the specimen–fixture assembly for the device in

Fig. 4.21 as well as of the isolated specimen and the wire that connects the upper fixture

to the torque motor. Although the metallic wire and soft tissue have very different

material properties (recall Fig. 2.23), equilibrium and Newton’s third law require

continuity in the applied loads from one to the other.
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T ¼ ΘB � ΘAð ÞJG
L

, J ¼ π

2
c4; ð4:56Þ

where ΘA and ΘB are the rotations at points A and B and L is the distance

between A and B. If the load cell in Fig. 4.22 is rigidly attached to the torque

motor, then ΘA simply equals the rotation of the torque motor, which is

generally available as a digital output signal. How then do we measure ΘB?

One possibility is to measure the angle of reflection of a beam of light (i.e., a

laser) using a mirror that is attached rigidly to the wire at B and a photoreceptor.

The resolution and range of the torque transducer is thus controlled largely by

the position of the mirror at B, the radius of the wire, and the shear modulus of

the wire G. Each of these quantities are easily measured.

In summary, we sought a tractable experiment to reveal the nonlinear exten-

sional and shear behaviors of myocardium in active and passive states. Nature

provided a nearly ideal sample in the thin and nearly circular papillary muscle.

Whereas commercially available stepper motors, video cameras, frame-grabber

boards, axial load cells, and A/D boards allow one to control and measure most

of the requisite quantities, the unavailability of a commercial torque transducer

having sufficient resolution (in 1953 and today) necessitated a custom design.

We saw, therefore, that our simple strength of materials solution restricted to

LEHI behavior could be used to design such a transducer for measuring torques

in a tissue that exhibits a nonlinearly, inelastic, heterogeneous, and anisotropic

material behavior. Knowing not only the restrictions but also the applications of

each derivation is thus fundamental to creative analysis and design. Whereas we

have considered only the design of the transducer here, Humphrey (2002)

addressed the complete problem via nonlinear mechanics.

4.7 Inflation, Extension, and Twist

Because the stress boundary value problems associated with the distension of a

thin-walled circular tube, the small strain axial extension of a rod, and the small

strain twist of a circular shaft are each linear, their solutions can be

superimposed to consider more complex loading conditions. In particular,

relative to (r, θ, z) coordinates, recall the following results:

σθθ ¼
Pa

h
, σzz ¼

Pa

2h
þ f

2πah
, σzθ ¼

Tr

J
ð4:57Þ

wherein we emphasize that each result relates the stress to the applied load and

geometry. Referring to Fig. 4.23, therefore, we see a potentially complex 2-D

state of stress. From a design perspective, one could ask questions such as: What

are the maximum principal or shear stresses and at what orientation α do they
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act? Knowing the value αp for the principal values would be useful, for

example, in the placement of strain gauges on the specimen. Fortunately, such

questions are answered easily because the formulas for stress in Eq. (4.57) can

be superimposed.

In summary, as we noted in the Introduction, considering separately the

mechanics of simple problems not only gives us intuition and reinforces

the general method of approach, it also yields direct applications and in some

cases it allows us to consider more complex situations consisting of multiple

types of applied load. In any event, we must always be mindful of the deriva-

tions (i.e., of the embodied assumptions).

Chapter Summary

This chapter addresses, in part, two of five aforementioned canonical problems

in biosolid mechanics: extension of 1-D structures and torsion of cylindrical

structures. The other canonical problems are considered in Chaps. 3 and 5.

Obvious applications of solutions to extension and torsion problems include the

analysis of bones, tendons, ligaments, and muscles, but many others as well,

including diverse experimental fixtures or medical devices. As in Chap. 3, we

sought to determine stress in terms of the applied load and geometry and to

determine strain, or associated deformations, in terms of the applied load,

geometry, and material properties.

Although stress in an axially loaded, uniform 1-D structure (Sect. 3.3) can be

determined via a universal solution (i.e., independent of constitutive proper-

ties), we found in this chapter that determination of the associated strain

required specification of a constitutive relation (Eq. 4.4). Hence, even for the

FIGURE 4.23 Complex state of stress in a cylindrical tube. Relative to z and θ, the axial

stress σzz is induced by the axial load f, the shear stress σzθ is induced by the torque T,
and the circumferential stress σθθ is induced by the pressure P. Superposition applies

because the problem is linear.
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same problem, one must be careful to remember the limitations of individual

results. Indeed, in many books one finds that stress and strain in axial loading

are derived in the same section without emphasizing that the solution for stress

is universal whereas that for strain is not. This observation is especially impor-

tant to remember given that years from now the reader may need to use such

solutions, but will likely only look in the index to find the associated result (e.g.,

Eqs. 3.29 and 4.4) without reviewing the individual derivations. The importance

of remembering limitations of results cannot be over-emphasized.

We also found that determination of stresses in an axially loaded, composite

1-D structure required information on the constitutive behavior via the kine-

matic constraint of compatible displacements (i.e., the problem was statically

indeterminate and thus required additional equations). Hence, even for the same

class of problems, universal solutions may or may not exist depending on slight

differences. Remembering the solution methodology and associated assump-

tions is thus critical.

The solution for shear stress in a uniform, solid cylinder (e.g., 4.27) yielded

the desired result: stress in terms of applied load (i.e., the torque, or twisting

moment T) and geometry (radial location r and the second polar moment of area

J). Although material properties (e.g., shear modulus G) do not appear explic-

itly in this final relation, the solution is nevertheless not universal. As revealed

by the derivation, material properties had to be introduced (cf. Eq. 4.20,

Hooke’s law for LEHI behavior in shear). Again, therefore, we must be mindful

of the derivation and inherent limitations of each result. Comparable results for

stress for a composite, solid cylinder (Eq. 4.50) as well as those for the

deformation of even a uniform cylinder (cf. Eq. 4.45) reveal directly the

restriction to a particular constitutive behavior.

Although defining a cylindrical coordinate system aligned with the long axis

of a cylinder is clearly advantageous in the solution of these problems involving

extension and torsion, we recall that the resulting components of stress or strain

need not be the most useful with regard to understanding either material failure

or mechanobiological responses. That is, as noted in Chap. 2, components of

stress and strain exist relative to coordinate systems that we select, thus we

should first select that system which is most convenient for solving the overall

initial or boundary value problem. Once accomplished, we should then use

transformation relations (Chap. 2) as needed to consider other components of

interest, including but not limited to principal values, which might be more

relevant to the material science or the biology.

Finally, Sects. 4.5 and 4.6 remind us that solutions for stress and strain are not

only useful for analyzing initial and boundary value problems found in nature,

they are also useful for guiding the design of experiments. Hence, appreciating

the existence of solutions for multiple classes of problems enables us to think

more broadly when designing clever experiments to reveal new phenomena.
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Appendix 4: Second Moments of Area

In Appendix 3 in Chap. 3, we defined the first moment of area and showed how

it can be used to determine a centroid. Whereas

ðð
x1dA,

ðð
y1dA,

ðð
z1dA; ðA4:1Þ

are called first moments of area (given that x, y, and z are raised to the power 1),

ðð
x2dA,

ðð
y2dA,

ðð
z2dA; ðA4:2Þ

are called second moments of area for obvious reasons. (Note: The word

“moment” is used because of the analogy of a force acting at a distance

compared to the case here of an area “acting” at a distance or a distance squared.

In many books, the second moments of area are called moments of inertia, but

this is incorrect, for inertia must involve a mass. Moments of inertia arise in

dynamics and are equally important, but different.)

Because of the quadratic form in Eq. (A4.2), additional second moments of

area are possible:

ðð
xydA,

ðð
yzdA,

ðð
zxdA; ðA4:3Þ

and similarly for yx, zy, and xz terms. Clearly, these additional cross moments

would have the same value as their paired result in Eq. (A4.3). Hence, like the

Cauchy stress and linearized strain, there are nine components of the second

moment of area, six of which are independent with respect to a particular

coordinate system.

Herein, however, we shall typically focus on the x face and, thus, moments of

area in the y-z plane. We typically denote these quantities by

Izz ¼
ðð
y2dA, Iyy ¼

ðð
z2dA, Iyz ¼ �

ðð
yzdA: ðA4:4Þ

The minus sign in Iyz is introduced for convenience; we will not detail this.

Rather, let us focus on Izz and then Iyy. Izz is perhaps best appreciated by

calculating its value for a rectangular cross section. Referring to Fig. 4.24 and

locating the centroid y; zð Þ at (h/2, b/2), we have
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Izz ¼
ðb=2

�b=2

ðh=2

�h=2
y2dy
� �

dz ¼
ðb=2

�b=2

1

3
y3
����
h=2

�h=2

 !
dz

¼
ðb=2

�b=2

1

3

h3

8
þ h3

8

� �
dz ¼ 1

12
h3 zjb=2�b=2
� �

¼ 1

12
bh3:

ðA4:5Þ

A general equation for rectangular cross sections can thus be written as

Izz ¼
1

12
baseð Þ heightð Þ3; ðA4:6Þ

where base is the width of the cross section in the z direction and height is the

length of the cross section in the vertical direction.

Next, let us consider a circular cross section (Fig. 4.25). Noting that

y ¼ r cos θ, z ¼ r sin θ ðA4:7Þ

and

dA ¼ dydz ¼ r dθdr; ðA4:8Þ

then

Izz ¼
ðð
y2dydz ¼

ð2π

0

ð c

0

r2 cos 2θ
� �

rdrdθ

¼
ð2π

0

cos 2θ
� �

dθ

ð c

0

r3dr ¼ 1
2
θ þ 1

4
sin 2θ

� ���2π
0

1
4
r4

� ��� c
0
¼ π

4
c4:

ðA4:9Þ

Here, observe two things. First, the derivation for the cylindrical cross section

was easier in cylindrical coordinates, reminding us that coordinate systems

FIGURE 4.24 Schema of

a rectangular cross

section for purposes of

determining a second

moment of area.
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should be selected to facilitate analysis. Second, it is easily shown (do it) that

Iyy¼ πc4/4 also. Indeed, let us note that

Iyy þ Izz ¼
ðð
z2dAþ

ðð
y2dA ¼

ðð
z2 þ y2
� �

dA; ðA4:10Þ

where z2+ y2¼ r2 in cylindricals. Thus,

Iyy þ Izz ¼
ðð
r2r drdθ � J; ðA4:11Þ

the so-called polar second moment of area. For the circular cross section,

therefore,

J ¼ Iyy þ Izz ¼ 2
π

4
c4

� �
¼ π

2
c4; ðA4:12Þ

a result that we have found to be very useful in this chapter on torsion.

Exercises

4.1 Find σzθ, σ
0
zθ, and σ

0
zz)max given a positive torque To applied at the free

end of a constant-diameter solid shaft of radius c and length L and

having a shear modulus G. Assume the shaft is fixed at the left end.

4.2 Given the shaft in the following figure, (a) find the maximum shear

stress σ0zθ)max and note its location, (b) find the angle of twist Θ at the

end of the shaft, and (c) find the maximum normal stress σ0zz)max.

FIGURE 4.25 Schema of a circular cross section for purposes of determining a second

moment of area relative to Cartesian or cylindrical coordinate systems; the latter is

called the polar second moment of area and commonly denoted by J.
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Assume a LEHI behavior, with a shear modulus G, as well as a length

L and radius c (Fig. 4.26).

4.3 A laboratory test involves “potting” part of the femur in cement and then

applying two loads f, each at a distance d from the centerline (cf. Fig. 4.4);

this yields a couple or twisting moment To¼ 2fd. A strain gauge is placed

at an angle α on the bone a distance L/2 from the fixed end. Derive a

formula for the strain in the gauge that can be related to experimentally

measurable quantities. Assume the bone exhibits a LEHI behavior and

that it has a cross section at z¼ L given by inner and outer radii of a and c.

Discuss for what such an experiment could be utilized. Discuss why the

strain gauge is not applied at length L and angle α¼ 0.

4.4 For a solid shaft of diameter d for z 2 [0, 2L/3) and diameter nd for z 2
(2L/3, L], subject to torques To at 2L/3 and 2To at L, (a) find the value of

n such that the maximum shear stress σzθ is the same in each segment

and (b) find the twist Θ at the free end if n¼ 1.

4.5 Some papillary muscles in the heart (which connect the valves to the

endocardium through the chordae) are nearly cylindrical. We wish to

perform a torsion test on such a tissue, but measuring the applied

torque is difficult because of the small size. Assume that we can use

the device in Fig. 4.20, that the wire is made of copper, and that

the distance between points A and B is 15 mm. Also assume ΘA and

ΘB are measurable, their difference being ~90
. If the maximum torque

achieved is ~0.5 mN mm, find an appropriate diameter for the wire.

4.6 Carter and Beaupré (2001) discuss an interesting finding by Lanyon and

Rubin in 1984. It was suggested that the number of cycles of loading per

day and the maximum achieved strain both serve as mechanobiological

stimuli for bone growth. In particular, they found that bone mass was

maintained (i.e., production and removal were balanced) given a strain

history of 4 cycles/day at a maximum value of 0.002 or similarly at

100 cycles/day at a maximum value between 0.0005 and 0.001 (assume

0.0008). They suggested that these combined effects can be accounted

for via a “daily bone stimulus” parameter ξ that is computed via

the following formula

FIGURE 4.26
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ξ ¼
X

day

nεm

 !1=m

where n is the number of cycles/day, ε is the maximum strain attained per

cycle, and m is an empirically determined material parameter. Given the

data listed here, find a value for m.

4.7 Based on the results of the previous exercise, determine the number of

cycles that one should walk per day if the strain during normal walking is

400 με (i.e., microstrain, where 1 με¼ 1� 10�6). Carter and Beaupré

(2001) suggest that 10,000 cycles of walking per day will maintain bone

mass. If the normal person advances 3 ft per stride, how far should he/she

walk per day to maintain bone mass?

4.8 Based on the previous exercise and an assumed Young’s modulus

E¼ 16 GPa and Poisson’s ratio v¼ 0.325 for bone, compute the axial

load necessary to cause a strain of 400 με in the normal adult diaphysial

region of the femur. Express your results in terms of percent body

weight, assuming a weight of 70 kg. What would the associated axial

compressive stress be? Similarly, estimate the load on the femur during

running and the associated compressive stress and strain. Based on these

values and the previous exercise, if a person advances 4 ft per stride

when running, how far should he/she run per day?

4.9 If a 17.2-Nm torque induces a maximum shearing strain of 1,132 με at

the periosteal surface in the diaphysial region of the femur, what is the

associated value of the shearing stress if the shear modulus is 3.3 GPa?

4.10 The ratio of the cortical thickness to the outer radius of most human

bones is between 0.33 and 0.4. Assume that the cross section of a

segment of a long bone is circular and that the periosteal and endosteal

radii are 15 mm and 9 mm, respectively. Assume, too, that a 17.2-Nm

torque is applied for 10,000 cycles. What is the maximum extensional

(principal) strain and, from the equation in Exercise 4.6, what is the value

of the daily bone stimulus parameter ξ?

4.11 According to Carter and Beaupré (2001), “bone cross-sections that are

formed are very dependent on the full history of loading throughout life.

In the age range of 30–60 years, the normal bone has a diameter of about

32 mm and a cortical thickness of 5 mm. When the loads are reduced to

40 % of normal at the age of 20, the bone in later adulthood has diameter

of about 30 mm and a cortical thickness of about 2 mm. The bone that

forms while loads are reduced to 40 % throughout development has an

adult diameter of about 22 mm and a thickness of 4 mm.” What are the

implications of such observations with regard to space travel, especially

a voyage to Mars?
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4.12 Referring to the previous exercise, note that the strains in adapting bones

are generally the same regardless of the applied loads and associated

cross-sectional radii. What does this suggest with regard to growth and

remodeling?

4.13 Carter and Beaupré (2001, p. 81) suggest a phenomenological descriptor

of bone growth (actually the rate of increase of the outer radius) of the

form, _r ¼ _rb þ _rm ¼ ce�0:9t þ _rm; where _r is the time rate of change of

the radius, having units of microns per day; subscripts b and m denote an

intrinsic biological rate and an adaptive mechanobiologic rate, respec-

tively, and t denotes time measured in days. They suggest further that the

intrinsic rate becomes relatively small shortly after birth or in early

childhood, thus its representation as an exponential decay; that is, they

assume that most growth and remodeling occur due to mechanobiologic

factors in adolescence and maturity. In simulations, the maximum rate of

biological growth was varied from 1 to 20 μm/day. Given these numbers,

what would the radius be due to biological growth alone at 6 years of

age? Is this value consistent with data on long bones such as the femur?

4.14 Referring to Exercise 4.13, Carter and Beaupré (2001, p. 151) note that

the mass density of cancellous bone (usually ρ from 570 up to 1,200 kg/

m3) is nearly constant from early adolescence to early adulthood. They

suggest that this implies that in the absence of bone diseases, the intrinsic

biological rate of growth is negligible with respect to the

mechanobiological rate during this period. If this is true, what are the

implications with regard to the modeling of bone adapatation?

4.15 Galileo thought that long bones were hollow because this afforded

maximum strength with minimum weight. Discuss this in terms of the

ability of a hollow versus a solid cylindrical bone of the same mass to

resist a torque; assume the bone is cortical, which has a mass density of

~1,700 kg/m3. Alternatively, is the “hollowness” of a long bone consis-

tent with a stress- or strain-based growth model wherein a maximum

compressive strain of 1,000 με is homeostatic—assume that the bone is

either subjected to a torque alone or to a combined torque and axial load

wherein the stresses due to torsion exceed those due to axial loading?

4.16 A long bone is subjected to a torsion test. Assume that the inner diameter

is 0.375 in. and the outer diameter is 1.25 in., both for a circular cross

section. If E¼ 16 GPa and v¼ 0.325, find the largest torque that can be

applied prior to yield, where σyield¼ 1.25 ksi (i.e., a maximum normal

stress).

4.17 A solid circular cylinder 10 cm long and 2 cm in outer radius behaves as

a LEHI material with G¼ 10 GPa. If the twisting moment (torque)

applied at the free end is 3 kNm, show that J¼ 25.13� 10�8 m4,

Θ¼ 6.84
 at the free end, σzθ(r¼ c)¼ 238.76 MPa, and 2εzθ(r¼ c)¼
0.02388. Assume one end is fixed.
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4.18 A rectangular bar 2� 2� 20 cm in dimension is subjected to an axial

force (uniform) of 4� 106 N. Assuming E¼ 100 GPa and v¼ 0.30, find

σxx, εxx, εyy¼ εzz, and the deformed dimensions (assuming homogenous

strains).

4.19 A human femur is mounted in a torsion testing device and loaded to

failure. Assuming that one end is fixed and the other rotated, failure

(fracture) occurs when T¼ 180 Nm and Θ(L)¼ 20
. Assume that

L¼ 37 cm and that the failure occurs at 25 cm from the fixed end,

where the inner and outer radii are 7 mm and 13 mm, respectively.

Find the value of the shear stress at which fracture occurs; estimate the

shear modulus G. Finally, note that “torsional fractures are usually

initiated at regions of the bones where the cross-sections are the smallest.

Some particularly weak sections of human bones are the upper and lower

thirds of the humerus, femur, and fibula; the upper third of the radius; and

the lower fourth of the ulna and tibia” (Özkaya and Nordin 1999).

4.20 A rectangular aluminum bar (~1.5� 2.1 cm in cross section) and a

circular steel rod (~1 cm in radius) are each subjected to an axial force

of 20 kN. Assuming that both are 30 cm long in their unloaded config-

uration, find (a) the stress in each, (b) the extensional strain in each, and

(c) the amount of lengthening in each. Let E¼ 70 GPa for aluminum and

200 GPa for steel.

4.21 A brittle behavior is characterized by an abrupt fracture soon after the

elastic limit is exceeded. In contrast, a ductile behavior is characterized

by a plastic behavior, including strain hardening, following yield. Recall

Fig. 2.25. We know that yield and the subsequent plastic behavior are

governed by shear stresses, which cause atoms to “slip” past one another

irreversibly. Hence, it is important to compute the maximum shear stress.

Although a shear stress at which a material yields is easy to determine

in a torsion test, tensile tests are more common. Recall from Chap. 2,

therefore, that the maximum shear stress in a 1-D tension test

σxx ¼ σ1, σ yy ¼ 0, σxy ¼ 0
� �

is

σ
0

xy

�
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1 � 0

2

� �2

þ 02

s

¼ σ1

2
:

This value of σ1 at yield is called σy, the yield stress. Hence, a yield

criterion in uniaxial tension is as follows: If jσxxj 
 σy, then the material

has not yielded. In multiaxial states of stress, more general yield criteria

are needed. Two common yield theories are the Tresca yield condition

and the von Mises yield conditions. Research these two yield theories and

submit a two-page summary.
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5
Beam Bending and Column Buckling

Although we have not emphasized it, we now note some standard terminology.

Generally, a structural member having one dimension much greater than the

other two is called a rod if it is subjected to a tensile axial load, it is called a

column if it is subjected to a compressive axial load, it is called a shaft if it is

circular in cross section and subjected to a torque, and it is called a beam if it is

subjected to moments or transverse loads that induce bending.1 In this chapter,

we focus on beams as well as columns that buckle (i.e., structural members

having one dimension much greater than the other two and that bend laterally

when loaded). As in Chap. 4, we limit our examination to structural members

that exhibit a linearly elastic, homogeneous, and isotropic (LEHI) behavior over

small strains. Hence, again, the primary biomedical applications are (long)

bones as well as select biomaterials. In addition, just as in Chap. 4, we will

see that the topics herein are essential to the design of many different load cells,

which, in turn, are important to many different areas of biomedical engineering,

from gait analysis to studying mechanotransduction in cells. As in prior chap-

ters, however, the most important thing is the deepening of one’s understanding

of the general approach of mechanics, not the specific (textbook) applications or

solutions.

Whereas most engineering students learn about “bending moment and shear

force diagrams” in a first course on engineering, here we briefly review these

ideas because of their importance and because of the nonunique sign conven-

tions and approaches used in different textbooks. In other words, we need to be

1 For completeness, note that structural members having two dimensions much greater
than the third are called plates or shells if they are initially flat or curved, respectively.
An example of the latter is the skull. If a plate or shell does not resist bending, it is called
a membrane. The pericardium is an example of a curved membrane.
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on the same page when we begin our analysis of stress and deformation in

subsequent sections.

5.1 Shear Forces and Bending Moments

Given a generic straight beam (Fig. 5.1), we extract a differential element of

length Δx and note the exposed shear forces V and bending moments Mz (i.e.,

bending moments about the z axis). We recall from statics that V and Mz can

vary with position x; hence, the values on the left exposed face need not equal

the values on the right face. Question: By howmuch do they differ? Because the

right face is a distance Δx from the left, we expect that moments and shears on

the right to differ from those on the left by only some small amount, say

Mz+ΔMz and V+ΔV on the right x face relative to Mz and V on the left face.

Recall, too, that if a body is in equilibrium, then each of its parts is in

equilibrium. Hence, assuming the possible existence of a uniformly distributed

load q(x), let us enforce equilibrium for the differential element in Fig. 5.1b.

Force balance requires

FIGURE 5.1 Panel a shows a generic initially straight beam and convenient coordinate

system, with a representative section of length Δx isolated for removal via fictitious cuts.

Panel b shows the removed differential element with an applied distributed load q(x) and
isolated internal shear forces V and bending moments Mz, each of which may vary as a

function of location x. Panel c shows the positive sign convention that is adopted herein.
Note: Although it is useful to consult other books for additional illustrative examples or

alternate explanations and derivations, the sign convention differs considerably from

book to book, which changes the governing equations and values of the computed

quantities of interest. Paying careful attention to sign conventions is thus very important.
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X
Fx ¼ 0! 0 ¼ 0; ð5:1Þ

X
Fy ¼ 0! V � V þ ΔVð Þ � q xð ÞΔx ¼ 0; ð5:2Þ

or

ΔV ¼ �q xð ÞΔx! ΔV

Δx
¼ �q xð Þ: ð5:3Þ

If we take the limit as Δx approaches zero, we obtain the general differential

equation

lim
Δx!0

ΔV

Δx
¼ dV

dx
! dV

dx
¼ �q xð Þ: ð5:4Þ

Note that in this derivation, we assumed that the resultant of q(x),

i:e:,
Ð xþΔx
x

q xð Þdx
h i

is well approximated by q(x)Δx over a small length Δx,

which is to say that although q may vary with x, it will not vary much over the

lengthΔx and, thus, it can be taken out of the integral. In other words, we invoke

the mean value theorem for integrals from calculus.

Finally, let us enforce moment balance for the differential element in

Fig. 5.1b (let point A exist at x = 0):

X
Mz

�
A ¼ 0! �Mz þ Mz þ ΔMzð Þ � q xð ÞΔx Δx

2

� �
� V þ ΔVð Þ Δxð Þ ¼ 0;

ð5:5Þ

which reduces to

ΔMz ¼ VΔxþ ΔVΔxþ 1

2
q xð Þ Δxð Þ2; ð5:6Þ

or

ΔMz

Δx
¼ V þ ΔV þ 1

2
q xð ÞΔx: ð5:7Þ

Finally, in the limit as we shrink Δx to a point (whereby ΔV and Δx go to zero),

we have
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lim
Δx!0

ΔMz

Δx
¼ lim

Δx!0
V þ ΔV þ 1

2
q xð ÞΔx

� 

¼ V ð5:8Þ

or our final result

dMz

dx
¼ V xð Þ: ð5:9Þ

Equations (5.4) and (5.9) will prove very useful when we seek to draw the shear

and bending moment diagrams. Next, let us consider a full analysis of a general

beam problem.

When all of the forces are applied in one plane, we see that only three of the

six equations of statics are available for the analysis. These are ΣFx¼ 0,

ΣFy¼ 0, and ΣMz¼ 0. In addition to providing our general differential equa-

tions, these equations also allow us to determine reaction forces at the supports

of the beam. Indeed, the analysis of any beam or frame (i.e., finding internal

forces and moments) should begin with a free-body diagram of the whole

structure that shows both the applied and the reactive loads, which must satisfy

equilibrium. The reactions can be computed using the equations of equilibrium

provided that the system is statically determinate; in the case of statically

indeterminate problems, which we consider below, additional equations are

needed. Here, however, let us focus on the former, simpler case.

The next step in a general analysis uses the concept that if a body is in

equilibrium, then each of its parts is also in equilibrium.We thus repeat the free-

body diagram/equilibrium procedure for each judicious cut of interest. Consider

an imaginary cut normal to the axis of the beam that separates the beam into two

segments. Each of these segments is also in equilibrium. The conditions of

equilibrium require the existence of internal forces and moments at each cut

section of the beam. In general, at a section of such a member, at location x,

a shear force V(x), a horizontal force f(x), and a moment Mz(x) are necessary to

maintain the isolated part in equilibrium. To illustrate this, consider initially

straight, constant-cross-section LEHI beams in the following examples.

Example 5.1 For the beam in Fig. 5.2, find V(x) and Mz(x) and draw the

resulting shear force and bending moment diagrams. P, a, b, and L are assumed

to be known.

Solution: The first step in solving this problem is to draw a free-body diagram

of the whole beam and then to determine the reaction forces at the supports

using the equations of (statics) equilibrium; that is,
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X
Fx ¼ 0! Rx ¼ 0,

X
Fy ¼ 0! RA þ RB � P ¼ 0,

X
Mz

�
A ¼ 0! RBL� Pa ¼ 0;

where, from moment balance, we have

RB ¼
Pa

L
;

and with L� a¼ b, we now have, from vertical force balance,

RA ¼ P� Pa

L
¼ P 1� a

L

� �
¼ P

L� a

L

� �
¼ Pb

L
:

The next step is to construct a free-body diagram for each part of interest, with

judicious choices of cuts. In general, we make cuts between any abrupt changes

in load, geometry, or material properties (see Fig. 5.2c). First, for the section

cut to the left of the applied load P (i.e., for 0< x< a),

FIGURE 5.2 Shown here is a transversely loaded, simply supported beam (panel a), the

free body of the whole structure (panel b), and free-body diagrams of two parts of the

structure (panel c) that isolate the internal loads and moments in two regions of interest.

Note: Remember that judicious cuts are often best taken between abrupt changes in

loads, as done here.
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X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! Pb

L
� V ¼ 0! V ¼ Pb

L
,

X
Mz

�
A ¼ 0! Mz � Vx ¼ 0! Mz xð Þ ¼

Pb

L

� �
x:

Similarly, for the section cut to the right of the applied load P (i.e., for

a< x< L),

X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! Pb

L
� P� V ¼ 0;

or

V ¼ Pb

L
� P ¼ P

b

L
� 1

� �
¼ P

b� L

L

� �
! V ¼ �Pa

L
;

and, finally,

X
Mz

�
A ¼ 0! Mz � Pa� Vx ¼ 0,

Mz ¼ Pa� Pa

L
x! Mz xð Þ ¼ Pa 1� x

L

� �
:

Now that we have the functions V(x) and Mz(x) for each section of interest, we

can construct the shear force and bending moment diagrams, recalling that

V xð Þ¼
Pb

L
for x2 0;að Þ

�Pa
L

for x2 a;Lð Þ

8
><
>:

and Mz xð Þ¼
Pb

L
x for x2 0;að Þ

Pa 1� x

L

� �
for x2 a;Lð Þ:

8
><
>:

It is convenient to construct our shear and bending moment diagrams directly

below the free-body diagram of the beam, using the same horizontal scale for

the length of the beam (Fig. 5.3). Note, in particular, that the internal shear force

is constant within each of the two sections of interest. Consistent with Eq. (5.9),

the associated moments are each linear in these sections of interest, the slope of
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which is given by the value of V. Finally, note that there is a discontinuity

(jump) in V(x) where the transverse load P is applied, but there is no jump in

Mz(x) given the absence of any applied (concentrated) moment.

Example 5.2 The beam in Fig. 5.4 has a uniformly, or evenly, distributed load

q(x)¼ qo. Find V and Mz at all x and the resulting shear force and bending

moment diagrams.

Solution: Again, the first step is to draw a free-body diagram of the whole

structure and to determine the reaction forces at the supports using the equations

of statics; that is,

X
Fx ¼ 0! Rx ¼ 0,

X
Fy ¼ 0! Ry �

Ð L
0
qodx ¼ 0 or Ry ¼ qoL:

Finally,

X
Mz

�
A ¼ 0! �MA �

ð L

0

qoxdx ¼ 0 or MA ¼ �
qoL

2

2
:

Before proceeding to equilibrium of parts, let us note the following. In your first

course on statics, you may have solved this problem by considering force and

FIGURE 5.3 Shear and

bending moment

diagrams for the beam

in Fig. 5.2. It is best to

draw such diagrams as

done here: Show the

physical problem with

the shear and bending

diagrams directly below.

This will help you to

develop some intuition

with regard to how such

diagrams should look

for various physical

problems.
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moment balance in terms of the resultant force and moment due to the uniformly

applied load q(x)¼ qo. These resultants are

RF ¼ qoL, MF ¼ �qoL
L

2

� �
:

which are seen easily. The reactions can thus be solved in terms of these

resultants via equilibrium. Whereas this procedure is simple in simple prob-

lems, integration (which yields these results) of the applied loads directly in the

equilibrium equations is preferred in general.

Next, let us consider internal forces and moments via the introduction of

judicious cuts. Because of the uniform loading, however, one cut will suffice

here. From Fig. 5.4c, we have for all 0< x< L,

FIGURE 5.4 Shown is a

uniformly loaded [i.e.,

q(x)¼ qo] cantilevered

beam (panel a) as well

as free-body diagrams of

the whole (panel b) and

one part of the beam

(panel c). Note that only

one fictitious cut is

needed to expose the

internal loads and

moments because there

are no abrupt changes in

geometry, properties, or

loading between x¼ 0

and x¼L.
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X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! qoL�

Ð x
0
qodx� V ¼ 0;

or V(x)¼ qo(L� x). Similarly,

X
Mz

�
A ¼ 0! qoL

2

2
�
ð x

0

qoxdx� VxþMz ¼ 0;

or

Mz xð Þ ¼ Vxþ qo
2

x2 � L2
� �

where V is known from above; thus,

Mz xð Þ ¼ qo L� xð Þxþ qo
2

x2 � L2
� �

:

Given these two results, we can now plot the desired shear and bending moment

diagrams. First, however, let us observe an alternate but equivalent approach.

Instead of the direct approach of cutting a beam and determining the internal

shear forces and bending moments at a section by statics, an efficient alternative

procedure can be used if the distributed external force q(x) is known and

integrated easily. Recall the basic differential equations derived earlier, namely

Eqs. (5.4) and (5.9):

dV

dx
¼ �q xð Þ and

dMz

dx
¼ V xð Þ:

Integrating Eq. (5.4) yields the shear force V, whereas integrating Eq. (5.9)

yields the bending moment Mz. These ordinary differential equations can be

used to solve for the shear forces and bending moments in beam problems.

Hence, consider the following example.

Example 5.3 Find V(x) and Mz(x) for the beam in Example 5.2 using the

governing ordinary differential equations, where q(x)¼ qo.

Solution: By Eq. (5.4),
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dV xð Þ
dx
¼ �qo !

ð
d

dx
V xð Þð Þdx ¼ �

ð
qo dx;

or

V xð Þ ¼ �qoxþ c1:

By Eq. (5.9), we have

dMz xð Þ
dx

¼ �qoxþ c1 !
ð
d

dx
Mz xð Þð Þdx ¼

ð
�qoxþ c1ð Þdx;

or

Mz xð Þ ¼ �
qox

2

2
þ c1xþ c2:

Applying the boundary conditions for a free end, V(x¼ L)¼ 0 andMz(x¼ L)¼
0, we obtain

0 ¼ �qoLþ c1 ! c1 ¼ qoL

and

0 ¼ � qoL
2

2
þ qoL

2 þ c2 ! c2 ¼ �
qoL

2

2
:

Therefore,

V xð Þ ¼ �qoxþ qoL! V xð Þ ¼ qo L� xð Þ

and

Mz xð Þ ¼ �
qox

2

2
þ c1xþ c2 ! Mz xð Þ ¼ qoLx�

qo
2

x2 þ L2
� �

:

These results are the same as found in the previous example, as they should

be. The shear and bending moment diagrams are in Fig. 5.5.
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5.2 Stresses in Beams

5.2.1 Biological Motivation

Recall from Chaps. 1 and 4 that it was probably first appreciated in bone that

the local state of stress (or strain) influences greatly the underlying micro-

structure through growth and remodeling processes. Moreover, bone and teeth

are among the few tissues in the body that exhibit elastic (and viscoelastic)

behaviors under small strains. Finally, it is easily imagined that bones are

routinely subjected to applied loads that tend to induce bending. A prime

example is daily loading of the femur during walking and running because the

line of action of the applied load does not go through the centroid of the

diaphysis (see Figs. 4.1 and 4.7 as well as Sect. 3.3.2). Taken together, these

observations reveal the importance of studying the bending of beams that

exhibit a linear material behavior under small strains. Indeed, whether we are

interested in understanding the maximum allowable transverse loads that an

athlete’s tibia or fibula can withstand without fracturing, designing a prosthesis

for implantation, or studying mechanotransduction in osteoblasts and osteo-

clasts, knowledge of simple beam bending is of paramount importance.

FIGURE 5.5 Shear and

bending moment

diagrams for the beam

in Fig. 5.4.
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5.2.2 Theoretical Framework

Despite the existence of specific examples that motivate the need to study

particular problems, we emphasize that continuum mechanics is an approach

to solving a broad class of problems; it is not a collection of specialized

solutions. Recall from Chaps. 3 and 4, therefore, that in finding the relation

between stress and the applied loads and geometry for the axially loaded rod,

inflated thin-walled cylinders and spheres, and the torsion of a circular shaft, we

first introduced a judicious cut to expose the stress of interest and then we

enforced equilibrium (of the parts). Based on our examination of shear force and

bending moment diagrams, it is clear that a fictitious cut will, in general, expose

two types of stress: a normal stress σxx that serves to balance the momentMz and

a shear stress σxy that serves to balance the shear force V (Fig. 5.6). Neverthe-

less, let us begin our analysis by considering pure bending—bending in the

absence of transverse loads and a σxy stress.

Normal Stress

To determine the normal stress in a beam subjected to pure bending, consider

the differential element in Fig. 5.7 (in particular, note the assumed directions of

loading). The forces in the x direction must balance, and so too the moments

(i.e., externally applied and the internal resisting moments). Hence,

X
Fx ¼ 0!

ð
�σxxdA ¼ 0 ð5:10Þ

and

X
Mz

�
A ¼ 0! �Mz þ

ð
y �σxxð ÞdA ¼ 0: ð5:11Þ

Our two governing equilibrium equations are thus

FIGURE 5.6 Schema of

the need for x-face
normal and shear

stresses to balance a

bending moment Mz and

shear force V.
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ð
�σxxdA ¼ 0; ð5:12Þ

where dA¼ dydz and

Mz ¼ �
ð
yσxx dA; ð5:13Þ

the second of which relates the stress to the applied load (pure bending moment)

and geometry (cross-sectional area). Similar to the torsion problem, however,

the stress may vary in a yet unknown way: σxx¼ σxx(y). Indeed, we expect a

compressive stress in the upper portion of the cross section, where the (positive)

bending moment tends to shorten the beam, and a tensile stress in the bottom

portion, where the moment tends to lengthen the beam. Equation (5.12) requires

that these compressive and tensile stresses must self-equilibrate.

As in the torsion problem, let us turn to kinematics and constitutive relations

to find the function σxx(y), which will allow us to integrate Eqs. (5.12) and

FIGURE 5.7 Side view and oblique view of a fictitiously cut beam that exposes the

normal stress σxx, which acts over a differential area dA¼ dydz. Given the applied

moment shown, the stress is expected to be compressive in the upper portion of the

beam (y> 0) and tensile in the lower portion (y< 0). Either free-body diagram (top or

bottom) is sufficient for purposes of a force balance.
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(5.13) as needed. Thus, consider the differential element extracted from Fig. 5.7

wherein we exaggerate the degree of bending (quantified by the radius of

curvature ρ) to allow visualization (Fig. 5.8). Moreover, let us locate the

coordinate system at the level wherein the width of the element is denoted

NA. Indeed, let us pick that level whereNA equals the original width Δx; hence,

NA ¼ Δx ¼ ρΔθ: ð5:14Þ

That one can find a location in the y direction where a line segment does

not change length due to bending is revealed by the observation that line

elements shorten in the compressive portion and lengthen in the tensile

portion—somewhere between, one line segment must remain at a constant

length, which thus serves as a convenient reference point.

Likewise, consider the line segment OB, located a distance y above the level

containing NA. Whereas OB ¼ Δx before deformation, after deformation we

have

OB ¼ Δθ ρ� yð Þ: ð5:15Þ

The segment OB can also be rewritten in terms of Δx, which we prefer in light

of Eqs. (5.4) and (5.9). From Eq. (5.14),

FIGURE 5.8 We assume

that an initially straight

beam subjected to a pure

moment (i.e., no

transverse loads) has a

constant curvature at

any depth (in the

y direction). It will

prove convenient,

therefore, to consider

line elements OB and

NA in the x direction in

both undeformed and

deformed configurations.

Furthermore, let the

radius of curvature for

the deformed line

element NA be ρ. The

arc length of NA is thus

given by ρ times the

subtended angle.
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OB ¼ Δθ ρ� yð Þ ¼ ρΔθ � yΔθ ¼ Δx� y
Δx

ρ
¼ Δx 1� y

ρ

� �
: ð5:16Þ

Recall from Chap. 2, therefore, that the linearized extensional strain can be

thought of (over infinitesimal line segments) as

εxx ¼
Current length-Original length

Original length
: ð5:17Þ

Hence, the strain associated with the change in length of OB can be approxi-

mated as

εxx ¼ lim
Δx!0

Δx 1� y=ρð Þ � Δx

Δx
¼ �y

ρ
! εxx ¼ �

y

ρ
; ð5:18Þ

where the reciprocal of the radius of curvature ρ defines the curvature κ, with

ρ and κ both constant with respect to x. It is important to note that if y> 0,

then the strain is compressive, and if y< 0, then the strain is extensional,

each consistent with the assumed compressive and tensile stresses σxx discussed

earlier. Moreover, at y¼ 0 the strain is zero consistent with our selection of

the location of NA.

From Hooke’s law for isotropic behavior [cf. Eq. (2.69)], σxx¼Eεxx when

σyy¼ 0 and σzz¼ 0, as assumed here. Hence, from Eq. (5.18),

σxx ¼ E �y
ρ

� �
: ð5:19Þ

Now, back to equilibrium, Eq. (5.12) becomes

ð
� �Ey

ρ

� �
dA ¼ 0! E

ρ

ð
ydA

|fflffl{zfflffl}
yA

¼ 0! EA

ρ
y ¼ 0; ð5:20Þ

where y is the distance from the origin of our (x, y, z) coordinate system to the

centroid of the cross-sectional area A (recall Eq. (A3.2)). Because this integral

equals zero and the Young’s modulus E, radius of curvature ρ, and cross-

sectional area A are each nonzero, the distance y must be set equal to zero;

that is, the z axis must pass through the centroid of the cross-section. This means

that the coordinate system, at NA, must be located at the centroid. Next, from

Eq. (5.13),
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�
ð
y �Ey

ρ

� �
dA ¼ Mz !

E

ρ

ð
y2dA

|fflfflffl{zfflfflffl}
Izz

¼ Mz ð5:21Þ

wherein we recognize the second moment of area Izz (Appendix 4 of Chap. 4),

thus moment balance requires

Mz ¼
EIzz

ρ
: ð5:22Þ

This equation is called the moment-curvature relation; it will prove critical in

our subsequent discussion of beam deflections in Sect. 5.3. Here, however, note

that by rearranging Eq. (5.22) and using Eq. (5.19), we obtain our desired

relation for the normal stress in terms of the applied load and geometry:

σxx ¼ �
Mz xð Þy
Izz

: ð5:23Þ

This equation is called the flexure formula; it is one of the most important

relations in elementary solid mechanics. Before we explore its use, however,

let us observe the following. In bending, the locus of all centroids is called the

neutral axis, NA, for it is where εxx¼�y/ρ and σxx¼�Mzy/Izz both equal zero

(i.e., are neutral). The neutral axis for any elastic beam of homogeneous

composition can thus be determined easily by finding the centroid of the

cross-sectional area of the beam.

Finally, Eq. (5.23) allows us to compute the normal stress σxx at any x [due to

Mz(x) dependence] or y; we assume that σxx does not vary with z. Because of our

small strain, small slope of the deflection curve, and use of Hooke’s law, this

flexure formula is not a universal result; it is restricted to small-strain LEHI

behavior. Let us now consider the case in which transverse loads exist, which

give rise to shear stresses σxy.

Shear Stress

Whereas we derived the flexure formula for σxx due to pure bending (moment

only), we will assume that the same formula [Eq. (5.23)] holds equally well for

bending due to transverse loads and that this stress can be considered simulta-

neously with other stresses that arise from the transverse loads. This is tanta-

mount to assuming a superposition of solutions in a linear problem as we did

when considering combined internal pressurization and axial loading of a thin-

walled cylinder.
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In the presence of transverse loads, we must also account for the shear

stresses that act to balance V (Fig. 5.6). Here, therefore, let us derive a general

relation that relates the shear stress σxy to the applied load and geometry.

Hindsight reveals that an approach different from that used to derive σxx
(wherein we used the sum of the effects of all σxx stresses acting over their

differential areas to balance directly the applied bending moment) will prove

useful. Hence, consider the following.

Let us extract a small rectangular piece of a generic beam as shown in Fig. 5.9

such that we expose the stresses σyx at the point p (i.e., in the limit as Δx! 0)

Moreover, whereas we must ensure force balance in x and y as well as moment

balance, here we shall focus only on force balance in x. Note, therefore, that

X
Fx ¼ 0! �

ð
σxx xð ÞdAþ

ð
σxx xþ Δxð ÞdA�

ð
σyxdAs ¼ 0; ð5:24Þ

where dAs simply denotes the area over which the shear stress σyx acts, and

consistent with our approach in the previous section,

FIGURE 5.9 Consider a small rectangular portion of a beam taken above point p and on

which σyx shear stresses act on the bottom y face; recalling the requirement from angular

momentum balance that the stress be symmetric (i.e., σxy¼ σyx), this is consistent with

the need for σxy shear stresses on the x face to balance the transverse loads. Note that the
shear stress is shown according to its standard positive sign convention, not for the

adopted positive sign convention for the shear force in Fig. 5.6; note, too, that we neglect

σyy in general and thus require σxy to balance all of the vertical load.
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σxx xð Þ ¼ �Mzy

Izz
, σxx xþ Δxð Þ ¼ � Mz þ ΔMzð Þy

Izz
: ð5:25Þ

Hence, we see that force balance requires

þMz

Izz

ð
ydA p �

Mz

Izz

ð
ydA p �

ΔMz

Izz

ð
ydA p �

ð
σyx dAs ¼ 0: ð5:26Þ

Noting that the first two terms cancel and that the
Ð
ydAp is the first moment of

area for the exposed cross section above point p, we have

�ΔMz

Izz
Q ¼

ð
σyx dAs; ð5:27Þ

where, for notational simplicity, we let Q¼
Ð
ydAp. Finally, note that to com-

plete the derivation, we must either consider the average value of σyx (as in the

thin-walled tube problem) or find how σyx varies with x so that we can integrate

over dAs¼ dxdz. Knowing that we seek to shrink Δx to a point in the limit and

assuming that σyx does not vary with z (similar to our implicit assumption for

σxx), we can write

�ΔMz

Izz
Q ¼ σyx

�
aveΔxb! σyx

�
ave ¼ �

ΔMz

Δx

Q

Izzb

� �
; ð5:28Þ

which in the limit becomes

σyx

�
ave ¼ �

dMz

dx

Q

Izzb

� �
; ð5:29Þ

whereby we recall from Eq. (5.9) that V(x)¼ dMz/dx. Our derivation is thus

complete except for one observation. Note that we denoted σyx and σxy on the

isolated part of the beam according to our general sign convention for stress

(cf. Fig. 2.4). We must be consistent with our sign convention for V(x) andMz(x)

for beam bending, whereby we defined a positive V(x) on a positive x face to be

in the negative direction (cf. Fig. 5.1). Hence, just as in statics, when we obtain a

negative value in an analysis, this tells us that our quantity acts opposite to the

direction assumed. Thus, the negative sign in Eq. (5.29) tells us that σyx)ave acts

opposite to the direction assumed and so too for σxy, which is numerically equal

to σyx at a point due to moment balance [Eq. (2.7)]. Hence, given these

observations, we have the desired result
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σxy
�
ave ¼

V xð ÞQ yð Þ
Izzb

� �
; ð5:30Þ

where Q¼
Ð
ydAp and b is the width of the beam at point p where the stress is

evaluated. Note, too, that σxy)ave acts in the direction of the shear V(x) and that

this relation relates the stress to the applied shear force and geometry (measures

being Q, Izz, and b). Knowing that σxy is an average value over b, we will drop

the notation σxy)ave and simply write σxy.

As a final observation, note that because Q is a first moment of area, it can be

computed simply as (recall Appendix 3 of Chap. 3)

Q ¼ y pA p; ð5:31Þ

where y p locates the centroid of the cross-sectional area above point p relative to

the overall centroid, and Ap is the area above point p. To better appreciate this,

consider the following example.

Example 5.4 Find the value of Q for the rectangular cross section in Fig. 5.10

at the following points y¼ h/2, h/4, 0, �h/4, �h/2, three of which are empha-

sized in the figure.

Solution: Here, it will prove useful to compute Q ¼ y pA p for each point of

interest and to do so in tabular form.

y-Location of p y p Ap Q

h

2

h

2

0 0

h

4

h

4
þ h

8

h

4
b

3

32
bh2

0 h

4

h

2
b

1

8
bh2

�h
4

h

8

3h

4
b

3

32
bh2

�h
2

0 hb 0

From this example, therefore, we see that Q varies with y, being smallest (zero)

at the top and bottom and largest at the overall centroid. Indeed, for the simple

case of a rectangular cross section, we can obtain a general formula for Q,

namely
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Q ¼
ðb=2

�b=2

ðh=2

y

ydydz ¼ b
1

2
y2

h=2
y

����
� �

¼ b

2

h2

4
� y2

� �
; ð5:32Þ

which we see recovers the results in the above table. In this case, Q varies

quadratically with the location of interest p in the y direction. From the relation

σxy¼VQ/Izzb, therefore, we see that the shear stress would likewise vary

quadratically with y, being zero on the top and bottom surfaces but largest at

the centroid. This is in contrast to the normal stress σxx¼�Mzy/Izz, which varies

linearly with y and is zero at the centroid and largest at the top and bottom

surfaces. The stress field in a beam subject to bending will thus be complex in

general.

Question: Does it make sense that σxy is zero at values of y that correspond to

the top and bottom surfaces? To answer this question, it is useful to recall two

things. First, σxy¼ σyx at any point due to moment balance as revealed in

Chap. 2. Second, we are only considering beams that are subjected to bending

FIGURE 5.10 Illustration of the method for determining the value of Q ¼ y pA p in a

rectangular cross section. The subscript p reminds us that these quantities are defined for

the cross-sectional areas above a point p rather than over the entire cross section.

Forgetting this is a common error. Q is seen to be zero at the top and bottom surfaces

for different reasons.
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moments or transverse loads. Hence, there are no x-directed forces on the top

and bottom y faces and thus no σyx (¼σxy) stresses on these faces. Thus, our

result for σxy¼VQ/Izzb does make sense on these top and bottom surfaces.

Finally, although our approach for deriving the relation for σxy differed from

the direct force balance used to derive the flexure formula for σxx, force balance

must be respected nonetheless. Hence, consider the following example.

Example 5.5 Show that
Ð
σxydA¼V at any x.

Solution: Although the result can be obtained more generally, let us consider

the rectangular cross section in Fig. 5.10. Using Eq. (5.30), we have

ð
σxy dA ¼

ðb=2

�b=2

ðh=2

�h=2

V xð ÞQ yð Þ
Izzb

dydz ¼ V

Izzb

ðb=2

�b=2
dz

ðh=2

�h=2
Q yð Þdy

which from Eq. (5.32) can be written as

ð
σxy dA ¼

V

Izz

ðh=2

�h=2

b

2

h2

4
� y2

� �
dy;

where Izz¼ (l/12)bh3 for the rectangular cross section. Hence,

ð
σxy dA ¼

12V

bh3
b

2

� �
h2

4
y� 1

3
y3

�h=2
h=2
�����

 !
¼ 6V

h3
h2

4

h

2
þ h

2

� �
� 1

3

h3

8
þ h3

8

� �� 


¼ 6V

h3
h3

4
� h3

12

� �
¼ V;

which proves that vertical force balance is respected in this case, as it should.

Principal Values and Maximum Shear

If we want to find maximum normal stress or maximum shear stress (at each

point), we recall from Chap. 2 that

σ
0

xx

�
max=min ¼

σxx þ σyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
ð5:33Þ
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and

σ
0

xx

�
max=min ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
: ð5:34Þ

For beam bending, these equations for the maximum values become

σ
0

xx

�
max ¼ �

Mz xð Þy
2Izz

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Mz xð Þy
2Izz

� �2

þ V xð ÞQ yð Þ
Izz b

� �2
s

ð5:35Þ

σ
0

xy

�
max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Mz xð Þy
2Izz

� �2

þ V xð ÞQ yð Þ
Izz b

� �2
s

; ð5:36Þ

where each varies with (x, y) in general. Let us now consider a few illustrative

examples.

5.2.3 Illustrative Examples

Example 5.6 Find σxx, the maximum normal stress σ0xx)max, and the maximum

shear stress σ0xy)max for the beam in Fig. 5.11 with an applied bending moment

Mo. Neglect the weight of the beam.

Solution: A free-body diagram of the whole structure reveals that we have

X
Fx ¼ 0! Rx ¼ 0,

X
Fy ¼ 0! Ry ¼ 0,

X
Mz

�
B ¼ 0! Mo �Mw � RyL ¼ 0;

and, thus,

Mw ¼ Mo:

A free-body diagram of part of the beam similarly requires
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X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! V xð Þ ¼ 0 8x

X
Mz

�
A ¼ 0! �Mo þMz xð Þ � Vx ¼ 0;

and thus, as expected,

Mz xð Þ ¼ Mo:

Next, we could draw the shear force and bending moment diagrams, which are

trivial in this case of pure bending. From Eq. (5.23), therefore, we have

σxx ¼ �
M0y

Izz
8x 2 0; L½ 	, y 2 �h

2
,
h

2

� 

, z 2 �b

2
,
b

2

� 

;

where

FIGURE 5.11 A cantilever beam having a rectangular cross section and subjected to an

applied moment at the end. Free-body diagrams of the whole and the parts isolate

reaction and internal forces and moments as needed. One cut is sufficient because the

loads are applied only at the ends.
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Izz ¼
ð
y2 dA ¼

ðb=2

�b=2

ðh=2

�h=2
y2 dydz ¼

ðb=2

�b=2

h3

12
dz ¼ h3b

12
:

Because σxx balances the applied load at each cross section, there is no need for

any other component of stress relative to (x, y, z). The largest compressive and

tensile loads, relative to (x, y, z), occur at y¼�h/2; hence,

σxx y ¼ �h
2

� �
¼ � 12Mo

bh3
h

2

� �
¼ � 6Mo

bh2
:

Considering only a 2-D state of stress here (e.g., σxx, σyy, and σxy¼ σyx), we

recall from Chap. 2 that the maximum/minimum normal stresses are called

principal stresses. They are computed via

σ
0

xx

�
max
min

¼ σxx þ σyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
;

where σyy¼ 0¼ σxy. Using the largest value of σxx (i.e., at y¼ h/2), we find that

σ
0
xx

�
max ¼

σxx

2
þ

ffiffiffiffiffiffi
σ2xx
4

r
¼ 6Mo

bh2
,

σ
0
xx

�
min ¼

σxx

2
�

ffiffiffiffiffiffi
σ2xx
4

r
¼ 0:

Hence, x and y are principal directions (αp¼ 0).

The maximum/minimum shear stress, however, is

σ
0

xy

�
max
min

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2
þ σ2xy

r
¼ �σxx

2

and, therefore,

σ
0

xy

�
max
min

¼ � 3Mo

bh2
;

which occurs at αs¼ π/4 or 45
 and y¼�h/2, not at y¼ 0 (the centroid), where

σyx is largest in general. We see, therefore, that we must pay particularly close

attention to the coordinate system to which quantities are referred as well as

possible failure mechanisms (e.g., ductile materials yield in response to shear

stresses and brittle materials fracture in response to normal stresses).
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Example 5.7 Find general relations for σxx and σxy in terms of P, x, y, b, and y p

for the beam shown in Fig. 5.12. Next find the values of each of these

components of stress at the following (x, y) locations: (0, h/2), (0, 0), (L/2,

h/2), (L/2, 0), (L, h/2), (L, 0), (L, –h/2).

Solution: From the free-body diagram of the whole structure, we see that

X
Fx ¼ 0! Rx ¼ 0,

X
Fy ¼ 0! Ry ¼ P,

X
Mz

�
A ¼ 0! �MA � PL ¼ 0,

MA ¼ �PL:

Next, let us find the internal forces and moments. From a free-body diagram of

the parts, we obtain

FIGURE 5.12 Similar to

Fig. 5.11 except for a

cantilever beam having

a rectangular cross

section and subjected to

an applied transverse

load P at the end.
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X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! V ¼ P,

X
Mz

�
A ¼ 0! PL� VxþMz ¼ 0,

Mz ¼ Vx� PL ¼ P x� Lð Þ:

From Eq. (5.23), therefore,

σxx ¼ �
Mzy

Izz
¼ �P x� Lð Þy

Izz
8x, y, z;

where

Izz ¼
ðb=2

�b=2

ðh=2

�h=2
y2 dydz ¼ 1

12
bh3:

From Eq. (5.30),

σxy
�
ave ¼

VQ

Izzb
¼ PQ

Izzb
;

where

Q ¼
ð
ydA p ¼

ðb=2

�b=2

ðh=2

y

y dy dz ¼
ðb=2

�b=2

h2

8
� y2

2

� �
dz ¼ b

2

h2

4
� y2

� �
:

Hence,

σxx ¼
12P x� Lð Þy

bh3
and σxy ¼

12P b h2=4� y2
� �

=2

 �

b2h3
:

Now, we can compute σxx and σxy at various points of interest p. For example,

for the points indicated, let the point (x, y)¼ (0, h/2); (0, 0); (L/2, h/2); (L/2, 0);

(L, h/2); (L, 0); (L, �h/2).

(x, y) σxx σxy

0;
h

2

� �
�P 0� Lð Þ h=2ð Þ

1=12ð Þbh3
¼ 6PL

bh2
P b=2ð Þ h2=4� h=2ð Þ2

� �h i

1=12ð Þb2h3
¼ 0

(0, 0) �P 0� Lð Þ0
1=12ð Þbh3

¼ 0
P b=2ð Þ h2=4� 02

� �
 �

1=12ð Þb2h3
¼ 3P

2bh

(continued)
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(x, y) σxx σxy

L

2
;
h

2

� �
�P L=2� Lð Þ h=2ð Þ

1=12ð Þbh3
¼ 3PL

bh2
P b=2ð Þ h2=4� h=2ð Þ2

� �h i

1=12ð Þb2h3
¼ 0

L

2
; 0

� �
�P L=2� Lð Þ0

1=12ð Þbh3
¼ 0

P b=2ð Þ h2=4� 02
� �
 �

1=12ð Þb2h3
¼ 3P

2bh

L;
h

2

� �
�P L� Lð Þ h=2ð Þ

1=12ð Þbh3
¼ 0 P b=2ð Þ h2=4� h=2ð Þ2

� �h i

1=12ð Þb2h3
¼ 0

(L, 0) �P L� Lð Þ0
1=12ð Þbh3

¼ 0
P b=2ð Þ h2=4� 02

� �
 �

1=12ð Þb2h3
¼ 3P

2bh

L, � h

2

� �
�P L� Lð Þ �h=2ð Þ

1=12ð Þbh3
¼ 0 P b=2ð Þ h2=4� h=2ð Þ2

� �h i

1=12ð Þb2h3
¼ 0

Whereas we have determined the values of the components σxx and σxy at the

indicated points, we emphasize that σxx and σxy can (should) be found at all

(x, y). Indeed, at each (x, y), we should also compute the maximum normal

stress σ
0
xx

�
max if we expect failure to occur due to normal stresses (e.g., in brittle

materials) or the maximum shear stress σ
0
xy

�
max if we expect failure to occur in

shear (e.g., in ductile materials). Because the principal and maximum shear

stresses both depend on σxx and σxy, it is clearly more challenging to identify the

point in the structure where an absolute maximum stress exists. For this reason

and given the availability of computers and color graphics, many simply create

color contour plots of the principal or maximum shear stresses to aid failure

analysis.

At this juncture, we should emphasize that we have neglected the σyy
component of stress. Clearly, in response to transverse loads applied to the

top or bottom surfaces y¼�h/2, σyy stresses will exist. Indeed, in the case of a

concentrated load P (Fig. 5.13), the σyy stress can be very large close to the

applied load. Inclusion of such effects generally requires numerical methods,

however, and thus are beyond the present scope. Because real loads are applied

over finite, not infinite, areas and because σxx and σxy tend to dominate, we will

focus on these components throughout.

Observation 5.1. Although we have ignored potential “stress concentrations”

due to concentrated transverse loads in our simple beam theory, the issue of

stress concentrations is nevertheless very important in mechanics. Basically, a

stress concentration can arise due to an abrupt change in geometry, material
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properties, or applied load; it is characterized by a significantly increased value

of stress locally, with associated steep gradients with respect to stresses in the

surrounding area. Stress concentrations may arise at holes, sharp edges, inter-

faces between materials of dissimilar stiffness, and, of course, at concentrated

loads. Hence, methods to combat the potentially deleterious effects of stress

concentrations include rounding edges, functionally grading the stiffness of a

material (e.g., a metallic intravascular stent), and distributing a load over a

broader area. Because stress concentrations are characterized by steep gradients

in stress, analytic solutions are often not possible. One must often resort to

numerical methods, such as finite elements, or perhaps experimental methods,

such as photoelasticity. Fortunately, many general problems have been solved

and categorized for reference. For example, see Roark and Young (1975)

wherein stress concentration factors are given for many geometries. A stress

concentration factor K is defined simply as a ratio of the maximum expected

stress to the mean stress in that region (e.g., σmax¼Kσavg), typically in refer-

ence to normal stresses. For example, in a LEHI material, the stress in a

uniaxially loaded member is higher near a centrally placed hole by a factor of

2–3 depending on the ratio of the radius of the hole a to the width of the uniaxial

sample d: K¼ 3 if 2a/d ~ 0, but K¼ 2 if 2a/d ~ 1. Holes are introduced in skin

by dermatologists when taking a skin biopsy, in the lens capsule of the eye by

ophthalmologists when implanting an intraocular device, in bone when an

orthopedic surgeon puts in a bone screw, and so on. Understanding the effects

FIGURE 5.13 Schema of y-face, y-direction stresses σyy in the neighborhood of a

concentrated load P. The contour lines show that the value of σyy decreases (shown

by cross-hatching that becomes less dense) as one gets farther from the source of the

concentrated load. No real load is truly concentrated, of course, for it must act over a

finite, albeit possibly small, area.
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of stress concentrations is thus very important in biomechanics even though our

discussion here is very brief.

5.3 Deformation in Beams

5.3.1 Biological Motivation

Mechanics is the study of motions and the applied loads that cause them.

Fundamental to the study of beams, therefore, is the quantification of strains

and deflections. For example, if we seek to quantify the material parameters of

Hooke’s law for bone, we must know both stresses and strains at representative

points. Likewise, recall from Chap. 3 that one type of failure can be excessive

deformation. Hence, if we are to design an orthotic device to maintain two ends

of a severely fractured bone in close proximity during the healing process, we

must ensure that the orthotic device does not deform excessively under loads

experienced during daily activity. Indeed, as we will see, measuring or com-

puting deformations in beams is extremely important in many different situa-

tions in biomechanics.

5.3.2 Theoretical Framework

Recalling from the definition of Poisson’s ratio that v¼ –εtransverse/εaxial,

Eq. (5.18) yields

v ¼ �εyy
εxx
! εyy ¼ �v �

y

ρ

� �
¼ v

y

ρ

� �
: ð5:37Þ

The “same” relation holds for εzz because

εyy ¼
1

E
σyy � v σxx þ σzzð Þ

 �

¼ �v
E
σxx ð5:38Þ

and

εzz ¼
1

E
σzz � v σxx þ σyy

� �
 �
¼ �v

E
σxx: ð5:39Þ

Hence, because the Poisson’s ratio v is typically non-negative, the beam widens

in z where it shortens in x (y> 0 for Mz> 0) and it narrows in z where it

lengthens in x (y< 0 for Mz> 0). This phenomenon is called anticlastic bend-

ing. Note: the Greek nu used to denote Poisson’s ratio appears similar to the

Latin v used below for deflection. The correct variable is obvious given the

context.
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Finally, to get more information on the deformation, recall the moment-

curvature relation, [Eq. (5.22)], which we now write as

1

ρ
¼ 1

EIzz
Mz: ð5:40Þ

Recall, too, from calculus that the curvature κ is defined as

κ ¼ 1

ρ
¼ d2v=dx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dv=dxð Þ23

q ð5:41Þ

where v(x) denotes the vertical deflection of the neutral axis (i.e., v is a vertical

displacement uy of points along the neutral axis only). Clearly then, if we let

dv/dx� 1 [i.e., if we consider beam deflections v¼ v(x) having small

slopes], then

1

ρ
ffi d2v

dx2
: ð5:42Þ

By substituting this result into the moment-curvature relation, we obtain a

general differential equation for the beam deflection:

EIzz
d2v

dx2
¼ Mz xð Þ: ð5:43Þ

In summary, Eq. (5.18) allows us to compute the extensional strain εxx at any

location y provided that we know the radius of curvature ρ, which is evaluated at

the neutral axis NA. Equation (5.43) similarly provides information on the

deflection v(x) of the neutral axis given information on the applied load Mz(x),

geometry Izz, and material property E. Compare this to the results for axial

extension δ and rotation Θ in the axial load and torsion problems, respectively.

Because Eq. (5.43) is a second-order differential equation, we will need two

boundary conditions for its full solution. These conditions will be on either the

deflection v at a particular value of x or the slope dv/dx at a particular x. Recall,

therefore, that the deflection v will be zero at a pin or a fixed end; the deflection

at a roller is zero if the beam is pushed toward the roller. In contrast, a free end

or an end on a slider cannot resist a deflection (Fig. 5.14). Conversely, the slope

dv/dx is zero at a fixed end or a slider, but it cannot be specified at a roller, a pin,

or a free end. An easy way to remember these kinematic boundary conditions is

to remember the associated traction boundary conditions; that is, to restrict a

vertical deflection, the support must be able to supply a resisting vertical

reaction force Ry, and to restrict a rotation (i.e., a slope), the support must be

able to supply a resisting bending moment Mz.
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Let us note that Eqs. (5.4) and (5.9), in combination with Eq. (5.43), allow us to

formulate alternative differential equations for the deflection curve v(x); that is,

dMz

dx
¼ V xð Þ ! d

dx
EIzz

d2v

dx2

� �
¼ V xð Þ ð5:44Þ

or

dV

dx
¼ �q xð Þ ! d2

dx2
EIzz

d2v

dx2

� �
¼ �q xð Þ: ð5:45Þ

If the beam is of constant cross section and E does not vary with x, we see

further that these third- and fourth-order differential equations can be written as

EIzz
d3v

dx3
¼ V xð Þ and EIzz

d4v

dx4
¼ �q xð Þ: ð5:46Þ

In a given problem, therefore, we have the option to solve any one of the

governing differential equations. The choice of which equation to attempt to

solve should be dictated by our knowledge of the loading functions,Mz(x), V(x) or

q(x) as well as boundary conditions. Indeed, the higher-order equations require us

to know moments or shears at the boundaries. At a “free end,” for example, the

FIGURE 5.14 Possible boundary conditions for various supports showing both the

reactions and the possible motions. Note that an applied force is capable of preventing

(or limiting) a displacement in the same direction, whereas an applied moment is

capable of preventing (or limiting) a rotation. Thus, one can prescribe at a support

either an applied load or the resulting motion, but not both.
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moment or shear will be that which is applied; if it is truly a free end, with no

physical support or applied load, we will have zero moment and zero shear.

Various boundary conditions will be examined in the following examples.

5.3.3 Illustrative Examples

Example 5.8 Find the deflection curve of the beam in Example 5.6

Solution: Let v(x) be the deflection curve (i.e., shape of the neutral axis in the

deformed configuration). Recalling the governing differential equation EIzzd
2v/

dx2¼Mz(x) from Eq. (5.43) and thatMz(x)¼Mo for this beam, integrating once

yields an expression for the slope of the deflection curve:

ð
d

dx

dv xð Þ
dx

� �
dx ¼

ð
1

EIzz
Mo dx ¼

Mo

EIzz

ð
dx;

or

dv xð Þ
dx
¼ Mo

EIzz
xþ c1:

Integrating again yields an expression for the deflection curve v(x):

ð
d

dx
v xð Þ½ 	dx ¼

ð
Mo

EIzz
xþ c1

� �
dx;

or

v xð Þ ¼ Mo

2EIzz
x2 þ c1xþ c2:

Applying the boundary conditions for a fixed end, we get

dv

dx
x ¼ 0ð Þ ¼ 0! 0 ¼ Mo

EIzz
0ð Þ þ c1 ! c1 ¼ 0,

v x ¼ 0ð Þ ¼ 0! 0 ¼ Mo

2EIzz
0ð Þ2 þ c1 0ð Þ þ c2 ! c2 ¼ 0;

Therefore, with Izz¼ bh3/12 for a rectangular cross section, we have

v xð Þ ¼ 6Mox
2

Ebh3
;
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with the deflection at the end (often denoted by δ) where x¼L, being

δ ¼ v x ¼ Lð Þ ¼ 6MoL
2

Ebh3
:

Although this was a simple example, with Mz¼Mo and V¼ 0 for all x, it

illustrates the general approach, which is our primary goal.

Example 5.9 Find the deflection curve v(x) and the maximum deflection δ¼ v

(x¼ L) for the beam in Example 5.7.

Solution: Recalling that the moment Mz(x)¼P(x� L), Eq. (5.43) can be inte-

grated once to obtain the slope:

EIzz

ð
d

dx

dv

dx

� �
dx ¼

ð
Mz dx ¼

ð
P x� Lð Þdx;

or

EIzz
dv

dx
¼ P

x2

2
� xL

� �
þ c1:

Integrating again, we have

EIzz

ð
d

dx
v xð Þ½ 	dx ¼

ð
P

x2

2
� xL

� �
þ c1

� 

dx

EIzzv xð Þ ¼ P
x3

6
� x2L

2

� �
þ c1xþ c2:

Applying the boundary conditions for a fixed end, we get

EIzz
dv

dx
x ¼ 0ð Þ ¼ 0 ¼ P

0ð Þ2
2
� 0ð ÞL

 !
þ c1 ! c1 ¼ 0

and

EIzzv x ¼ 0ð Þ ¼ 0 ¼ P
0ð Þ3
6
� 0ð Þ2L

2

 !
þ c1 0ð Þ þ c2 ! c2 ¼ 0:
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Thus, the deflection curve for a rectangular cross-section is,

v xð Þ ¼ P

EIzz

x3

6
� x2L

2

� �
¼ 12P

Ebh3
x3

6
� x2L

2

� �
:

The maximum deflection is obviously at x¼L; hence,

δ ¼ v Lð Þ ¼ 12P

Ebh3
L3

6
� L3

2

� �
¼ �4PL

3

Ebh3
;

or, for any shaped cross section,

δ ¼ � PL3

3EIzz
:

Note the minus sign, which indicates that the beam deflects downward given the

downward transverse load.

Example 5.10 Find the deflection curve for the beam in Fig. 5.15.

Solution: The free-body diagram for the whole structure reveals that

X
Fx ¼ 0! Rx ¼ 0,

X
Fy ¼ 0! Ry � P ¼ 0,

Ry ¼ P,
X

Mz

�
A ¼ 0! �Mw þMo � PL ¼ 0,

Mw ¼ Mo � PL:

FIGURE 5.15 A cantilevered beam with a concentrated moment applied in the middle

and a concentrated transverse load at the end. Because of these concentrated loads, two

cuts are necessary for analysis.
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Similarly, a free-body diagram of the segment from 0
 x<L/2 reveals that

X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! P� V xð Þ ¼ 0,

V xð Þ ¼ P for 0 
 x <
L

2
,

X
Mz

�
A ¼ 0! Mz � Vx�Mo þ PL ¼ 0,

Mz ¼ P x� Lð Þ þMo for 0 
 x <
L

2
;

whereas a free-body diagram for the segment from L/2< x
 L reveals that

X
Fx ¼ 0! f ¼ 0,

X
Fy ¼ 0! P� V xð Þ ¼ 0,

V xð Þ ¼ P for
L

2
< x 
 L,

X
Mz

�
A ¼ 0! Mz þMo � Vx�Mo þ PL ¼ 0,

Mz xð Þ ¼ P x� Lð Þ for
L

2
< x 
 L;

Now, to find the deflections, we appeal to the moment-curvature relation

EIzz
d2v

dx2
¼ Mz xð Þ;

but because of the discontinuity at x¼ L/2, the moment-curvature relation

should be considered via two equations. Hence,

(1) EIzz
d2v1

dx2
¼ P x� Lð Þ þMo 0 
 x 
 L

2
;

(2) EIzz
d2v2

dx2
¼ P x� Lð Þ, L

2

 x 
 L:

For (1), we integrate two times and denote the associated deflection curve as

v1, namely
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EIzz

ð
d

dx

dv1

dx

� �
dx ¼

ð
P x� Lð Þ þMo½ 	dx,

EIzz
dv1 xð Þ
dx

¼ P
1

2
x2 � Lx

� �
þMoxþ c1,

EIzz

ð
d

dx
v1 xð Þ½ 	dx ¼

ð
P

1

2
x2 � Lx

� �
þMoxþ c1

� 

dx,

EIzzv1 xð Þ ¼ P
1

6
x3 � L

2
x2

� �
þMo

2
x2 þ c1xþ c2:

For (2), we likewise integrate two times and denote the associated deflection

curve as v2:

EIzz

ð
d

dx

dv2

dx

� �
dx ¼

ð
P x� Lð Þdx,

EIzz
dv2 xð Þ
dx

¼ P
1

2
x2 � Lx

� �
þ c3,

EIzz

ð
d

dx
v2 xð Þ½ 	dx ¼

ð
P

1

2
x2 � Lx

� �
þ c3

� 

dx,

EIzzv2 xð Þ ¼ P
1

6
x3 � L

2
x2

� �
þ c3xþ c4:

Applying the boundary conditions for a fixed end,

dv1

dx
x ¼ 0ð Þ ¼ 0! c1 ¼ 0,

v1 x ¼ 0ð Þ ¼ 0! c2 ¼ 0;

we thus have

v1 xð Þ ¼ 1

EIzz
P

1

6
x3 � L

2
x2

� �
þMo

2
x2

� 

for0 
 x <

L

2

� �
:

Two more boundary conditions are needed to find c3 and c4. Unfortunately,

the boundary conditions for a free end do not provide anything useful. Hence,

let us look for other conditions, like continuity of slope and deflection at

x¼ L/2; that is, the two solutions should match at x¼L/2. For example,
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dv1 L=2ð Þ
dx

¼ dv2 L=2ð Þ
dx

!
1

EIzz
P

L=2ð Þ2
2
� L

L

2

� �" #
þMo

L

2

� �( )
¼ 1

EIzz
P

L=2ð Þ2
2
� L

L

2

� � !
þ c3

" #
:

Simplifying, we have

c3 ¼ Mo

L

2

� �
:

Similarly, at x¼ L/2, v1(L/2)¼ v2(L/2), and therefore

1

EIzz
P

L=2ð Þ3
6
� L L=2ð Þ2

2

 !
þMo

2

L

2

� �2
" #

1

EIzz
P

L=2ð Þ3
6
� L L=2ð Þ2

2

 !
þMo

L

2

� �2

þ c4

" #
;

or

MoL
2

8
¼ MoL

2

4
þ c4 ! c4 ¼ MoL

2 1

8
� 1

4

� �
¼ �MoL

2

8
:

Therefore,

v2 xð Þ ¼ 1

EIzz
P

x3

6
� Lx3

2

� �
þMoL

2
x�MoL

2

8

� 

for

L

2

 x 
 L:

� �
:

Finally, we are interested in v(x¼L/2)¼ δc and v(x¼ L)¼ δb. Using the second

solution, which is good for L/2
 x
 L,

δc ¼
1

EIzz
P

L=2ð Þ3
6
� L L=2ð Þ2

2

 !
þMoL

2

L

2

� �
�MoL

2

8

" #
¼ � 5PL3

48EIzz
þMoL

2

8EIzz

and

δb ¼
1

EIzz
P

L3

6
� L3

2

� �
þMoL

2

2
�MoL

2

8

� 

¼ � PL3

3EIzz
þ 3MoL

2

8EIzz
:

Note: If Mo¼ 0, then the end deflection δb is the same as that calculated in

Example 5.9 as expected.
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Finally, as a check, note that we can also use the solution for v1(x) to find δc:

δc ¼
1

EIzz
P

1

6

L

2

� �3

� L

2

L

2

� �2
" #

þMo

2

L

2

� �2
( )

¼ � 5PL3

48EIzz
þMoL

2

8EIzz

which matches that from v2(x), as it should.

5.4 Transducer Design: The AFM

5.4.1 Introduction

Recall from Chap. 1 that biomechanics emerged as a distinct field of study in the

mid-1960s due, in large part, to parallel advances in both theory (e.g., contin-

uum mechanics and numerical methods) and technology (e.g., computers).

Indeed, scientific advances often result from the development of either a

new enabling technology or a clever application of existing technology in

a new way (e.g., X-ray crystallography aided in the discovery of the basic

structure of DNA).

The history of biology reveals, for example, the important role of microscopy

in our continuing understanding of the structure and behavior of living things.

It was via a primitive two-lens light microscope that Robert Hooke (1635–1703)

first observed remnant walls in cork, which led him to introduce the term

cell, a word coming from the Latin meaning “little room.” Likewise, it was

through the use of a light microscope that Malpighi (1628–1694) first observed

capillaries in lung tissue, which provided evidence for Harvey’s (1578–1657)

bold idea of “porosities in the flesh” that allowed blood to flow from arteries

to veins. Using the light microscope, Schleiden (1804–1881) and Schwann

(1810–1882) suggested that cells are the fundamental unit of life. Indeed,

throughout the history of biology, one finds the important role of microscopy

(e.g., see Harris 1999; Lodish et al. 2000).

Although by the word “microscopy” we typically think of an optical instru-

ment that increases, via a series of lenses, the apparent size of an object, there

are now a host of technologies available: the scanning electron microscope,

transmission electron microscope, confocal microscope, and two-photon micro-

scope to name a few. The advantage of having multiple technologies is that one

can exploit their particular advantages as needed. For example, the light micro-

scope (LM) can resolve only on the order of 0.2 μm or (200 nm), but the

transmission electron microscope (TEM) has a resolution of 0.1 nm. The latter

allows one to probe subcellular components as needed in cell mechanics.

Whereas the LM and TEM provide information within cross sections, the
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scanning electron microscope (SEM) provides information on the 3-D surface

structure to a resolution of 10 nm. For more information on these and related

microscopic techniques, see Lodish et al. (2000). Here, however, let us consider

a recent technology having a particular utility in biomechanics.

5.4.2 The Atomic Force Microscope

First reported in 1986, the atomic force microscope (AFM) has become a widely

used tool in the study of protein and cell structure and properties (Binnig

et al. 1986; Radmacher et al. 1992). Briefly, the AFM is similar in concept to

a profilometer, a device that measures surface contours on hard materials via a

moving stylus. As shown in Fig. 5.16, the AFM consists of three primary

components: a flexible cantilever beam with a rigid end tip that can be dragged

across the surface of a soft sample or used to indent the sample; an optical lever,

consisting of a precision laser and photodetector that can measure changes in

the angle of the laser light that are associated with the deflection of the

cantilever; and a precision piezoelectric x-y-z stage that can either move the

cantilever beam or move the sample relative to a fixed beam. The cantilever

beams are very small, typically 100–400 μm in length with a tip having a 10–50-

nm radius of curvature; they are made using silicon-based nanofabrication

techniques. The structural stiffness of the beam is usually quoted as a “spring

constant,” often on the order of 0.004–1.85 N/m. It is because of this small

stiffness that the AFM can resolve forces exerted by atoms, as, for example, van

der Waals forces, Coulomb interactions, and hydration forces. The AFM is

typically used in one of a few different modes. In the constant-force mode, the

cantilever tip is dragged across the surface of a sample while the x-y-z

FIGURE 5.16 Schema of the basic components of an atomic force microscope (AFM).

The deflection of the cantilevered beam (i.e., probe) is measured with an optical lever

consisting of a laser source and photoreceptor (cf. Fig. 4.21). The sample is placed on a

piezoelectric (PZ) stage that can move in x-y-z. In some systems, the PZ stage moves the

probe rather than the sample, but the net effect is the same.
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piezoelectric stage moves the sample (or cantilever) so as to keep the tip-to-

sample contact force constant. By tracking the x-y-z changes in position, one

can construct a topological map of the surface of the sample. In this mode, one

can resolve positions on the order of nanometers (nm). In the indentation mode,

the tip can be used to indent the surface of the sample, with measured inden-

tation force–depth data providing information on the local mechanical proper-

ties of the sample. In this case, indentation depths are usually on the order of

50–500 nm, often in cells that are less than 2 μm thick. Costa and Yin (1999)

showed, therefore, that the associated sample strains are not small and thus one

often should not use a linearized analysis (although most do) to infer the

mechanical properties of cells using the AFM. Indeed, the associated boundary

value problem is very complex and is not discussed here. Rather, we simply

note that because the AFM is based on a cantilevered beam subjected to

bending, we can examine the design of the device using the methods found in

Sects. 5.2 and 5.3.

5.4.3 Illustrative Example

Let us assume that an AFM device is constructed of a cantilevered LEHI beam

of length L, with Young’s modulus E, and a second moment of area Izz¼ I.

Moreover, let us assume that the end deflection δ� v at x¼ L is inferred from a

measure of the end slope ϕ¼ dv/dx at x¼ L, as determined by the laser. If the

end load P is directed upward and is transverse to the beam, we note that

(cf. Example 5.9)

EIzz
d2v

dx2
¼ Mz xð Þ ¼ P L� xð Þ;

from which upon two integrations and evaluation of boundary conditions

(v(x¼ 0)¼ 0 and dv(x¼ 0)/dx¼ 0), we have

v xð Þ ¼ Px2

6EI
3L� xð Þ ! v x ¼ Lð Þ � δ ¼ PL3

3EI
;

or

P ¼ 3EI

L3

� �
δ! P ¼ kδ;

where k is an effective stiffness for the device having units of force per length;

given its analogy with a spring wherein f¼ kx, the k in P¼ kδ is called the

AFM spring constant. Question: If L¼ 400 μm and the beam is made of silicon

(E ~ 166 GPa), what value of I would yield a typical value of k¼ 1.0 N/m.
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Moreover, if the beam is rectangular in cross section with a width b¼ 5h, where

h is the height, and I¼ bh3/12, what is the required thickness of the cantilever?

Clearly, these and similar questions can be answered (do it) using ideas

discussed herein.

In summary, the AFM has become a widely used device to study both the

geometry and properties of living cells (e.g., see Figs. 5.17 and 5.18). Although

some inappropriately interpret cell properties using a linearized analysis, we see

that our linearized beam theory can again be used in the design of the device

itself. We must always remember, therefore, under what conditions derived

relations apply.

Observation 5.2. Mathematical solutions to problems of beam bending have far

reaching implications in biomechanics and biophysics, but here we consider one

particular example. Adherent cells, including those that form monolayers on

surfaces as well as those found within the extracellular matrix, often interact

with their surroundings via specialized transmembrane structures called

integrins. Recall from Sect. 1.4 that integrins consist of heterodimeric glyco-

proteins denoted as α and β units. Although integrin based cell–matrix interac-

tions need to be weak to allow a cell to realign or migrate, they need to be strong

FIGURE 5.17 Measurement of the mechanical response of an isolated endothelial cell to

an AFM indentation force. Shown are the force–indentation data, which reveal a

nonlinear character and that the upstream portion of the cell tends to be slightly stiffer

than the downstream portion when subjected to a flow-induced shear stress. [From Sato

et al. (2000) J Biomech 33:127–135, with permission from Elsevier].
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to enable the cell to fashion or remodel the matrix. Strengthening of cell–matrix

interactions can be achieved by clustering integrins into increasingly larger

groups ranging from nascent adhesions to focal contacts (~1 μm in diameter),

focal adhesions (~6 μm in diameter), and ultimately super focal adhesions

(10–30 μm in diameter). See Hinz (2010) for a detailed discussion in terms of

the biomechanics of myofibroblasts.

Of particular interest is how much force a cell can exert on the extracellular

matrix via any of these clusters of integrins. Recalling the solution for the end

deflection δ of an initially straight cantilevered beam, namely δ¼PL/3EI

(see Example 5.9), a number of groups have constructed experimental platforms

consisting of arrays of micro-cantilevered beams (like a “bed of nails”) that can

be functionalized on the ends (e.g., with fibronectin). Cells can then be placed

on the platform and contracted via exposure to an agonist. Thus, by monitoring

the end deflection of each cantilever and knowing the Young’s modulus and

geometry, one can infer the transverse end loads (P¼ 3EIδ/L) exerted by the

FIGURE 5.18 In the so-called constant-force mode, the AFM can measure the surface

topography. Shown here is a single cell, with the region of the nucleus very clear. Such

cells tend to adopt very different shapes in vivo wherein they are embedded in a 3-D

plexus of extracellular matrix material and have extensive cell-to-cell junctions. There is

much that we can learn from tests on isolated cells, and similarly from tests on cell

cultures, yet we must remember that it is because of their extreme sensitivity to changes

in applied loads (which we seek to measure) that their response in an artificial environ-

ment will be different from that in vivo. (Courtesy of Dr. G. Meininger, University of

Missouri Dalton Cardiovascular Research Center).
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cell on its surroundings. Again, therefore, theory can help one both to design

and interpret novel experiments.

Finally, note two interesting observations regarding this experiment. First,

because a cell must respect equilibrium, the forces must sum (vectorially) to

zero if the cell is not migrating (i.e., accelerating), which provides an internal

consistency check on the measurements. Second, it has been observed that, in

general, cell generated forces scale linearly with integrin cluster area, which

suggests that cells seek to maintain constant the stress (force per area) at these

clusters, typically around 3–5 kPa. This finding supports further the fundamen-

tal concept of mechanical homeostasis in mechanobiology (cf. Humphrey

(2008) as well as Sect. 11.1).

Example 5.11 Find restrictions on the mechanical resolution of a typical

immersed AFM probe due to thermal noise that arises due to the collision of

water molecules with the probe.

Solution: As noted by Ethier and Simmons (2007), an immersed probe on

an atomic force microscope (AFM) will be subject to random collisions by

water molecules undergoing thermal motion. The average energy per molecule

at temperature T (e.g., 310 K, or 37 
C) is given by ½kBT, where

kB¼ 1.3807 x 10�23 J/K is the Boltzmann constant. As we saw in the prior

section, the mechanical force on the AFM probe due to a transverse end

deflection δ is P¼ kδ, where k is an effective bending stiffness. Hence, the

mechanical energy stored due to deflection is½kδ2. If we assume that thermally

induced collisions between water molecules and the probe cause a deflection δ,

then ½kBT¼½kδ2, or δ2¼ (kB/k)T. The associated thermally induced force on

the probe is thus P¼ √(kkBT). If k¼ 0.05 N/m at 310 K, then P ~ 1.46 x 10�11 N
or P ~ 14.6 pN, which would limit the resolution of the device.

5.5 Principle of Superposition

Simply put, this principle asserts that, under certain conditions, one may add

the solutions of multiple “simpler” problems to obtain the solution of a more

complex problem. Superposition is particularly useful, therefore, when a com-

plex problem can be analyzed in terms of simpler solutions which are well

known, such as, the stresses due to extension/compression of an axial rod and

the inflation of a thin-walled cylindrical tube (cf. Example 3.3). Indeed, we

have already used this principle in many different ways, including the use of

the flexure formula for problems involving shear due to transverse loads.
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Here, therefore, we wish to emphasize further that it is very important to know

when this principle applies and when it does not. Whereas universal solutions

can be superimposed, for they are valid for all materials and levels of strain, it is

also important to recognize that solutions to linear problems can also be

superimposed. The latter should be familiar to those who have had a course in

ordinary differential equations wherein we often exploit superposition; the

so-called homogenous and particular solutions can be added when the differ-

ential equation is linear.

In this section, therefore, let us explore the utility of the principle of super-

position in beam problems wherein the governing differential equations for the

deflection are linear [cf. Eqs. (5.43) and (5.46)]; by linear, of course, we mean

linear in the deflection v(x), note that the right-hand side of the equation is linear

in x. In particular, we shall see that this approach is very useful in two different

classes of problem. Let us now illustrate this utility via two examples.

Example 5.12 Find the deflection curve v(x) for a cantilevered beam subjected

to a linearly increasing distributed load q(x) and an applied moment Mo at the

end. Assume that the beam exhibits a LEHI behavior, is of length L, is initially

straight, and has a constant rectangular cross section.

Solution: Let us divide this “complex” problem into two simpler problems:

a cantilever subjected to a uniformly increasing load q(x) and an identical

cantilever subjected to an end moment Mo. For “beam 1,” our governing

differential equation is

EIzz
d4v1

dx4
¼ �q xð Þ ¼ �qo

x

L

� �
;

where qo is the value of q(x) at the end. Integrating this equation four times

yields

EIzz
d3v1

dx3
¼ �qo

L

x2

2

� �
þ c1,

EIzz
d2v1

dx2
¼ �qo

L

x3

6

� �
þ c1xþ c2,

EIzz
dv1

dx
¼ �qo

L

x4

24

� �
þ c1

x2

2

� �
þ c2xþ c3,

EIzzv1 xð Þ ¼ �qo
L

x5

120

� �
þ c1

x3

6

� �
þ c2

x2

2

� �
þ c3xþ c4
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for which we need four boundary conditions:

(a) v1 x ¼ 0ð Þ ¼ 0;

(b)
dv1

dx
x ¼ 0ð Þ ¼ 0;

(c) Mz x ¼ Lð Þ ¼ 0 ¼ EIzz
d2v1 x ¼ Lð Þ

dx2
;

(d) V x ¼ Lð Þ ¼ 0 ¼ EIzz
d3v1 x ¼ Lð Þ

dx3
:

Hence, from (a), we have c4¼ 0, and from (b), we have c3¼ 0. Similarly,

from (d), we have c1¼ qoL/2, and thus from (c), we have c2¼�qoL2/3. Our first
solution is

EIzzv1 xð Þ ¼ �qo
L

x5

120

� �
þ qoL

2

x3

6

� �
� qoL

2

3

x2

2

� �
;

or

v1 xð Þ ¼ 1

EIzz

�qo
120L

� �
x5 � 10L2x3 þ 20L3x2
� �

:

Next, for “beam 2,” we have

EIzz
d2v2

dx2
¼ Mo;

which can be integrated twice to yield

EIzz
dv2

dx
¼ Moxþ c5,

EIzzv2 xð Þ ¼ Mo

x2

2

� �
þ c5xþ c6;

for which we need but two boundary conditions:

(e) v2 x ¼ 0ð Þ ¼ 0;

(f)
dv2 x ¼ 0ð Þ

dx
¼ 0:

Hence, c5¼ 0 and c6¼ 0 and

v2 xð Þ ¼ 1

2EIzz
Mox

2
� �

:
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The solution for our original problem is thus

v xð Þ ¼ v1 xð Þ þ v2 xð Þ

by superposition.

Clearly, we could obtain solutions to even more complicated problems by

simply adding together the solutions of multiple (appropriate) simpler prob-

lems. Here, however, let us consider the second primary utility of the principle

of superposition in problems of beam bending. Recall that a statically indeter-

minate problem is one that cannot be solved via statics alone. In traditional

problems of beam bending, we recall further that we have but three general

equilibrium equations (ΣFx¼ 0, ΣFy¼ 0, ΣMZ¼ 0) to find the reactions. Hence,

in cases in which there are four or more reactions (i.e., a statically indeterminate

problem), we must seek additional equations to solve the problem. Let us

illustrate how the principle of superposition can be useful in this regard.

Example 5.13 Find the reactions for the beam in Fig. 5.19 assuming that L, E,

Izz and qo are all known.

FIGURE 5.19 Statically indeterminate beam, cantilevered on one end and supported by a

roller on the other. The three equations of static equilibrium are thus insufficient to

determine the four reactions: Mw, RA, RB, and Rx at A; that is, whereas Rx can be shown

to be zero via axial force balance, the remaining equations (vertical force balance and

moment balance) are not sufficient to find the remaining three unknowns. Also shown

are free-body diagrams of two convenient subproblems: a cantilevered beam subjected

to a uniformly distributed load and a cantilevered beam subjected to a transverse end

load. In the latter case, we can treat the reaction RB as we would an applied load and thus

solve the problem as usual.
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Solution: First, note that equilibrium of the whole requires that

X
Fx ¼ 0! Rx ¼ 0,

X
Fy ¼ 0! RA þ RB �

ð L

0

qodx ¼ 0,

X
Mz

�
A ¼ 0!RBL�

ð L

0

qoxð Þdx�Mw ¼ 0;

which yields three equations in terms of four unknowns (Rx, RA, RB, Mw). To

generate a fourth equation, let us divide the problem into two problems

(Fig. 5.19): a cantilever subjected to a uniformly distributed load qo and a

cantilever subjected to an end load RB (whose value is as yet unknown). Clearly,

we know the solutions for the deflection curves for each of these “simpler”

problems. From an analysis similar to that in the previous example, show that

EIzzv1 xð Þ ¼ �qo
x4

24

� �
þ qoL

x3

6

� �
� qoL

2

2

x2

2

� �
;

whereas from Example 5.9 (with P¼�RB), we have

EIzzv2 xð Þ ¼ �RB

x3

6

� �
þ RBL

x2

2

� �
:

Note: The direction of RB is opposite the previously considered end load P, but

otherwise the present problem is no different than that considered earlier.

Hence, the solution to our original problem is

v xð Þ ¼ v1 xð Þ þ v2 xð Þ;

subject to the constraint that

v1 x ¼ Lð Þ þ v2 x ¼ Lð Þ ¼ 0

because the roller at x¼ L does not allow a deflection [i.e., v(x¼ L)¼ 0 is a

boundary condition for the full problem]. This constraint provides an additional

equation in terms of one of the original four unknowns; thus, we have succeeded

in identifying four equations (three from equilibrium and one from a kinematic

constraint condition) for our four unknowns and the problem can be solved. In

particular, from the constraint condition, we find that
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0 ¼ �qo
L4

24

� �
þ qoL

L3

6

� �
� qoL

2

2

L2

2

� �
þ �RBð Þ L3

6

� �
þ RBL

L2

2

� �
,

0 ¼ qoL
4 � 1

24
þ 1

6
� 1

4

� �
þ RBL

3 �1
6
þ 1

2

� �
;

or

RB ¼
3

8
qoL;

hence finding the reaction at B in terms of the known values of qo and L.

Returning to the three equilibrium equations, we can now find RA and Mw,

which, in turn, will allow a full stress analysis. This is left for the reader to

complete.

In closing, we emphasize yet again that mechanics is not a subject consisting

of solutions to individual problems; rather, it is a subject in which a common

method is used to solve diverse problems. Note, therefore, that we have used

kinematic constraint conditions earlier to render a problem well posed: in Sect.

4.1.3, we used the condition that the end deflection δ was the same for the bone

and the metal prosthesis in an axial load problem, and in Sect. 4.4.2, we used the

condition that an angle of twist Θ was likewise the same in a bone–prosthesis

torsion problem. Kinematic constraints, in the present case matching the deflec-

tions from two solutions at a single point in a beam, are thus very useful to

impose in many problems and should be considered in problems wherein statics

alone does not yield a sufficient number of equations.

Observation 5.3. We have noted that materials and structures can fail via a

variety of mechanisms. They can deform excessively and thus cease to fulfill

the intended function; they may yield and thus experience a permanent set

which prevents them from returning to an original shape or location when

unloaded; or they can fracture (i.e., rupture) and thus fail catastrophically. In

each of these cases, failure may occur the first time that the applied loads exceed

safe values (e.g., the yield stress). Another type of failure that is potentially

problematic in many biomechanical problems is fatigue failure. In material

science, the term “fatigue” denotes a loss in strength of a material due to

repeated loading. Fatigue often occurs in three stages: the initiation of small

cracks, the propagation of these cracks, and, finally, fracture due to the devel-

opment of large cracks. A common method to test a material’s resistance to

fatigue is the “rotating cantilever test.” In this test, a cylindrical specimen is
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loaded, via a bearing, by a transverse load at its end while the specimen is

rotated many (sometimes millions) times. Because the specimen experiences

tension on the top and compression on the bottom, material away from the

neutral axis experiences a sinusoidal cycle from maximum to minimum tensile

and compressive stresses. Tests are performed to failure, with the number of

cycles to failure noted. Similar tests at multiple levels of applied load (i.e.,

maximum stress) reveal differences in the number of cycles to failure at

different stresses. When the number of cycles to failure (abscissa) is plotted

against the stress during the test (ordinate), one obtains a so-called S–N

(or stress-number) curve. As one might expect, the number of cycles to failure

is greater for lower values of applied stress and, conversely, it is lower for higher

values of stress. Given that prosthetic hips and knees must survive millions of

cycles due to daily walking or running and, likewise, artificial heart valves must

survive over 30million cycles per year, fatigue failure is an important concern in

the biomechanical design of prosthetic devices. Question: Why is fatigue failure

less of an issue for biological tissues? Answer: Tissues are continually replaced

via a balanced synthesis and degradation of material; hence, the “same” material

does not experience the thousands to millions of cycles needed to cause fatigue

failure. Of course, repeated surgical replacement of prosthetic devices to renew

the material is not a viable option for the biomedical engineer; thus, there is a

need to decrease the likelihood of fatigue failure.

Let us note a few additional terms: The fatigue life tells us how long a

particular component is expected to survive at a particular stress under normal

conditions and the fatigue strength is the maximum stress for which failure will

not occur for a prescribed number of cycles (e.g., 300 million). Fatigue testing is

obviously a very important and yet potentially time-consuming activity. For this

reason, one often seeks to perform accelerated tests whereby the requisite

number of cycles can be achieved in much less time than would be required

at the physiological rate. For a heart valve, for example, a 10-year equivalent

fatigue test can be performed in 1 year if the tests are performed at 10 Hz rather

than the physiological ~1 Hz. Yet, 1 year is still a long time to wait for

experimental results and one might be tempted to perform the test at 100 Hz

and thus obtain results in ~5 weeks instead of 1 year. One must ask, however,

whether the behavior of the material of interest is sensitive to the rate of

deformation, because this could adversely affect the results. We shall see in

Chap. 11, for example, that strain-rate sensitivity is one of the characteristics of

a viscoelastic behavior.

For many polymers, one can alternatively use a concept of time–temperature

equivalency (Ferry 1980), which states that similar behaviors occur much faster

at higher temperature. Thus, by performing tests at temperatures above service

conditions (e.g., at 70 
C rather than 37 
C), one can collect data over much

shorter periods. Temperature can have very different effects on other materials,

however, including tissue; thus, one must be very careful when employing this
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equivalency for experimental expediency. Fatigue testing is nevertheless often

time-consuming. Because of its importance, including Food and Drug Admin-

istration (FDA) specifications in many cases, the biomechanical engineer must

investigate this deeply. We refer the interested reader to books on material

science.

5.6 Column Buckling

Recall from Sect. 5.1 that a column is any structural member having one

dimension greater than the other two and subjected to a compressive axial

load. In some cases, the column may fail due to an excessive load simply by

fracture, plastic deformation, or excessive compression. In other cases, how-

ever, the primary concern may be the possibility that the column may become

unstable and buckle. A simple example of such buckling can be appreciated by

taking a plastic ruler and compressing it along its long axis—the sudden

bending out, or buckling, occurs when a critical value of the compressive load

Pcr is achieved (Fig. 5.20). Let us now consider the general concept of stability

as well as the specific example of column buckling.

5.6.1 Concept of Stability

Consider the two structural members in Fig. 5.21. In each case, statics tells us

that the reaction force at the pin is Ry¼W, the weight of the member. Indeed, in

each case, the pin is exerting an upward directed force and we might say that the

FIGURE 5.20 A cantilevered beam is subjected to a compressive end load P. Initially the
beam-column will simply compress and the stress σxx¼�P/A, as in Chap. 3. After a

critical value Pcr is reached, the beam column will buckle (i.e., bend abruptly) and the

analysis of stress and strain becomes much more complex. Hence, rather than computing

these complex states of stress or strain, let us focus simply on that value of Pcr that

induces buckling.
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two problems are statically equivalent. From the perspective of stability, how-

ever, these two problems are very different. If we subject member B to a small

lateral disturbing load, or perturbation, we expect the member to move initially

in the direction of the load, but then, like a pendulum, to swing back and forth

until it regains its original position (assuming a frictionless pin but resistance to

motion due to the air). Conversely, we expect member A to respond very

differently to the same lateral disturbing force—we expect it to swing down

and eventually gain the position of member B. Note: This experiment is

accomplished easily by holding your pen loosely between two fingers in each

of the original configurations and subjecting it to a small lateral disturbing

force. Although both members A and B are initially in equilibrium, we say that

A is unstable and B is stable.Mechanical stability, then, is the ability to resist a

small disturbing force, which is a very important structural characteristic.

Another good illustration of the concept of stability is seen in Fig. 5.22.

In this case, imagine three otherwise identical balls on low friction surfaces.

Moreover, imagine the response of each initially centered ball if it is subjected

to a small lateral disturbing force. In case A, we easily imagine the ball “rolling

off the hill,” which is to say, moving in such a way that it cannot regain its

original position. We would say that this ball is unstable because the disturbing

force caused the ball to find another equilibrium position. Conversely, in case B,

we can easily imagine that, provided the disturbing force is not too large, the

ball will first move in the direction of perturbation, but then roll back and

FIGURE 5.21 Illustration of the concept of stability. Although structural members A and

B are both in equilibrium, which is to say that the reaction force Ry¼W for both,

structure A is unstable—a small transverse (i.e., disturbing) load will cause it to swing

down and assume a position similar to that of B. Structure B, on the other hand, will

simply swing back and forth if disturbed by a small transverse load until it regains its

original equilibrium position (assuming air friction or friction in the pin, otherwise with

no energy dissipation the member could swing back and forth about the original

equilibrium indefinitely).
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forth until it regains its original position. This ball would be said to be (asymp-

totically) stable. Thus, in cases A and B in Figs. 5.21 and 5.22, we see that

mechanical stability is an ability to resist a small disturbing force, which is to

say, an ability to regain the original position or configuration following the

disturbance. Case C in Fig. 5.22 illustrates one final possibility. In this case, the

ball will not regain its original position, but it may not move far from that

position. Such cases are called neutrally stable; they are, in fact, a cause for

concern, for they may easily degenerate into an instability given slight imper-

fections (e.g., if the flat surface is at a slight incline). We will consider the static

stability of an elastomeric balloon in Chap. 6 and the dynamic stability of an

aneurysm in Chap. 11. We should be very mindful, therefore, that stability is an

important consideration in biomedical design, analysis, and experimentation

with regard to both biomaterials and native tissues. Let us now consider the

generic case of column buckling, the classical introduction to stability in

engineering mechanics and another subject in mechanics that was touched by

the genius of L. Euler.

5.6.2 Buckling of a Cantilevered Column

Consider the initially straight but buckled column in Fig. 5.23, which is

assumed to exhibit a linear, elastic, homogenous, and isotropic (LEHI)

response. If the axial load P is applied through the centroid, we expect one of

two possibilities. First, consider the case wherein the column just compresses as

an axial rod. In this case, σxx¼�P/A (compressive) and the displacement is

given by

FIGURE 5.22 Another simple illustration of the concept of stability. Although each ball

is initially in equilibrium (if centered) and thus has the same initial free-body diagram, a

small lateral force will cause the ball on the hill to roll off, whereas a small lateral force

will cause the ball in the trough to simply roll back and forth until it comes to rest in its

original position (again, assuming some friction in the system). These are called

unstable and (asymptotically) stable, respectively. The ball on the flat plate may move

only slightly when disturbed; thus, this is called neutrally stable—it need not experience

an abrupt change in equilibrium position, but it also need not regain its original position.
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ux xð Þ � ux 0ð Þ ¼
ð x

0

� P

AE
dx ¼ � P

AE
x; ð5:47Þ

assuming a constant cross section and homogenous constitution. These results

are valid as long as jPj< jPcrj, the so-called critical buckling load.

If we continued to load the column until jPj ¼ jPcrj, however, the situation is

very different. As can be seen, the buckled beam appears “bent” and, conse-

quently, as in the prior sections of this chapter, we must consider the bending.

The main difference, however, is that it is a compressive load, not a transverse

load or applied bending moment, that gives rise to the buckling of the beam.

Equilibrium of the whole reveals that the reactions at the wall are (Fig. 5.23)

X
Fx ¼ 0 ¼ Rx � P! Rx ¼ P,
X

Fy ¼ 0! Ry ¼ 0,
X

Mz

�
A ¼ 0 ¼ Pδ�Mw ! Mw ¼ Pδ;

ð5:48Þ

where v(x¼ L)¼ δ. Equilibrium of the parts thus reveals (Fig. 5.23) that

X
Fx ¼ 0 ¼ Pþ f ! f ¼ �P,
X

Fy ¼ 0! V ¼ 0,
X

Mz

�
A ¼ 0 ¼! Mz � f v� Pδ ¼ 0;

ð5:49Þ

or

Mz ¼ f vþ Pδ ¼ Pδ� Pv: ð5:50Þ

FIGURE 5.23 Detailed free-body diagrams of the whole and part of a cantilevered beam

column as shown in Fig. 5.20.
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Assuming that the moment-curvature relation [Eq. (5.43)] holds in this case of

bending, we have

EIzz
d2v

dx2
¼ Pδ� Pv; ð5:51Þ

or

d2v

dx2
þ P

EIzz
v ¼ P

EIzz
δ: ð5:52Þ

We recognize from our study of differential equations (reviewed in Appendix

8 of Chap. 8) that this is a second-order, linear, nonhomogenous differential

equation with a constant coefficient (for each value of P). It will prove useful,

therefore, to let this coefficient be denoted by k2�P/EIzz, thus yielding our final

governing differential equation

d2v

dx2
þ k2v ¼ k2δ: ð5:53Þ

Because this is a linear equation, let us first seek its homogenous and then its

particular (i.e., nonhomogenous) solutions whereby v(x)¼ vh(x) + vp(x). First,

for the homogenous equation, note that it can be written in operator form as

d2vh

dx2
þ k2vh ¼ 0$ D2 þ k2

� �
vh ¼ 0; ð5:54Þ

whereby we have a solution if D¼�ki, where i ¼
ffiffiffiffiffiffiffi
�1
p

. We know that the

solution of such equations can be assumed to be of the form

vh xð Þ ¼ e aþbið Þx ¼ eax c1 cos bxþ c2 sin bxð Þ: ð5:55Þ

Hence, for our problem, we have a¼ 0 and b¼ k; thus,

vh xð Þ ¼ c1 cos kxþ c2 sin kx: ð5:56Þ

As an exercise, verify that this solution does in fact satisfy the homogenous

differential equation; this is accomplished easily by taking the second derivative

and substituting back into Eq. (5.54).

Next, for the particular solution, note that the right-hand side of Eq. (5.53) is

constant and thus let

v p xð Þ ¼ A; ð5:57Þ
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from which we see that this is a solution of the nonhomogenous equation

provided that A¼ δ. Thus, our full solution is

v xð Þ ¼ c1 cos kxþ c2 sin kxþ δ: ð5:58Þ

The boundary conditions are

v x ¼ 0ð Þ ¼ 0! 0 ¼ c1 þ δ! c1 ¼ �δ:
dv

dx
x ¼ 0ð Þ ¼ 0! 0 ¼ c2k! c2 ¼ 0:

ð5:59Þ

Hence,

v xð Þ ¼ δ 1� cos kxð Þ; ð5:60Þ

where δ� v(x¼ L) provides the constraint condition that

δ ¼ δ 1� cos kLð Þ; ð5:61Þ

which, in turn, requires that cos kL¼ 0 for all k. The cosine function equals zero,

of course, at π/2, 3π/2, 5π/2, . . .; hence, we must have

KL ¼ n
π

2
, n ¼ 1, 3, 5, :::: ð5:62Þ

Now, recalling that k2¼P/EIzz, this says that

ffiffiffiffiffiffiffiffi
P

EIzz

r
L ¼ nπ

2
ð5:63Þ

or that a value (magnitude) of the compressive axial load P for which we have

buckling is

P ¼ n2π2

4L2
EIzz: ð5:64Þ

We are interested, of course, in the smallest buckling load, called Pcr or the

critical buckling load, which is given by n¼ 1, and therefore

Pcr ¼
π2

4L2
EIzz ð5:65Þ

for this case of a cantilevered column subjected to an axial end load P.

Note that the critical buckling load is increased by an increased stiffness of the

material E and increased second moment of area Izz. Conversely, Pcr is reduced
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as the length of the column is increased. All of these effects are intuitive; for

example, if we try to buckle a plastic ruler, we can make it more difficult to do so

by simply supporting it in such a way that its effective length is reduced. Try

it. Likewise, if we increase the stiffness (e.g., use a wooden ruler rather than a

plastic one), it is harder to induce buckling, and so too if we increase the cross-

sectional area. Indeed, note that the result for Pcr depends on Izz. Actually, it is

somewhat arbitrary how we define the y and z directions in the cross section, so

note that a ruler tends always to buckle in one direction (i.e., in the direction of

least thickness), the one associated with the smallest second moment of area.

Finally, a few words about our solution v(x). It may be tempting to draw

the buckled shape of the column using our solution for v(x) and k and, indeed,

some seek to explain the different buckling modes (shapes) via different values

of n (i.e., different curves defined by sines and cosines). One knows, for

example, that a buckled plastic ruler could assume various sinusoidal shapes

depending on how strongly one pushes on the ends. To try to explain such

buckled shapes based on our analysis is ill advised, however, because our

solution was based on the moment-curvature relation, which, in turn, was

based on the assumption of a small slope (dv/dx� 1). This assumption is not

respected by the buckled shape in general. Hence, we can only use this

formulation to find Pcr, which is the load at which buckling is imminent but

not realized. This example serves to remind us again that it is essential to

remember and respect all assumptions. To determine the buckled shape, we

must first derive and then solve a nonlinear differential equation. This is beyond

the present scope.

Finally, note that our governing differential equation (5.52) is not a general

equation; it is valid only for a column with a free end. Other boundary

conditions will thus modify both the general equation and the associated

unknown coefficients in the solution. Each case is solved similarly, but they

are different. Consider the following example.

Example 5.14 Find the critical buckling load for the fixed–pinned column in

Fig. 5.24.

Solution: First, consider a free-body diagram for the whole structure:

X
Fx ¼ 0! Rx ¼ P,

X
Fy ¼ 0! Ry ¼ �N,

X
Mz

�
o ¼ 0! �Mw þ NL ¼ 0;

and, thus,
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Mw ¼ NL and Ry ¼ �
Mw

L
:

Second, consider a free-body diagram for the part (draw it):
X

Fx ¼ 0! f ¼ �P,
X

Fy ¼ 0! �Mw

L
� V ¼ 0,

V ¼ �Mw

L
,

X
Mz

�
o ¼ 0! �Mw þMz � Vx� v xð Þ f ¼ 0,

Mz ¼ Mw �
Mw

L
x� Pv xð Þ:

Thus, from the linearized moment-curvature relation [Eq. (5.43)], we have

EIzz
d2v

dx2
¼ �PvþMw 1� x

L

� �
:

Rearranging this relation into standard form, we have

d2v

dx2
þ P

EIzz
v ¼ Mw

EIzz
1� x

L

� �
:

Consistent with the previous example, the homogeneous solution is

FIGURE 5.24 Solutions of beam-column problems are very sensitive to the boundary

conditions. Shown here is a fixed-pinned column.
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vh xð Þ ¼ c1 cos kxþ c2 sin kx:

For a particular solution, given that the right-hand side is linear in x, assume

v p xð Þ ¼ c3 þ c4x;

whereby

dv p

dx
¼ c4 and

d2v p

dx2
¼ 0:

Hence, substituting into the governing differential equation for vp(x)

0þ P

EIzz
c3 þ c4xð Þ ¼ Mw

EIzz
1� x

L

� �
! c3 þ c4x ¼

Mw

P
�Mw

PL
x

and, consequently,

c3 ¼
Mw

P
and c4 ¼ �

Mw

PL
:

The full solution then becomes v(x)¼ vh(x) + vp(x), or

v xð Þ ¼ c1 cos kxþ c2 sin kxþ
Mw

P
�Mw

PL
x;

from which

dv xð Þ
dv
¼ c1 �k sin kxð Þ þ c2 k cos kxð Þ �Mw

PL
:

Enforcing the boundary conditions at the fixed end, v(x¼ 0)¼ 0 and dv(x¼ 0)/

dx¼ 0,

0 ¼ c1 þ
Mw

P
! c1 ¼ �

Mw

P
,

0 ¼ c2k þ
Mw

PL
! c2 ¼

Mw

kPL
:

Enforcing the boundary conditions at the pinned end, v(x¼ L)¼ 0,

0 ¼ �Mw

P
cos kLþ Mw

kPL
sin kLþMw

P
�Mw

PL
L;

or
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1

kL
sin kL� cos kL ¼ 0:

Hence,

1

kL
¼ cos kL

sin kL
! kL ¼ tan kL:

This is a transcendental (nonlinear) equation, which does not admit a direct

solution. However, one can use an iterative numerical method to show that the

smallest root is

kL � 4:4935 radiansð Þ

from which

Pcr �
20:19EIzz

L2
¼ 2:05π2EIzz

L2
;

the latter of which permits an easier comparison to the previous result.

Chapter Summary

This chapter addresses two of five aforementioned canonical problems in

introductory biosolid mechanics: bending of a 1-D structure often referred to

as a beam and compressive buckling of a 1-D structure often referred to as a

column. The other canonical problems are addressed in Chaps. 3 and 4. Beam

bending is considered by many to be amongst the most fundamental problems in

solid mechanics, with copious applications in vivo (in the body), ex vivo

(outside of the body, but living), and in vitro (literally in glass, but outside of

the body in general). Of particular note, knowledge of beam bending is espe-

cially useful in the design of both load cells and diverse experiments, with the

latter ranging from determination of bending properties of bones (e.g., via a

standard 4-point bending test that yields quantities of interest uniform in a

central region) to measurement of cellular contraction, focal adhesion strength

(e.g., using an array of micro-cantilevered beams), or cell stiffness (e.g., via

atomic force microscopy).

As in Chaps. 3 and 4, we sought to find stress in terms of the applied load and

geometry and we sought to find strain, or the associated deformation, in terms of
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applied load, geometry, and material properties. Equations (5.23) and (5.30)

reveal that we accomplished this goal for stress in a standard beam bending

problem: the normal stress depends on the local applied load (bending moment

M) and geometry (vertical location y and second moment of area I) and

similarly the shear stress depends on the local applied load (shear force V)

and geometry (location Q, second moment of area I, and thickness b). Never-

theless, as in the case for torsion of a cylindrical structure, the results implicitly

depend on a particular constitutive relation (Hooke’s law) and thus are not

universal. In contrast, Sect. 5.1 revealed that one can determine distributions of

the bending moment M and the shear force V from statics alone.

Also as in the case of torsion of a cylindrical structure, we saw that transfor-

mation relations are useful in determining principal values of stress in terms of

components that are easiest to compute, and that the associated deformations

depend on applied load, geometry, and material properties. The latter can be

determined via equivalent second, third, or fourth order ordinary differential

equations for deflection, the choice of which depends simply on convenience of

prescribing the applied load (in terms of momentM, shear V, or uniform load q,

respectively). We also saw that the number of necessary boundary conditions

depended on the order of the differential equation, hence encouraging us to be

familiar with the many types of conditions: displacement, rotation, reaction

force, and applied moment as revealed in Fig. 5.14. Because of the linearity of

these differential equations, we were reminded, just as we learned in our

mathematics courses, that solutions can be superimposed in linear problems;

this property can help simplify finding solutions in some cases.

Finally, this chapter introduced an important area of mechanical analysis, the

concept of stability. That is, determination of an equilibrium solution does not

reveal whether the material or structure can resist small perturbations in loading

from equilibrium. Stability (cf. Figs. 5.20, 5.21, and 5.22) is an extremely

important issue in theoretical and experimental mechanics, in analysis and

design. Although entire courses are devoted to this important topic, we consid-

ered only a single problem, the buckling of a column under compressive

loading. Again, we introduced a particular constitutive relation (namely,

Hooke’s law for LEHI behavior) and consequently the results are not universal.

Moreover, because of the assumption of small strain and small rotation, this

analysis can only determine the critical load at which buckling is imminent, not

the post-buckling response. In other words, if post-buckling response is of

interest, then one must employ an appropriate nonlinear beam analysis, which

is beyond the present scope. Chapters 6 and 11 address simple nonlinear

problems that exhibit instabilities.
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Appendix 5: Parallel Axis Theorem and Composite
Sections

Recall from Appendix 4 of Chap. 4 that the second moment of area Izz is

given by

Izz ¼
ðð
y2dydz; ðA5:1Þ

where y and z are taken here to be the in-plane coordinates (i.e., cross sectional)

and x is directed along the long axis of a beam. Moreover, because of our need

to locate the origin of our (o; x, y, z) coordinate system at the centroid [recall

Eq. (5.20)], this Izz must likewise be computed relative to the centroid. For

simple geometries, such as rectangular or circular, such computations are

straightforward, as seen in Appendix 4. In many beam-bending problems,

however, the cross section of the beam is often complex, whether it is the

cross section of a long bone or the cross section of a beam used as a transducer.

For this reason, the so-called parallel axis theorem is very useful.

Consider the centroidal coordinate system (y,z) and general cross section

shown in Fig. 5.25. Clearly,

Izz ¼
ðð
y2dydz

is computed with respect to the centroidal coordinates (y, z), whereas

I
0

zz ¼
ðð

yþ dð Þ2dA ¼
ðð
y2dAþ 2d

ðð
ydAþ d2

ðð
dA ðA5:2Þ

FIGURE 5.25 Coordinate

system and generic cross

section for deriving the

parallel axis theorem;

(y, z) are centroidal

coordinates, which are

very useful in beam

theory.
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is computed with respect to another coordinate system (y0, z0) oriented parallel

to our centroidal system. In addition to recognizing the second moment of

area with respect to the centroidal system,

ðð
y2dA, we also recognize the first

moment of area yA

ðð
ydA, also with respect to the centroidal system (y, z).

The value of y relative to the centroidal system (i.e., the distance the centroid is

from the centroid) is zero, however; thus, we have

I
0

zz ¼ Izz þ d2A; ðA5:3Þ

which is known as the parallel axis theorem. It allows us to compute the second

moment of area of a cross section of area A given its “centroidal second moment

of area” and the distance d between the centroidal axis z and any parallel axis z0

of interest. Clearly, a similar, more general result can be obtained if y and y0 do
not coincide. Regardless, we emphasize that the parallel axis theorem is very

useful for determining the value of the second moment of area of a “composite”

cross section relative to the overall centroid. To illustrate this, consider the

I-beam cross section shown in Fig. 5.26.

To compute the overall centroidal second moment of area, we can use the

parallel axis theorem three times to transform the easily computed individual

centroidal values of rectangles (bh3/12) to the overall centroid; that is, for the

top, middle, and bottom parts respectively, we have

Izz ¼
1

12
bt3 þ h

2
þ t

2

� �2

bt

" #

top

þ 1

12
th3 þ 02bt

� �

middle

þ 1

12
bt3 þ �h

2
� t

2

� �2

bt

" #

bottom

;

ðA5:4Þ

FIGURE 5.26 Illustration that, like first moments of area (cf. Appendix 3 of Chap. 3),

second moments of area can be determined using a method of “composite” sections

shown by solid lines. The parallel axis theorem is fundamental to such determinations.
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which can be simplified algebraically if desired. The two key observations

are that the distance squared term d2A provides a positive contribution regard-

less of the location of the small part relative to the centroid and that d¼ 0

recovers our standard relation.

Hence, for a composite section

I
0

zz wholeð Þ ¼
X

Izz þ d2A
� �

parts
; ðA5:5Þ

where (. . .)Parts is computed relative to the centroidal coordinate system for each

part. Note, too, that one can use this idea to compute the second moment of

area of a hollow cross section. For example, the simple case in Fig. 5.27 has the

solution

Izz ¼
1

12
BH3 þ 02 BHð Þ

� 

� 1

12
bh3 þ 02 bhð Þ

� 

¼ 1

12
BH3 � bh3
� �

: ðA5:6Þ

Hence, as in the case of composite sections and centroids (Appendix 3 of

Chap. 3), we can easily add or remove the scalar second moment of areas.

Finally, it should be noted that second moments of areas, like stress and

strain, obey coordinate transformation relations. Hence, if we know Iyy, Izz, and

Iyz in two-dimensions, then values with respect to (y0, z0) can be computed as

(Fig. 5.28)

I
0
yy ¼ Iyy cos

2αþ 2Iyz cos α sinαþ Izz sin
2α,

I
0
zz ¼ Iyy sin

2α� 2Iyz cos α sinαþ Izz cos
2α,

I
0
yz ¼ Izz � Iyy

� �
cos α sin αþ Iyz cos 2α� sin 2αð Þ;

ðA5:7Þ

although we will not prove these results here. Clearly, though, given the values

of the second moments of area with respect to convenient centroidal axes,

FIGURE 5.27 Another example of the method of composite sections to determine a

second moment of area—this time for a cross section with a hole.
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one can determine components for any other related coordinate system via the

parallel axis theorem and/or transformation relations.

Example A5.1 Determine the second moment of area Izz about the horizontal

axis for the I-beam in Fig. 5.29.

Solution: For this problem, the centroid of the entire area is clear, the geometric

center of the overall cross-section. To obtain Izz for the whole cross section, the

parallel axis theorem is used; that is,

I
0

zz wholeð Þ ¼
X

Izz þ d2A
� �

parts
;

where the cross section can be broken into three parts as in Fig. 5.26 and the

coordinate system located at the overall centroid. Because each part is rectan-

gular, Eq. (A4.5) can be used to calculate Izz)c for each piece of the cross section.

For part 1:

I
0
zz ¼ Izz

�
c þ Ad2 ¼ 1

12
baseð Þ heightð Þ3 þ baseð Þ heightð Þd2,

I
0
zz ¼

1

12
3mð Þ 1mð Þ3 þ 3mð Þ 1mð Þ 1:5mð Þ2 ¼ 7m4:

FIGURE 5.28 Similar to

components of stress

and strain, second

moments of area relative

to one coordinate system

can be related easily to

those of an associated

coordinated system via a

simple transformation.

FIGURE 5.29 A dimen-

sioned I-beam.

276 5. Beam Bending and Column Buckling



For part 2:

I
0
zz ¼ Izz

�
c þ Ad2 ¼ 1

12
baseð Þ heightð Þ3 þ baseð Þ heightð Þd2,

I
0
zz ¼

1

12
1mð Þ 2mð Þ3 þ 1mð Þ 2mð Þ 0ð Þ2 ¼ 2

3
m4:

For part 3:

I
0
zz ¼ Izz

�
c þ Ad2 ¼ 1

12
baseð Þ heightð Þ3 þ baseð Þ heightð Þd2,

I
0
zz ¼

1

12
3mð Þ 1mð Þ3 þ 3mð Þ 1mð Þ �1:5mð Þ2 ¼ 7m4:

For the composite section, therefore:

I
0

zz ¼ 7m4 þ 2

3
m4 þ 7m4 ¼ 14:667m4:

Example A5.2 Determine the second moment of area Iyy about the horizontal

x axis for an area that is shaped like a “C”. Let the overall width and height be

3.5 in. and 6.0 in., respectively. Let the “cut-out” be centered vertically but

toward the right and 3 in. in width and 5 in. in height.

Solution: First, sketch the cross section. Second, find the centroid of the area.

To do this, visualize breaking the cross section into parts. One way to visualize

the cross section is by a sum of multiple parts that are joined together. Another

way to visualize it is by subtracting the hollow interior from a solid cross

section. Using the second method, we must find the centroid of the entire

cross section. The best way to do this is to organize a chart of the parts in

order to locate the centroid relative to (x, y).

Part Area (A) x y Ax Ay

1 6 in.� 3.5 in. 1.75 in 3 in 36.75 in3 63 in3

2 �(3 in.� 5 in.) 2 in 3 in �30 in3 �45 in3

∑ 6 in.2 6.75 in3 18 in3
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Thus,

y ¼
X

Ay
X

A
¼ 18in:3

6 in:2
¼ 3 in:, x ¼

X
Ax

X
A
¼ 6:75 in:3

6 in:2
¼ 1:12in:

To calculate Ixx ¼
ðð
y2dA let us use the parallel axis theorem. This is most easily

done by considering a solid rectangular cross section and subtracting the hollow

interior from it. Once the overall centroid has been located, originate

the coordinate system there. Because each of the cross sections is rectangular,

the general formula, Ixx)c¼ (l/12)(base)(height)3, can be used. For the solid area:

I
0
xx ¼ Ixx

�
c þ Ad2 ¼ 1

12
baseð Þ heightð Þ3 þ baseð Þ heightð Þd2,

I
0
xx ¼

1

12
3:5 in:ð Þ 6 in:ð Þ3 þ 3:5 in:ð Þ 6 in:ð Þ 0ð Þ2 ¼ 63in:4:

For the hollow interior:

I
0
xx ¼ Ixx

�
c þ Ad2 ¼ 1

12
baseð Þ heightð Þ3 þ baseð Þ heightð Þd2,

I
0
xx ¼

1

12
3 in:ð Þ 5 in:ð Þ3 þ 3 in:ð Þ 5 in:ð Þ 0ð Þ2 ¼ 31:25in:4:

For the composite section, therefore,

I
0

xx ¼ 63 in:4 � 31:25 in:4 ¼ 31:75 in:4

Now, various quantities dependent on Ixx, such as stress or the critical buckling

load, can be calculated for this particular cross section.

Exercises

5.1. Find σxx and σxy for the following beam (Fig. 5.30). Assume a rectan-

gular cross-section of height h and width b.

5.2. Find σxx and σxy for the following beam (Fig. 5.31), having a rectangular

cross-section.

5.3. Find σxx and σxy for the following beam (Fig. 5.32), having a rectangular

cross-section.

5.4. Find σxx and σxy for the following beam (Fig. 5.33), having a rectangular

cross-section.
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5.5. Find σxx and σxy for the following beam (Fig. 5.34), having a rectangular

cross-section.

5.6. Find the maximum value of σ0xx and σ0xy for the beam in Exercise 5.1.

5.7. Find the maximum value of σ0xx and σ0xy for the beam in Exercise 5.2.

5.8. Find the maximum value of σ0xx and σ0xy for the beam in Exercise 5.3.

FIGURE 5.30

FIGURE 5.31

FIGURE 5.32

FIGURE 5.33
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5.9. Show that σxy)ave in a beam having a rectangular cross section

(area¼ bh) has as its largest value 1.5V/A, which is at the centroid.

5.10. Find the deflection curve for the beam in Example 5.1.

5.11. Find the deflection curve for the beam in Example 5.2.

5.12. Find the deflection curve for a simply supported beam (a pin and roller at

the two ends) with a constant distributed load q(x)¼�qo. Note whether
the beam deflects up or down.

5.13. Find the deflection curve for the beam in Exercise 5.5.

5.14. Find the deflection curve for the beam in the previous example except

with a distributed load of q(x)¼ (qo/L
2)x2.

5.15. You are to design a force transducer based on a cantilever beam subject

to an end load. Assume the beam is rectangular in cross section and that

redundant strain gauges are placed at (x¼L/2, y¼�h/2). Find a formula

for selecting the value of Young’s modulus E if the maximum allowable

measured strain εxx is εo (i.e., find E in terms of, possibly, εo, L, h, b, P,

etc.). Note that Popov (1999) is a nice introduction to mechanical

engineering applications of strength of materials such as this problem.

5.16. Radmacher et al. (1992) pointed out that if one “drags” the AFM probe

across a surface, the tip of the probe experiences both a normal force and

a tangential force. The latter will contribute to the bending. Given the

probe shown below, find the end deflection δ¼ v(x¼ L) (Fig. 5.35).

5.17. Using the principle of superposition, find the displacement vector

u(x) of the neutral axis for the beam shown below. Hint: Let u xð Þ ¼ v xð Þ
ĵ þ w xð Þk̂ (Fig. 5.36).

5.18. Use the principle of superposition to find the deflection curve v(x) for the

neutral axis for the beam in Exercise 5.4.

5.19. Use the principle of superposition to find the reactions for a beam that

is fixed on both ends and subjected to a uniformly distributed load.

Hint: Assume that there is no axial load and divide the problem into

three cantilever beams: one with the distributed load, one with an end

load RB, and one with an end moment MB. Use the kinematic constraint

conditions that

v x ¼ Lð Þ ¼ 0 ¼ v1 x ¼ Lð Þ þ v2 x ¼ Lð Þ þ v3 x ¼ Lð Þ

FIGURE 5.34
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and

dv

dx
x ¼ Lð Þ ¼ 0 ¼ dv1

dx
x ¼ Lð Þ þ dv2

dx
x ¼ Lð Þ þ dv3

dx
x ¼ Lð Þ;

from which we see that we have the requisite five equations (three

equilibrium and two constraints) for the five unknowns (Rx, RA, MA,

RB, MB).

5.20. Two potential experiments for determining the (effective) Young’s mod-

ulus E for a bone sample are the so-called three-point and four-point

bending tests, shown schematically here in Fig. 5.37. Assuming that

three strain gauges (A, B, C) are applied equidistantly to the bottom

surface of each beam sample and that their lengths are L/50 each, note

that the desired value of the Young’s modulus can be determined via

σxx x; yð Þ ¼ Eεxx x; yð Þ ! E ¼ � Mz xð Þy
Izzεxx guageð Þ

;

FIGURE 5.36

FIGURE 5.35
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where x and y must correspond to the placement of one or more of the

strain gauges. Via a mechanical analysis, show why the preferred

measurement (of the three sites shown) would be via gauge B in the

four-point bending test. Hint: Recall that a gauge is of a finite, albeit

small, length, whereas strain is defined at a point.

5.21. For the three-point and four-point bending tests shown in Exercise 5.20,

find the value of R in terms of P (assume given) such that the maximum

value of σxx is the same in each beam. Note the value of (x, y) at which

σxx is maximum.

5.22. Assume that a LEHI gate is designed as a “dam.” Find the deflection

curve assuming that the bottom support can be modeled as a pin and the

top support as a roller (pushing opposite the force of the fluid). Hint:

First determine the uniform loading on the beam gate given the differ-

ential equation for fluid statics

d p

dx
¼ ρg;

where ρ is the density of the fluid and g is the gravitational constant.

Note the boundary condition that p¼ patm at x¼ 0.

5.23. Noting that the flexure formula σxx¼�Mzy/Izz was determined via an

approximate, linear theory, superposition of stresses holds. Hence, for a

combined axial load and bending,

σxx ¼
f

A
�Mzy

Izz
:

In like fashion, note that “symmetrical” bending due to moments

applied with respect to both the z and y axes will induce a superimposed

stress (Boresi et al. 1993)

σxx ¼
Myz

Iyy
�Mzy

Izz
;

FIGURE 5.37
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the first contribution of which can be obtained directly by deriving the

flexure formula due to a momentMy alone. Show that this is the case for

the beam of length L (Fig. 5.38).

5.24. Find σxy for the beam shown in Fig. 5.39.

5.25. Whereas a moment Mz induces a bending in the x-y plane and thus a

y-direction displacement, a momentMy induces bending in the x-z plane

and thus a z-direction displacement. For a combined symmetrical bend-

ing, therefore, the displacement vector u for points along the neutral axis

are given by

u xð Þ ¼ v xð Þ ĵþw xð Þk̂ ;

where

EIzz
d2v

dx2
¼ Mz, EIyy

d2w

dx2
¼ My:

FIGURE 5.38

FIGURE 5.39
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Hence, find u for a cantilevered beam of length L, rectangular cross

section h deep and b wide and subjected to a shear force at x¼ L given

by �P ĵ þ 2Pk̂ using the same figure as Exercise 5.24.

5.26. Throughout this chapter we have assumed that the cross sections are

homogenous. This need not be the case. Consider the layered beam

shown below (Fig. 5.40), which consists of two materials characterized

by LEHI properties E(1), v(1) and E(2), v(2), respectively (note: these are

Young’s moduli and Poisson’s ratios). If we assume a continuous strain,

then εxx¼�y/ρ as earlier, where ρ is the radius of curvature of the

neutral axis, which need not be at the centroid as in the case of a

homogenous beam. Indeed, the neutral axis can be found from the

axial force balance equation

X
Fx ¼ 0 ¼ �

ðð
σxxdA ¼ �

ðð
σ 1ð Þ
xx dA

1ð Þ þ σ 2ð Þ
xx dA

2ð Þ
� 


;

where

σ 1ð Þ
xx ¼ E 1ð Þεxx, σ 2ð Þ

xx ¼ E 2ð Þεxx:

Hence, the neutral axis is located by

E 1ð Þ
ðð
ydA 1ð Þ þ E 2ð Þ

ðð
ydA 2ð Þ ¼ 0;

wherein the �1/ρ was factored out. Show that this recovers the result

for a homogeneous beam if E(l)¼E(2) and if A(1)+A(2)¼A, the total

cross-sectional area. Note, too, that from moment balance, we get

FIGURE 5.40
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�Mz þ
ðð
� σxx ydA ¼ 0

! Mz ¼ �
ðð
� E 1ð Þ

ρ
y2 dA 1ð Þ �

ðð
� E 2ð Þ

ρ
y2 dA 2ð Þ:

Show that this leads to the following moment-curvature relation:

1

ρ
¼ Mzy

E 1ð ÞI 1ð Þ
zz þ E 2ð ÞI 2ð Þ

zz

and thus

σ 1ð Þ
xx ¼ �

MzyE
1ð Þ

E 1ð ÞI 1ð Þ
zz þ E 2ð ÞI 2ð Þ

zz

, σ 2ð Þ
xx ¼ �

MzyE
2ð Þ

E 1ð ÞI 1ð Þ
zz þ E 2ð ÞI 2ð Þ

zz

;

where

I 1ð Þ
zz þ I 2ð Þ

zz ¼ Izz:

5.27. Locate the neutral axis for the composite cross section (Fig. 5.41). Hint:

Assume that the neutral axis (i.e., origin of y-z axes) is at the centroid,

but then find its true value relative to the interface between materials

1 and 2. Toward this end, note that

ðð
ydA 1ð Þ ¼

ðb=2

�b=2

ðh 1ð Þ�H

�H
ydydz ¼ b

2
h 1ð Þ
� �2

� 2Hh 1ð Þ
� 


,

ðð
ydA 2ð Þ ¼

ðb=2

�b=2

ð�H

� h 2ð Þ�Hð Þ
ydydz ¼ �b

2
h 2ð Þ
� �2

� 2Hh 2ð Þ
� 


;

h(1)

h(2)

1
z

y

H

b

2

FIGURE 5.41
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where H is the distance (assumed down) from the centroid to the

interface between material 1 and material 2. Thus, axial force balance

yields

H ¼ 1

2

E 1ð Þ h 1ð Þ� �2 � E 2ð Þ h 2ð Þ� �2

E 1ð Þh 1ð Þ þ E 2ð Þh 2ð Þ

 !
:

Note that if E(1)¼E, E(2)¼ 0, h(1)¼ h, and h(2)¼ 0, then H¼ h/2, thus

locating the neutral axis at the centroid, as it should for a

homogenous beam.

5.28. In cardiopulmonary resuscitation (CPR), one seeks to augment cardiac

output by pressing down on the sternum. This increases blood flow by

direct compression of the heart between the sternum and spine as well as

via changes in intrathoracic pressure. Typically, the sternum is com-

pressed 1.5–2 in. with each compression. One concern in CPR, however,

is that excessive force may fracture the ribs. Referring to Fig. 5.42, we

see that the transversely applied load P induces bending stresses in the

rib. If you are biomedical engineer charged with designing an automatic

device to load the sternum, find the induced stresses in the ribs as a

function of the applied load and geometry. Hint: The rib can be assumed

to exhibit a LEHI behavior and it is a structure having one dimension

much larger than the other two and subjected to bending. The ribs are

clearly not initially straight beams, thus our flexure formula does not

apply. It can be shown, however, that the bending stress in a curved

beam can be computed via (Boresi et al. 1993)

σθθ ¼
f

A
þ M A� rAmð Þ
Ar RAm � Að Þ ;

where f is a force applied normal to the θ-face cross section of area A,M is

the bending moment, Am ¼
ð

1=rð ÞdA, where r is the radial location of

the point of interest in the cross section, and R is the radial distance from

the center of curvature of the beam to the centroid of the cross section (see

figure). Because we have merely listed, not derived, this formula, wemust

note the assumptions/restrictions. First, plane sections are assumed to

remain plane; the radial stress σrr and shear stress σθr are assumed to be

small in comparison to σθθ, the cross section is assumed to be symmetric

about the vertical y axis shown in the figure; the applied loads all lie in the

plane of symmetry; and R/h< 5. In other words, if R/h> 5, the flexure

formula [Eq. (5.23)] is often used even for a curved beam. Finally, see

Table 5.1 for formulas for A and Am for common cross sections.
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5.29. Show that the critical load for a fixed–fixed column subjected to an end

load P is

Pcr ¼
4π2EIzz

L2
:

5.30. Show that the critical load for a pinned–pinned column subjected to an

end load P is

Pcr ¼
π2EIzz

L2
:

FIGURE 5.42
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TABLE 5.1 Formulae for A and Am for curved beams having different cross-sections.

Note the coordinate directions. See Boresi et al. (1993).
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6
Some Nonlinear Problems

6.1 Kinematics

Recall from Sect. 2.5 of Chap. 2 that displacements alone cannot be related

effectively to stresses to describe material behavior. Rather, combinations of

displacement gradients, called strains, are more useful in formulating constitutive

equations for stress. Indeed, inEq. (2.42), we listed six independent components of

the Green strain, which is an exact measure for large or small deformations that is

insensitive to rigid-bodymotions. There is, however, amore fundamental measure

of motion that is useful in large deformation problems; it is called the deformation

gradient. Recall, therefore, that we said the displacement vector u is a measure of

where we (amaterial particle) are minus where wewere. In Cartesian coordinates,

we have the following three components

ux ¼ x X; Y; Zð Þ � X, uy ¼ y X; Y; Zð Þ � Y, uz ¼ z X; Y; Zð Þ � Z; ð6:1Þ

where (x, y, z) locates a point of interest in the current configuration and (X, Y, Z)

locates the same point in its original (reference) configuration. In particular, it is

because the location of a point in a current configuration depends on where it

started that we need the functional dependence x(X, Y, Z), and so too for y and z.

Moreover, the displacement gradients can be written

∂ux

∂X
¼ ∂x

∂X
� 1,

∂uy

∂Y
¼ ∂y

∂Y
� 1,

∂uz

∂Z
¼ ∂z

∂Z
� 1; ð6:2Þ
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and so forth. Given that there are nine such terms, it is convenient to write these

results in a matrix form.1 Indeed, if we denote the displacement gradient matrix

by [H] and the deformation gradient matrix by [F], then we see that

H½ 	 ¼ F½ 	 � I½ 	 $ F½ 	 ¼ I½ 	 þ H½ 	; ð6:3Þ

where the components of the deformation gradient can be calculated (with

respect to Cartesian coordinates) via

F½ 	 ¼

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

2
666664

3
777775
: ð6:4Þ

[I] is the so-called identity matrix, with components

I½ 	 ¼
1 0 0

0 1 0

0 0 1

2
4

3
5: ð6:5Þ

This matrix is called an identity matrix for [A][I]¼ [I][A]¼ [A] for any 3� 3

matrix [A]; that is, when [I] operates on a matrix [A], it returns [A] unaltered.

It is the deformation gradient that plays the key role in nonlinear analyses—it

is the fundamental measure of finite deformation for it includes both the

deformation and the rigid-body motion. For example, if we denote the Green

strain via the matrix [E], where

E½ 	 ¼
EXX EXY EXZ

EYX EYY EYZ

EZX EZY EZZ

2
4

3
5 ð6:6Þ

are the Cartesian components that are listed in Eq. (2.42), it is easy to show that

E½ 	 ¼ 1

2
F½ 	T F½ 	 � I½ 	

� �
; ð6:7Þ

where the superscript T denotes a transpose of the matrix (i.e., the interchanging

of rows and columns as discussed in Appendix 6). Without going into details

(see Humphrey 2002), the operation of [F]T[F] removes the rigid-body

1 Matrix operations are reviewed briefly in Appendix 6.
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information and the subtraction of [I] renders [E]¼ [0] in the absence of

deformation/strain; both of these features are desirable of a strain measure.

It can be shown further that the linearized strain is given by

ε½ 	 ¼ 1

2
F½ 	 þ F½ 	T � 2 I½ 	

� �
: ð6:8Þ

Example 6.1 Compute the components of [F] for the motions associated with

Eqs. (2.50), (2.52), and (2.55), and then calculate the associated values of [E]

and [ε].

Solution: First, consider the mathematically simple 1-D stretching motion

given by x¼ΛX, y¼ Y, and z¼ Z, where Λ is a stretch ratio (i.e., just a number

for each equilibrium stretch). Clearly,

F½ 	 ¼

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

2
666664

3
777775
¼

Λ 0 0

0 1 0

0 0 1

2
4

3
5

and therefore

E½ 	 ¼ 1

2
F½ 	T F½ 	 � I½ 	

� �
¼

1

2
Λ2 � 1
� �

0 0

0 0 0

0 0 0

2
64

3
75;

whereas

ε½ 	 ¼ 1

2
F½ 	 þ F½ 	T � 2 I½ 	

� �
¼

Λ� 1 0 0

0 0 0

0 0 0

2
4

3
5;

as we found earlier. Again, for Λ ~ 1 (small strain), the numerical values of [E]

and [ε] differ little, but for larger values typically experienced by soft tissues

(stretches often on the order of 10–100 %), the difference becomes pronounced.

For example, ifΛ¼ 1.5, a 50% extension, thenE11¼ 0.625 (exact) and ε11¼ 0.5

(approximate), thus revealing a 20 % error in the computation of the strain.

Question: Why would this motion be difficult to achieve in the lab?
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Second, consider a simple shear motion given by x¼X+ κY, y¼ Y, and z¼ Z,

where κ is just a number for each equilibrium motion. Hence,

F½ 	 ¼
1 κ 0

0 1 0

0 0 1

2
4

3
5

and, therefore,

E½ 	 ¼ 1

2

1 0 0

κ 1 0

0 0 1

2
4

3
5

1 κ 0

0 1 0

0 0 1

2
4

3
5�

1 0 0

0 1 0

0 0 1

2
4

3
5

0
@

1
A ¼ 1

2

0 κ 0

κ κ2 0

0 0 0

2
4

3
5;

whereas

ε½ 	 ¼ 1

2

1 κ 0

0 1 0

0 0 1

2
4

3
5þ

1 0 0

κ 1 0

0 0 1

2
4

3
5�

2 0 0

0 2 0

0 0 2

2
4

3
5

0
@

1
A ¼ 1

2

0 κ 0

κ 0 0

0 0 0

2
4

3
5:

This comparison reveals a significant conceptual difference between [E] and

[ε]. Note that the extensional strain in the Y direction EYY¼ κ2/2 whereas

εyy¼ 0; that is, shear and extension are coupled in the (exact) nonlinear theory,

whereas the linearization of [ε] loses this coupling. Although κ2/2 will be

negligible in comparison to κ/2 if κ� 1, this will not be the case for large

shears, as experienced by the heart during each cardiac cycle. Again, therefore,

the exact (nonlinear) theory must be used when the deformations or rigid

rotations are large. The latter is revealed by considering the third case, the

rigid-body motion associated with Eq. (2.55):

x ¼ X cosϕþ Y sinϕ, y ¼ �X sinϕþ Y cosϕ, z ¼ Z:

In this case,

E½ 	 ¼ 1

2

cosϕ � sinϕ 0

sinϕ cosϕ 0

0 0 1

2
4

3
5

cosϕ sinϕ 0

� sinϕ cosϕ 0

0 0 1

2
4

3
5�

1 0 0

0 1 0

0 0 1

2
4

3
5

0
@

1
A

¼
0 0 0

0 0 0

0 0 0

2
4

3
5;
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as it should, for [E] is insensitive to rigid-body motion, but

ε½ 	 ¼ 1

2

cosϕ sinϕ 0

� sinϕ cosϕ 0

0 0 1

2
4

3
5þ

cosϕ � sinϕ 0

sinϕ cosϕ 0

0 0 1

2
4

3
5�

2 0 0

0 2 0

0 0 2

2
4

3
5

0
@

1
A

¼
cosϕ� 1 0 0

0 cosϕ� 1 0

0 0 0

2
4

3
5;

as found in Eq. (2.56), which reveals that [ε] is inappropriately sensitive to a

rigid-body rotation unless the rotation is small (i.e., as ϕ! 0, cos ϕ! 1).

Although these three motions are very simple, they serve to illustrate the use

of [F] as a fundamental measure of the motion.

Observation 6.1. The cell is the fundamental structural and functional unit of

living things and, as noted in Chap. 1, understanding mechanotransduction

therein is vital to many areas of biomechanical analysis and design. As one

might expect, many different types of tests have been performed on cells in an

attempt to correlate changes in cell structure and function with mechanical

stimuli. These tests include micropipette aspiration, indentation tests, atomic

force microscopy (AFM, both indentation and pulling), and magnetic bead

cytometry (Fig. 6.1). In micropipette aspiration, one infers the bending stiffness

of the cell membrane by monitoring the amount of cell membrane that is drawn

into a pipette of known radius by a known pressure gradient. In indentation

tests, one measures the force that is required to indent the cell a known amount

and interprets this relation in terms of homogenized properties of the cell

membrane and cytoplasm. The AFM was discussed in Chap. 5. One can use

FIGURE 6.1 Possible tests for interrogating the mechanical properties or responses of

cells. Micropipette aspiration, magnetic bead cytometry, atomic force microscopy

(AFM), and cell poking induce localized loads, whereas stretching sheets on which

cells are adhered or subjecting a monolayer of cells to a fluid-flow-induced shear stress

induce distributed loads. Flow-induced shears are discussed in Chap. 9 on biofluid

mechanics. (Courtesy of R. Gleason).
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the AFM to indent the cell or to pull on focal adhesion complexes by

functionalizing the tip of the AFM with an appropriate ligand. In magnetic

bead cytometry, one similarly functionalizes a magnetic microsphere that can

be moved within a magnetic field and then measures torque–twist responses,

often over small twists. This test is thus useful for interrogating time-dependent

shearing (viscoelastic) behaviors, which are discussed in Chap. 11. Clearly,

therefore, advances in technology permit such empirical studies to be

performed, but the interpretation of the data requires a biomechanical analysis

of the associated initial boundary value problem. Given the complex geometries

and loading, many in cell mechanics have assumed linear material behaviors

and small strains to facilitate analysis. Such assumptions should be based on the

physics, however, not the ease of solution, and the experiments should be

designed based on theoretical frameworks, not just the availability of a new

technology.

Associated with these many experiments has been a variety of attempts to

model the mechanics of cells. Among various models, one finds the following:

tensegrity models, which emphasize the importance of prestress within a cell

and the possibility of mechanical stresses acting at a distance; percolation

theories that emphasize dynamic changes in cytoskeletal interconnectiveness;

soft glassy rheological models that suggest that the cytoskeleton is metastable,

able to transform instantaneously from more solid-like to more fluid-like

behaviors; and continuum models, based on cells as inclusions within a matrix

that allow study of cell–matrix interactions (see Mow et al. 1994; Stamenovic

and Ingber 2002; Humphrey 2002 and references therein). No single model

enjoys wide acceptance, however, even for a particular class of mechanocytes;

thus, there remains a pressing need for much more research on cell mechanics.

Cell mechanics is essential, for example, for explaining basic processes such as

cell adhesion, contraction, division, migration, spreading, and even phagocyto-

sis (the engulfing and digestion of extracellular material). Likewise, it appears

that cellular apoptosis (i.e., programmed cell death), the synthesis and degra-

dation of matrix, and the production of growth regulatory molecules, cytokines,

and cell surface receptors are also influenced greatly by the mechanics. Each of

these activities manifests itself at the tissue and organ level, of course, and

thereby are linked to development, tissue maintenance, wound healing, growth

and remodeling, and pathogenesis. Hence, whether one seeks to understand

normal physiology, disease, injury, interactions between medical devices and

tissues, or even the engineering of tissue or organ replacements, there is a need

to understand the mechanics of cells. Given the diversity of cell types and the

various environments in which they function, we should probably expect that

multiple approaches will be equally useful in modeling the many different
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aspects of cell mechanics. Although not emphasized in the past, large strain

analyses must be used to describe well the finite displacement gradients and

finite rotations experienced by the cell membrane and cytoskeletal constituents,

which together endow the cell with much of its structural integrity. The inter-

ested reader is referred to the collection of papers in Mow et al. (1994) and a

special issue of the Journal of Biomechanics (Vol. 28, pp. 1411–1572, 1995) for

a discussion of some of these issues.

6.2 Pseudoelastic Constitutive Relations

Figure 6.2 shows a typical 1-D stress–stretch behavior of a soft tissue. As in

Chap. 2, note the nonlinear response, which is initially compliant but then

becomes very stiff, and the hysteresis, which reveals an inelastic character.

Although the exact source of the inelasticity is not clear, it is thought to be due

in part to the movement of structural proteins (primarily elastin and types I and

III collagen) within the so-called ground substance matrix that consists largely

of proteoglycans and water; that is, one source of energy dissipation revealed by

the noncoincident loading and unloading curves may be a viscous dissipation

and, in particular, a solid–fluid interaction at the molecular level. We will

briefly discuss approaches to model viscoelastic responses in Chap. 11, but let

us make a further observation here.

Most viscoelastic responses depend not just on the amount of the deformation

but also the rate of deformation. A very simple example of this is revealed by a

“kindergarten experiment.” If one pulls his or her fingers very slowly through a

solution of cornstarch (a solid–fluid mixture), the resistance is very small; in

contrast, if the fingers are pulled through rapidly, the resistance increases

considerably. That is, the response by the cornstarch solution to the applied

load depends strongly on the rate of deformation, a characteristic common for

FIGURE 6.2 Typical stress–stretch response of a soft tissue. The nonlinear behavior is

usually over finite strains, which disallows the use of Hooke’s law and linearized strains,

and thus necessitates the formulation of more general constitutive relations Note, too,

that the hysteresis is a characteristic of a viscoelastic behavior, or perhaps if small, a

pseudoelastic behavior as defined by Y.C. Fung.
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viscoelastic behavior (discussed more in Chap. 7). Although most soft tissues

exhibit a viscoelastic character under many conditions, Fung reported in the late

1960s that the behavior of soft tissues tends not to depend strongly on strain rate

(Fig. 6.3) (see Fung 1990). Indeed, Fung suggested that if one cyclically loads

and unloads various soft tissues, there tends to be repeatable (but separate)

loading and unloading responses. Because the theory of viscoelasticity is more

complex to implement than is the theory of elasticity, Fung suggested that in

some cases it may be reasonable to treat separately the loading and unloading

behaviors as elastic; that is, although one would use the same function to relate

stress to strain in loading and unloading, one would use separate values of the

associated material parameters. To remind us that the behavior is not truly

elastic, Fung called such an approach pseudoelasticity, which is now used

frequently in many areas of biomechanical design and analysis.

At this juncture, let us note that Fung’s concept of pseudoelasticity appears to

be particularly applicable to tissues that are subjected in vivo to consistent

loading and unloading, such as the arteries, diastolic heart, and lungs. Indeed,

Fung also showed that pseudoelastic responses (i.e., separate but repeatable

loading and unloading behaviors) were obtained in the laboratory only after a

sufficient number of loading cycles (Fig. 6.4), usually 3–10; that is, it appears

that following excision, whereby the tissue is removed from its normal dynamic

loading environment, the tissue must be “conditioned” to obtain a repeatable

pseudoelastic response. Given such conditioning, the tissue tends to dissipate

less energy upon cyclic loading and to become less stiff, both of which appear to

be teleologically favorable. Fung called this experimental process

preconditioning. Whereas few have sought to understand the underlying mech-

anisms of preconditioning, most simply exploit it to obtain pseudoelastic

responses which are easier to describe mathematically and which appear to be

more physiologic in many cases because of the periodic loading experienced by

many soft tissues.

FIGURE 6.3 Possible sensitivity of the stress–stretch response to changes in strain rate

(loading curves only). In many cases, however, there is little change in the response with

three orders of magnitude changes in strain rate.
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Inasmuch as linear elasticity is easily described mathematically, we typically

do not think deeply about its implications. Yet, one of the remarkable conse-

quences of a linear stress–strain relation is that it is unique: There is but one way

to draw a straight line (i.e., y¼mx+ b). Nonlinear behavior, on the other hand,

not only requires the use of a more complex function to fit the stress–strain data,

it is also not necessarily unique. Referring to the loading response in Fig. 6.2,

for example, one investigator may “see” a parabola and thus suggest a quadratic

relationship between stress and stretch, whereas another investigator may see a

trigonometric relationship and postulate a tangent function to describe the data.

Indeed, because of the inherent scatter in experimental data, multiple functions

may be found to describe the data similarly, thus raising the question: What is

the best constitutive descriptor for this behavior?

Again, Fung offered a very helpful approach. Fung suggested that instead of

plotting stress versus strain (or stretch), we could plot the stiffness as a function

of stress. Strictly speaking, stiffness is defined as a change in stress with respect

to a change in a conjugate strain (or stretch); thus, it is the slope of a stress–

strain or stress–stretch curve. To appreciate this, let us consider a simple, 1-D,

linearly elastic response. If σ¼Eε, where E is the Young’s modulus, then the

stiffness K¼ dσ/dε¼E for all σ; that is, if we plotted K versus σ, we would

obtain a constant value. Integrating then, we would obtain

ð
dσ

dε
dε ¼

ð
Edε! σ ¼ Eεþ c0; ð6:9Þ

where c0¼ 0 if the stress is zero at zero strain, thus yielding the (previously

unknown) stress–strain relation. Let us now see what Fung observed.

Fung performed one-dimensional extension tests on excised strips of mesen-

tery, a thin collagenous membrane found in the abdomen. Recalling from

Chap. 3 that there are actually multiple definitions of stress (σ is the so-called

FIGURE 6.4 Preconditioning response exhibited by many soft tissues. Note that the

response becomes more extensible and eventually nearly repeatable after a sufficient

number of cycles of loading.
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Cauchy stress, which is a measure of forces acting over current oriented areas,

whereas Σ is the so-called nominal or first Piola–Kirchhoff stress, which is a

measure of the force acting over an original oriented area), Fung chose to use Σ

as his measure of stress and Λ as his measure of extension (Λ being a stretch

ratio, which is a component of the deformation gradient as seen in Example

6.1). Doing so, Fung obtained a result similar to that shown in Fig. 6.5: a near-

linear relation between the stiffness dΣ/dΛ and the first Piola–Kirchhoff stress

Σ; that is, the data appeared to be well described by

dΣ

dΛ
¼ αþ βΣ; ð6:10Þ

which is a first-order, nonhomogenous, linear differential equation with a

constant coefficient. This equation is solved easily using either standard

methods for differential equations (Appendix 8 of Chap. 8) or a direct integra-

tion. For example, for this class of differential equations, we expect a homog-

enous solution to be of an exponential form and a particular solution to be a

constant; that is, let our trial solution be of the form

Σ ¼ c1e
c2Λ þ c3: ð6:11Þ

To find the values of the unknown constants, note that

dΣ

dΛ
¼ c1e

c2Λc2 ¼ Σ� c3ð Þc2 ¼ c2Σ� c3c2 ð6:12Þ

whereby from Eq. (6.10), we find that

c2Σ� c3c2 ¼ βΣþ α!
c2 ¼ β

c3 ¼
�α
β

(
: ð6:13Þ

FIGURE 6.5 Fung’s idea to plot stiffness (i.e., a change in stress with respect to stretch,

dΣ/dΛ in one dimension) versus the first Piola–Kirchhoff stress (Σ), which, for many

tissues, results in a nearly linear relationship.
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To find c1, we need another condition. For example, if we require the stress Σ to

be zero when the strain is zero (i.e., the stretch Λ¼ 1), then

0 ¼ c1e
β � α

β
! c1 ¼

α

β
e�β ð6:14Þ

and, therefore, the solution to the experimentally obtained stress–stretch rela-

tion is

Σ ¼ α

β
e�βeβΛ � α

β
! Σ ¼ α

β
eβ Λ�1ð Þ � 1
� �

; ð6:15Þ

where α and β are the experimentallymeasurable intercept and slope, respectively,

in Fig. 6.5. Hence, rather that guessing functional forms for a stress–stretch

relation (e.g., quadratic or trigonometric), Fung used a clever way of replotting

the data as stiffness versus stress that revealed a linear relation, which, in turn,

unambiguously suggested an exponential form of the constitutive relation.

Although plots of stiffness versus stress are not perfectly linear for all tissues

over all ranges of stress of interest, years of experience have revealed that

exponential constitutive relations often provide good descriptions of the data for

certain conditions. See, for example, the fit of a multiaxial exponential relation to

data on epicardium in Fig. 6.6.

FIGURE 6.6 Fit (solid

lines) to biaxial data

(open symbols) for

excised biaxially

stretched epicardium

based on a Fung-

type exponential

relation. [From the

author’s laboratory

(courtesy of

J. Harris)].
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Given the existence of so many different soft tissues in the body, each having

unique structure and function and subjected to different multiaxial stresses and

deformations, it should not be surprising that there is a wide variety of proposed

constitutive relations in the literature. That is, despite the success of Fung’s

exponential as well as other functional relations, there is still no general

agreement on the “best” relations for any given soft tissue. This situation is in

stark contrast to the general acceptance since the mid-1800s of Hooke’s law as a

descriptor of LEHI behavior (cf. Sect. 2.6.1). There is, therefore, a pressing

need for continued research into constitutive relations for soft tissues. For more

discussion of this need and comparisons of other successful nonlinear constitu-

tive relations to experimental data, see Humphrey (2002). Here, let us conclude

our discussion with two observations.

First, although there is a pressing need for improved, well-accepted nonlinear

constitutive functions for many soft tissues, we must remember what a consti-

tutive relation is: It is a mathematical descriptor of particular behaviors exhibited

by a material under well-defined conditions, which is to say, it is not a descriptor

of the material. All materials, including soft tissues, exhibit different behaviors

under different conditions; hence, we should expect that multiple constitutive

relations will be needed for each tissue depending on the condition of interest.

For example, a pseudoelastic relation may be sufficient to describe the cyclic

behavior of an artery under physiological conditions, but a viscoelastic descrip-

tor may be needed to describe the artery’s response during balloon angioplasty, a

thermomechanical relation may be needed to analyze the thermal ablation of an

atherosclerotic lesion–artery complex, and a growth and remodeling relation

may be needed to describe the long-term response of an artery to hypertensive

conditions. Thus, when we say that there is a pressing need for improved, well-

accepted relations, this does not suggest that we should seek a single relation that

describes well all behaviors under all conditions. Rather, we will still need

multiple improved relations for specific conditions of interest. Constitutive

formulations, which combine theory and experimentation, thereby remain one

of the most important and challenging aspects of biomechanics.

Second, it is important to note that although there are many different measures

of stress, they are not independent. It can be shown, for example, that the Cauchy

and the first Piola–Kirchhoff stresses are related through the deformation gradi-

ent (which, as a fundamental measure of motion, relates undeformed and current

areas over which a force must act), namely (Humphrey 2002)

σ½ 	 ¼ 1

det F½ 	 F½ 	 Σ½ 	 $ Σ½ 	 ¼ det F½ 	 F½ 	�1 σ½ 	; ð6:16Þ

where det[F] denotes the determinant and [F]�1 denotes the inverse of [F]. The
latter is defined such that [F]�1[F]¼ [I]¼ [F][F]�1. Recall that matrix opera-

tions are discussed in Appendix 6.
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For example, let us consider a simple 1-D stress test wherein a sample is

extended in the “1” direction as in the test by Fung on mesentery. It can be

shown that the motion is well described by

x ¼ ΛX, y ¼ λY, z ¼ λZ ð6:17Þ

and, thus, from Eq. (6.4)

F½ 	 ¼
Λ 0 0

0 λ 0

0 0 λ

2
4

3
5: ð6:18Þ

Now, if the behavior is incompressible or nearly so, as is the case for many

tissues, including soft tissues, then volume is conserved and det[F]¼ 1. Hence

λ¼ 1/√Λ. Show that this is true by computing the undeformed and deformed

volumes and setting them equal. If the associated first Piola–Kirchhoff stress is

measured as

Σ½ 	 ¼
Σ11 0 0

0 0 0

0 0 0

2
4

3
5 ¼

f

Ao

0 0

0 0 0

0 0 0

2
64

3
75; ð6:19Þ

where f is the applied load and Ao is the undeformed area over which the load

“acts,” then the Cauchy stress is

σ½ 	 ¼ 1

1

Λ 0 0

0
1ffiffiffiffi
Λ
p 0

0 0
1ffiffiffiffi
Λ
p

2
6664

3
7775

f

Ao

0 0

0 0 0

0 0 0

2
64

3
75 ¼

Λ
f

Ao

0 0

0 0 0

0 0 0

2
64

3
75; ð6:20Þ

where det[F]� 1. From Fig. 6.7, we note further that Λ¼ l/L and incompres-

sibility requires that lA¼LAo or A¼Ao/Λ. Hence, we see that the only non-zero

component of the Cauchy stress is

σ11 ¼
Λ f

Ao

¼ f

Ao=Λ
¼ f

A
; ð6:21Þ

that is, the value of the Cauchy stress is computed as the force acting over the

current area A as expected. Perhaps more importantly, however, Eq. (6.16)

allows us to compute the Cauchy stress for Fung’s mesentery sample in terms of

his exponential constitutive relation derived for the first Piola–Kirchhoff stress

[Eq. (6.15)]. For the uniaxial test on mesentery, therefore, we have
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σ11 ¼ ΛΣ11 ¼ Λ
α

β
eβ Λ�1ð Þ � 1
� �

: ð6:22Þ

Whereas the first Piola–Kirchhoff stress is often preferred by experimentalists,

for they only have to measure the cross-sectional area Ao (in uniaxial tests)

once, in contrast to each A at each f, the Cauchy stress is often preferred in the

solution of boundary value problems [cf. Eqs. (3.8)–(3.10)]. Fortunately, rela-

tions such as Eq. (6.16) allow us to compute one type of stress from another,

thus allowing us to work with that which is more convenient in each case.

Indeed, this is a comparable situation to our use of stress transformation

equations in Chap. 2, which allow us to determine components relative to the

most convenient coordinate system and then to calculate from them the com-

ponents relative to any coordinate system that is desired. We conclude, there-

fore, by noting yet another definition of stress, the second Piola–Kirchhoff

stress [S] that is often useful in constitutive formulations in nonlinear elasticity.

It is related to the Cauchy and (first) Piola–Kirchhoff stress via

σ½ 	 ¼ 1

det F½ 	 F½ 	 S½ 	 F½ 	
T
, Σ½ 	 ¼ S½ 	 F½ 	T : ð6:23Þ

Albeit related to [σ] and [Σ], [S] is very different—it does not have a physical

interpretation. [S] can be shown to be a measure of a well-defined but fictitious

force acting on the actual undeformed area. The utility of [S] lies in its

mathematical relationship to the Green strain [E]. It can be shown, for example,

that [S] can be determined by differentiating a scalar “strain-energy function”

FIGURE 6.7 Uniaxial

sample subjected to a

uniform axial stress;

note the dimensions in

the undeformed and

deformed configurations.
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W with respect to [E], which is to say that each component of [S] is found by

taking derivatives ofW with respect to the associated components of [E], as, for

example,

S11 ¼
∂W

∂E11

, S12 ¼
∂W

∂E12

, etc: ð6:24Þ

Here, E11 represents EXX in Cartesians or even ERR in cylindricals. This situation

is comparable to that discussed in Exercise 2.26, in which it was noted that a

similar strain-energy W can be thought of as the area under the linear stress–

strain curve for a 1-D LEHI behavior, with σxx¼Eεxx and, thus, W¼ 1/2

(εxx)σxx¼ 1/2(E)ε2xx, and, finally, σxx¼∂W/∂εxx. Equation (6.24) and its

related constitutive relations for W are much more general, however, being

valid for nonlinear elastic behavior over large strains. For example, motivated

by (but not directly derivable from) the 1-D exponential result of Eq. (6.15),

Fung (1990) postulated that a potentially useful strain-energy function may be

W ¼ 1

2
c eQ � 1
� �

; ð6:25Þ

where, for orthotropy,

Qorth ¼ c1E
2
11 þ c2E

2
22 þ c3E

2
33 þ 2c4E11E22 þ 2c5E22E33 þ 2c6E33E11

þ c7 E2
12 þ E2

21

� �
þ c8 E2

23 þ E2
32

� �
þ c9 E2

31 þ E2
13

� �

ð6:26Þ

and c and c1–c9 are material parameters and E11, . . ., E33 are the nine compo-

nents of [E] relative to a particular coordinate system. Hence, for example,

S11 ¼
∂W

∂E11

¼ 1

2
ceQ 2c1E11 þ 2c4E22 þ 2c6E33ð Þ

¼ ceQ c1E11 þ c4E22 þ c6E33ð Þ
ð6:27Þ

with other components of [S] computed similarly. This relatively simple

multiaxial relation has been shown to provide reasonable fits to data for various

soft tissues, including myocardium, arteries, and skin (Fung 1990), but, again,

there remains a need to search for improved relations in many cases. One

advantage of Eqs. (6.25)–(6.26) is that, similar to a generalized Hooke’s law

(which can be found from a W that is quadratic in the components of [ε]), one

can specify simplifications in the constants in Q for different material symme-

tries [cf. Eqs. (2.69), (2.75), and (2.77)]. Whereas one needs all nine values of

c1–c9 for orthotropy, this number reduces to five for transverse isotropy and
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only two for isotropy. Specifically, for transverse isotropy, with the preferred

direction being the (3) direction, c1¼ c2, c5¼ c6, c8¼ c9; thus,

Qtrans ¼ c1 E2
11 þ E2

22

� �
þ c3E

2
33 þ 2c4E11E22 þ 2c5 E11 þ E22ð ÞE33

þ c7 E2
12 þ E2

21

� �
þ c8 E2

23 þ E2
32 þ E2

13 þ E2
31

� �
;

ð6:28Þ

where c7¼ 2(c1–c4). Finally, for isotropy, c1¼ c3, c4¼ c5, c7¼ c8; thus,

Qiso ¼ c1 E2
11 þ E2

22 þ E2
33

� �
þ 2c4 E11E22 þ E22E33 þ E33E11ð Þ

þ c7 E2
12 þ E2

21 þ E2
23 þ E2

32 þ E2
13 þ E2

31

� �
:

ð6:29Þ

Note that for isotropy, we can alternatively write Q as

Qiso ¼ α E11 þ E22 þ E33ð Þ2 þ β �E2
12 � E2

21 � E2
23 � E2

32 � E2
13

�

� E2
31 þ E11E22 þ E22E33 þ E33E11

�
;

ð6:30Þ

where α¼ c1 and β¼�c7 or, recognizing that these combinations of strains are

invariant under coordinate transformations,

Qiso ¼ αI2E þ βIIE; ð6:31Þ

where

IE ¼ E11 þ E22 þ E33,

IIE ¼ E11E22 þ E22E33 þ E33E11 � 2E12E21 � 2E23E32 � 2E31E13;
ð6:32Þ

with E12¼E21, E13¼E31, and E23¼E32 by definition. This form for Q was

found to describe the behavior of lung parenchyma reasonably well (Fung

1993). Let us now explore a useful experiment and the utility of Fung’s

exponential (pseudo)strain-energy function.

6.3 Design of Biaxial Tests on Planar Membranes

6.3.1 Biological Motivation

A membrane is defined differently in biology and mechanics. In biology, a

membrane is a thin layer of tissue that covers a surface or separates a space;

examples include the cell membrane, the basement membrane in the arterial

wall, the pleural membrane which covers the lung, the epicardial membrane

which covers the heart, and the mesentery within the abdomen. Consideration of

the important structural roles played by these membranes, as well as membranes

such as the urinary bladder and saccular aneurysms, reveals the need to
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understand the associated mechanics. In mechanics, a membrane is defined as a

structure having two dimensions much greater than the third and, in particular, a

structure that offers negligible resistance to bending; that is, the in-plane load-

carrying capability is most important in membranes, a simple example being

that a soap bubble resists a distension pressure solely through its (in-plane)

surface tension. Experience has revealed that most biological membranes

behave mechanically as membranes within the context of mechanics. Hence,

in many cases, we are interested primarily in their in-plane properties.

Many biological membranes consist primarily of a 2-D plexus of elastin

and collagen embedded in a viscous ground substance matrix consisting of

proteoglycans and water. Moreover, in most cases, the elastin and collagen

fibers have complex orientations (Fig. 6.8) that give rise to anisotropic

responses. For this reason, it is not sufficient to study the material behavior

using a single uniaxial test. Rather, it is useful to employ in-plane biaxial

stretching tests to assess the mechanical behavior. Question: Why would bend-

ing tests such as those in Chap. 5 not be useful?

6.3.2 Theoretical Framework

In most cases, biaxial tests are designed such that multiple, individual loading

fixtures are applied to each of the four sides of the sample (Fig. 6.9). The

primary reason for this is that stretching in one direction will induce an

associated shortening (i.e., Poisson-like effect) in the orthogonal direction.

Whereas single clamps on each side would impede such deformations, individ-

ual loading fixtures do not, hence their use. Note, however, that individual

FIGURE 6.8 Schema of

the complex distri-

butions of elastin and

collagen in a planar

tissue such as the

epicardium, pericardium,

pleura, or mesentery.

Such tissues are easily

tested in a biaxial setting

(i.e., subjected to ortho-

gonal in-plane loads f1
and f2).
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(point) loads introduce stress concentrations at the points of application, where

the tissue is likely to fail first if overloaded. Thus, if the experiment is designed

to investigate failure properties, one often introduces a circular or elliptical hole

in the center of the specimen to control and initiate the failure process. We will

not consider such tests here, but they have applicability to the design of

incisions and wound healing, including cataract surgery and the removal of

the lens, as well as to the study of failure mechanisms. Rather, let us consider

subfailure tests wherein one focuses on the central region in which the defor-

mation is measured (similar to the use of a gauge length in the axially loaded rod

experiment). Because of the large deformations, however, we cannot use strain

gauges as in tests on bone. Question: How then should we measure the defor-

mation? Recalling our relation for the deformation gradient [Eq. (6.4)], note that

we simply need to know the current positions (x, y) of points that were

originally at (X, Y) in an undeformed reference configuration. One way to

accomplish this is to track markers that are placed in the central region of the

sample. In general, we place multiple markers (e.g., 3, 4, 9,. . .) and use

so-called interpolation functions to obtain continuous expressions for

x ¼ f X; Yð Þ and y ¼ g X; Yð Þ ð6:33Þ

or, similarly, for the displacements,

ux ¼ x� X ¼ f X; Yð Þ � X and uy ¼ y� Y ¼ g X; Yð Þ � Y; ð6:34Þ

FIGURE 6.9 Specimen prepared for biaxial testing, loaded via multiple individual load-

ing strings per side. Individual loading fixtures allow the tissue to thin in one direction

when pulled in the orthogonal direction, which is important, yet they also introduce

stress concentrations at the loading sites. From Humphrey (2002), with permission.
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so that we can compute the requisite deformation or displacement gradients.

For such approaches, see Humphrey (2002). Here, we will simply assume that

the deformation is homogeneous (i.e., uniform) in the central region, thus

allowing us to compute pointwise quantities like strain over finite lengths.

In particular, referring to Fig. 6.10 (let ‘1¼‘x and ‘2¼‘y), let

ac ¼ lx, bd ¼ ly ð6:35Þ

and, similarly, in the undeformed configuration

AC ¼ Lx, BD ¼ Ly ð6:36Þ

such that [cf. Eq. (2.50)]

x ¼ Λ1X ¼
lx

Lx
X, y ¼ Λ2Y ¼

ly

Ly

Y: ð6:37Þ

Although a membrane is treated two dimensionally, there will be thinning in the

third direction. If we account for this via the stretchΛ3¼ h/H, where h andH are

the deformed and undeformed thickness, respectively, we have

z ¼ Λ3Z ¼
h

H
Z: ð6:38Þ

FIGURE 6.10 Dimensions of a biaxial specimen in the central region, before and after

loading and assuming a homogeneous deformation; a, b, c, and d denote tracking

markers for computing strain in the central region of the soft tissue sample. Strain

gauges cannot be used, of course, because of their extreme stiffness.
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Hence, for this simple in-plane biaxial test, we have, from Eq. (6.4),

F½ 	 ¼

∂x

∂X

∂x

∂Y

∂x

∂Z
∂y

∂X

∂y

∂Y

∂y

∂Z
∂z

∂X

∂z

∂Y

∂z

∂Z

2
666664

3
777775
¼

Λ1 0 0

0 Λ2 0

0 0 Λ3

2
4

3
5; ð6:39Þ

where Λ1¼ lx/Lx, Λ2¼ ly/Ly, and Λ3¼ h/H are all measurable in principle,

although on-line measurement of changes in thickness are problematic in

many cases. It is for this reason that experimentalists often invoke the

incompressibility constraint (det [F]¼ 1), for this allows the thinning to be

inferred from the more easily measured in-plane quantities. Indeed, because

many tissues are nearly incompressible under many cases of cyclic loading,

volume conservation yields

lxlyh ¼ LxLyH ! Λ1Λ2Λ3 ¼ 1; ð6:40Þ

where we recognize that Λ1Λ2Λ3¼ det[F].

Now, for the constitutive behavior. Recall from Chaps. 1 and 2 that a general

formulation requires five general steps: DEICE, which is to say, delineating

general characteristic behaviors, establishing an appropriate theoretical frame-

work, identifying a specific functional relationship between the independent and

dependent constitutive parameters, calculating best-fit values of the associated

material parameters, and evaluating the predictive capability of the final relation.

In the present context, we assume that general characteristics are a precondi-

tionable nonlinear, pseudoelastic, homogeneous, anisotropic, incompressible

behavior of a membrane having negligible bending stiffness and subject to

large in-plane deformations. One possible theoretical framework is thus the

theory of large-deformation membrane elasticity, which we will employ.

In practice, identifying the specific functional form of the constitutive rela-

tion, for conditions of interest, is the most challenging of the five steps. In

general, there are three ways by which this can be accomplished: via an

educated guess that is based on extant observations, theoretical restrictions,

and prior experience; via a formal theoretical derivation, often based on statis-

tical mechanical arguments; or via inference directly from clever interpretations

of experimental data. Fung’s identification of the 1-D exponential Σ¼Σ(Λ)

relation in Eq. (6.15) is a good example of an experimentally based identifica-

tion. Such identifications are much more difficult in two or three dimensions

however, and the interested reader is referred to Humphrey (2002) for details.

Here, let us proceed by assuming (guessing) a 2-D Fung-type exponential

relation of the form
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W ¼ c eQ � 1
� �

, Q ¼ c1E
2
11 þ c2E

2
22 þ 2c3E11E22; ð6:41Þ

similar to the 3-D form given in Eqs. (6.25) and (6.26). Note that we ignore

shear here because only E11 and E22 are assumed to be nonzero in our biaxial

test. Note, too, that the units ofW are energy per volume; we could alternatively

use a strain energy w defined per surface area (of the membrane), where w ~HW

and H is the undeformed thickness.

From Eqs. (6.23) and (6.24), therefore, we have for Eqs. (6.39) and (6.41) the

following:

σ½ 	 ¼ 1

Λ1Λ2 h=Hð Þ

Λ1 0 0

0 Λ2 0

0 0 Λ3

2
4

3
5

S11 0 0

0 S22 0

0 0 0

2
4

3
5

Λ1 0 0

0 Λ2 0

0 0 Λ3

2
4

3
5; ð6:42Þ

where [cf. Eq. (6.27)]

S11 ¼ 2ceQ
� �

c1E11 þ c3E22ð Þ, S22 ¼ 2ceQ
� �

c2E22 þ c3E11ð Þ ð6:43Þ

and, therefore,

σ11 ¼
Λ1

Λ2

H

h

� �
2ceQ
� �

c1E11 þ c3E22ð Þ ð6:44Þ

and

σ22 ¼
Λ2

Λ1

H

h

� �
2ceQ
� �

c2E22 þ c3E11ð Þ; ð6:45Þ

with σ33¼ 0. Note that this is an example of a state of plane stress, which was

defined in Chap. 2. The nonzero in-plane tensions that represent the load-

carrying capability of the membrane are thus,

T1 ¼ σ11h ¼
Λ1

Λ2

� �
HceQ c1 Λ2

1 � 1
� �

þ c3 Λ2
2 � 1

� �
 �
; ð6:46Þ

T2 ¼ σ22h ¼
Λ2

Λ1

� �
HceQ c2 Λ2

2 � 1
� �

þ c3 Λ2
1 � 1

� �
 �
; ð6:47Þ

where T1 and T2 are the principal tensions (force per length). Moreover, from

Eq. (6.16), we know that
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σ½ 	 ¼ 1

Λ1Λ2 h=Hð Þ

Λ1 0 0

0 Λ2 0

0 0 Λ3

2
4

3
5

f1
A1o

0 0

0
f2
A2o

0

0 0 0

2
6664

3
7775 ð6:48Þ

where A1o is the easily measured original area over which the resultant force f1
acts in the undeformed configuration and similarly for A2o. Hence, we have

T1 ¼ σ11h ¼
H

Λ2

f 1
A1o

� �
, T2 ¼ σ22h ¼

H

Λ1

f 2
A2o

� �
; ð6:49Þ

which allows us to relate our theoretically predicted and experimentally deter-

mined principal tensions (sometimes called stress resultants); that is, Eqs. (6.46)

and (6.47) combined with Eq. (6.49) allow us to calculate the values of the

material parameters as demanded in the fourth step of the DEICE procedure.

Although we only have four “unknown” material parameters (c, c1, c2, and c3),

which may imply the need for only two data points (i.e., two sets of σ11 versus

Λ1 and σ22 versus Λ2 data, which provide four equations for our four

unknowns), it is common practice to determine the values of the parameters

in a least-squares sense to avoid the consequences of the inevitable experimen-

tal errors. Because c1, c2, and c3 appear in the exponential, one must use a

nonlinear least-squares method to determine the best-fit values. In principle,

then, we seek to minimize the sum of the squares of the differences between

theoretically predicted and experimentally determined tensions at j¼ 1, 2,. . . n

equilibrium configurations by minimizing the objective function e:

e ¼
Xn

j¼1

Λ1

Λ2

� �
cHeQ c1 Λ2

1 � 1
� �

þ c3 Λ2
2 � 1

� �
 �
� H

Λ2

f 1
A1o

� �� 
2

j

(

þ Λ2

Λ1

� �
cHeQ c2 Λ2

2 � 1
� �

þ c3 Λ2
1 � 1

� �
 �
� H

Λ1

f 2
A2o

� �� 
2

j

) ð6:50Þ

where we note that the effect of thickness H can be removed entirely as a

common factor as expected of this 2-D analysis. Minimization of e is accom-

plished, of course, by solving the simultaneous nonlinear equations given by

∂e

∂c
¼ 0,

∂e

∂c1
¼ 0,

∂e

∂c2
¼ 0,

∂e

∂c3
¼ 0: ð6:51Þ

Commercially available codes accomplish this easily, provided the functional

form of the constitutive equation is well chosen; thus, we need not be concerned

with numerical details here. Of course, once the best-fit values of the parameters
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are calculated, one should complete the DEICE procedure by evaluating the

general predictive capability of the final relation. This is generally accom-

plished by comparing its predictions to data that were not used in the constitu-

tive formulation. Such validations are essential for engendering confidence in

the use of relations determined from relatively simple experiments. Simple

experiments are sought by experimentalists, of course, for they ease perfor-

mance and interpretation, but we must ensure that the associated results hold for

the generally much more complex in vivo situations of interest. For example, if

we determine a Young’s modulus E for cortical bone via a 1-D tension test, we

must verify that this value can be used in an analysis of bending wherein the

moment-curvature equation (5.22) governs the response. Such issues are even

more important in nonlinear relations.

6.4 Stability of Elastomeric Balloons

6.4.1 Biological Motivation

In 1963, C. Dotter forced a catheter retrograde through an occluded iliac artery

in a patient to obtain a routine aortogram. In so doing, flow was improved

through the previously occluded vessel; this marked the inadvertent beginning

of the use of catheters as interventional rather than just diagnostic devices.

Indeed, since that time, millions of balloon angioplasties have been performed

to open atherosclerotic vessels, and based on the associated successes, other

balloon-based procedures have arisen.

For example, Zubkov et al. (1984) were the first to report the use of a balloon

dilatation to treat vasospasm in the cerebral vasculature. Simply put, a vaso-

spasm is a persistent, nonphysiologic constriction of an artery that reduces distal

flow and may thereby lead to ischemia or necrosis. Intracranial vasospasms

occur in 30–70 % of all patients who experience a subarachnoid hemorrhage,

the most common cause of which is the rupture of an intracranial aneurysm.

Although responsible for significant mortality and morbidity, with symptoms

typically presenting 3–15 days after the bleed, vasospasm remains poorly

understood. Nevertheless, because the reduced lumen associated with vaso-

spasm compromises blood flow, Zubkov et al. suggested that a balloon dilata-

tion could restore the lumen to near its normal value; that is, they reasoned that a

controlled injury to the arterial wall could weaken it so that the normal blood

pressure could distend the vessel more. Because the affected cerebral vessels

are not stiffened by atherosclerosis or supported by significant perivascular

tissue, early neuroangioplasty balloons were constructed of latex or silicone

in contrast to the much stiffer polyethylene balloons used in traditional coronary

or peripheral vessel angioplasty (Fig. 6.11). Experience revealed, however, that

the dilatations by the “softer” balloons were difficult to control. In hindsight,
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there are at least two reasons for this, which the design engineer should have

anticipated had he or she been familiar with nonlinear elasticity. First, latex

rubber exhibits a preconditioning-like (cf. Fig. 6.4) softening effect referred to

as the Mullin’s effect. Hence, the pressure–volume behavior of a given balloon

may change from cycle to cycle, thus complicating its control (Fig. 6.12). Many

neurointerventionalists would inflate and deflate a balloon before a procedure to

ensure that the device did not leak, but this was not a well-specified, repeatable

part of the procedure. Second, as we know from common experience, rubber

party balloons can exhibit an instability that leads to a rapid expansion at a

constant pressure, which again would complicate one’s attempt to control the

dilatation. Such an instability is similar to that experienced by columns whereby

the structure changes shape dramatically due to a small change in load. Hence,

let us briefly look at this type of a material/structural instability here.

6.4.2 Theoretical Framework

Although we will illustrate the phenomenon of an inflation instability in an

elastomeric balloon by considering the simple case of a spherical geometry, let

us first consider the more general case of an axisymmetric inflation of a

membrane. Axisymmetry implies that the undeformed and deformed shapes

of the membrane can each be described by generator curves that define the

entire surface when rotated through 2π radians (Fig. 6.13). It can be shown

(Humphrey 2002) that the two governing equilibrium equations for an axisym-

metric membrane are

d

dr
rT1ð Þ ¼ T2, κ1T1 þ κ2T2 ¼ P; ð6:52Þ

FIGURE 6.11 Schema of a

neuroangioplasty balloon,

which is constructed

out of silicone rather

than a polyethylene as

in coronary angioplasty

balloons.

312 6. Some Nonlinear Problems



where T1 and T2 are the principal tensions (Cauchy stress resultants) in the

meridional and circumferential directions, κ1 and κ2 are the principal curvatures

in the deformed configuration, and P> 0 is the transmural (distension) pressure.
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FIGURE 6.12 Pressure–volume behavior of a rubber balloon over a number of inflation/

deflation cycles. Note that, like preconditioning of a soft tissue (cf. Fig. 6.4), the balloon

stress-softens with repeated loading, an effect called the Mullin’s effect. (From Johnson

and Beatty (1995), with permission from Elsevier).

FIGURE 6.13 Pressure–volume geometry for an axisymmetrically inflated membrane.

By axisymmetric, we mean that a generator curve can be revolved about an axis to yield

the surface of the membrane. Axisymmetry imposes certain restrictions on the material

properties and applied loads.
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The second of these relations is known as Laplace’s equation, which is widely

used (sometimes misused) in medicine and surgery. Moreover, it can be shown

from differential geometry that

d

dr
rκ2ð Þ ¼ κ1: ð6:53Þ

Our goal then is to solve for the tensions T1 and T2 in terms of the applied load

and measures of the (deformed) geometry [cf. Eq. (3.59)]. Given two equilib-

rium equations in terms of our two unknown tensions, note that it is often easiest

to reduce one of the equations to contain only one of the unknowns. Toward this

end, let us substitute for T2 and κ1 from Eqs. (6.52) and (6.53), in Laplace’s

equation such that

κ1T1 þ κ2T2 ¼ P! d

dr
rκ2ð ÞT1 þ κ2

d

dr
rT1ð Þ ¼ P: ð6:54Þ

Additionally, note that (check it) this equation can be rewritten as

1

r

d

dr
rκ2rT1ð Þ ¼ P; ð6:55Þ

which, in turn, can be integrated as (see Appendix 8 of Chap. 8)

ð
d

dr
rκ2rT1ð Þdr ¼

ð
Prdr: ð6:56Þ

If P is assumed to be constant at each equilibrium state, we thus obtain

r2κ2T1 ¼ P
r2

2
þ c1 ! T1 ¼

P

2κ2
þ c1

r2κ2
; ð6:57Þ

which must be valid for all r, including r¼ 0; this requirement implies that

c1¼ 0, which gives us our result for T1 in terms of the applied load and measure

of the geometry, namely P and κ2. Substituting back into Laplace’s equation, we

then find the desired relation for T2 as well. The final results are:

T1 ¼
P

2κ2
, T2 ¼

P

κ2
1� κ1

2κ2

� �
: ð6:58Þ

In Humphrey (2002), it is shown that these equations are fundamental to

designing and interpreting inflation tests on axisymmetric membranes as well as

to analyzing the stresses in such membranes, such as intracranial saccular aneu-

rysms (cf. Fig. 3.18). Here, however, let us consider but one special case—the

inflation of a spherical membrane.
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6.4.3 Inflation of a Neuroangioplasty Balloon

The two principal curvatures in an inflated spherical membrane (i.e., spherical

in its undeformed and deformed configurations) are equal and simply given by

1 over the radius of curvature, which in this special case equals the radius of the

deformed sphere a. Hence,

κ1 ¼ κ2 ¼
1

a
ð6:59Þ

and, therefore,

T1 ¼
Pa

2
and T2 ¼ Pa 1� a

2a

� �
¼ Pa

2
ð6:60Þ

whereby we see that the tension is uniform and equibiaxial (i.e., T1¼ T2
independent of location r, θ, ϕ) in the sphere (which must be isotropic

in-plane for a sphere to inflate into a sphere) and given by

T ¼ Pa

2
: ð6:61Þ

To compute the Cauchy stress from this tension (i.e., Cauchy stress resultant

T has units of force per length), we simply divide by the deformed thickness h to

obtain

σ ¼ T

h
¼ Pa

2h
; ð6:62Þ

which we recognize to be the same result as that obtained in Chap. 3 for the

inflation of a thin-walled sphere [Eq. (3.58)], as it should.

One important observation from this derivation, however, is that a is, strictly

speaking, not the deformed radius; rather it is the deformed radius of curvature,

curvature being the controlling geometric feature of axisymmetric membranes

[cf. Eq. (6.58)]. Indeed, this simple realization may explain, in part, a long-

standing controversy in neurosurgery. If σffiPa/2h in a saccular aneurysm and

if the mean blood pressure (~110 mmHg) and wall thickness (~100 μm) are

similar from patient to patient, one would expect that the larger-diameter

lesions would be much more susceptible to rupture. Although larger lesions

are often more lethal, many smaller lesions rupture, whereas many larger

lesions do not. It is suggested in Humphrey (2002) that this enigma may be

due, in part, to the focusing on size rather than shape; that is, a “large” lesion can

have a small radius of curvature, whereas a “small” lesion may have a large

radius of curvature, curvature being the controlling factor (Fig. 6.14).
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Again, therefore, we are well advised to remember how our governing

equations are derived so that we can interpret their implications.

That said, let us return to the problem at hand—the possible instability of a

neuroangioplasty balloon, which we idealize as a sphere. It can be shown that

the “simplest” descriptor of the behavior of a rubberlike material over moderate

stretches (up to ~1.3–1.4) is the so-called neo-Hookean relation. For a mem-

brane, it can be written as (Humphrey 2002)

W ¼ C 2E11 þ 2E22 þ
1

1þ 2E11 þ 2E22 þ 4E11E22

� 1

� �
; ð6:63Þ

where C is a material parameter having units of stress and E11 and E22 are the

principal components of theGreen strain [cf. Eq. (6.41) for theFungmaterial].Now,

for the inflation of a thin-walled sphere, the deformation gradient can be written as

F½ 	 ¼
Λ1 0 0

0 Λ2 0

0 0 Λ3

2
4

3
5; ð6:64Þ

where Λ1¼ 2πa/2πA¼Λ2 are the principal stretches in the meridional and

circumferential directions, with a and A the deformed and undeformed radii,

respectively, and Λ3¼ h/H is the principal stretch in the thickness direction,

with h and H the deformed and undeformed thicknesses, respectively. Hence,

let Λ1¼Λ2¼ a/A¼Λ for convenience. From Eqs. (6.23) and (6.24), therefore,

we have

σ½ 	 ¼ 1

det F½ 	 F½ 	
∂W

∂E

� 

F½ 	T ; ð6:65Þ

FIGURE 6.14 Radius of curvature for two aneurysms revealing that a larger lesion may

have a smaller radius of curvature. Contrary to popular clinical belief, it is curvature, not

size, that likely controls the associated biomechanics.
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where, for the neo-Hookean material behavior,

∂W

∂E11

¼ C 2þ 0þ 1þ 2E11 þ 2E22 þ 4E11E22ð Þ 0ð Þ � 1 2þ 4E22ð Þ
1þ 2E11 þ 2E22 þ 4E11E22ð Þ2

 !
:

ð6:66Þ

For the [F] given here, Eq. (6.7) reveals that

E11 ¼
1

2
Λ2
1 � 1

� �
¼ 1

2
Λ2 � 1
� �

ð6:67Þ

and similarly for E22. Hence, for the spherical deformation,

∂W

∂E11
E11¼E22¼1

2
Λ2�1ð Þ

��� ¼C 2� 2þ4 1
2

� �
Λ2�1
� �

1þ4 1
2

� �
Λ2�1
� �

þ4 1
4

� �
Λ2�1
� �2h i2

0
B@

1
CA

¼ 2C 1� 1þΛ2�1

1þ2Λ2�2þΛ4�2Λ2þ1
� �2

 !

ð6:68Þ

or

∂W

∂E11
E11¼E22¼1

2
Λ2�1ð Þ

��� ¼ 2C 1� Λ2

Λ8

� �
¼ 2C 1� 1

Λ6

� �
ð6:69Þ

and similarly for ∂W/∂E22. Hence,

σ½ 	 ¼ 1

Λ2 h=Hð Þ

Λ 0 0

0 Λ 0

0 0
h

H

2
64

3
75

2C 1� 1

Λ6

� �
0 0

0 2C 1� 1

Λ6

� �
0

0 0 0

2
66664

3
77775

Λ 0 0

0 Λ 0

0 0
h

H

2
64

3
75

ð6:70Þ

from which we see that

σ11 ¼
2CH

h
1� 1

Λ6

� �
¼ σ22 ð6:71Þ
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and σ33¼ 0, or in terms of the principal tensions, the nonzero values are

T1 ¼ hσ11 ¼ 2CH 1� 1

Λ6

� �
¼ T2 � T: ð6:72Þ

Finally, appealing to equilibrium, Eq. (6.60), we have

T ¼ Pa

2
! P ¼ 2T

a
¼ 2

ΛA
2CH 1� 1

Λ6

� �� 

; ð6:73Þ

with a¼ΛA, or

P Λð Þ ¼ 4CH

A

1

Λ
� 1

Λ7

� �
: ð6:74Þ

Plotting the distension pressure as a function of stretch Λ (i.e., increase in

normalized radius a/A) reveals a local maximum [i.e., a transition from a stable

loading path to an unstable path, the latter being characterized by a rapid

increase in size even in the presence of a diminishing pressure (Fig. 6.15)].

Question: At what values of Λ does this instability occur? To answer this, recall

from calculus that we find local extrema by taking the first derivative, namely

FIGURE 6.15 Pressure–stretch response of spherical rubber (party) balloons with a local

maximum revealing a limit point instability (i.e., a transition from a stable to an unstable

loading path). Such instabilities depend on the value of one of the material parameters,

Γ, that describes the properties of a Mooney-Rivlin rubber; Γ¼ 0 for the neo-Hookean

case (with c1¼C here). From Humphrey (2002), with permission.
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dP

dΛ
¼ 0 ¼ 4CH

A
� 1

Λ2
þ 7

Λ8

� �
! Λ6 ¼ 7: ð6:75Þ

Hence, if a near-spherical neuroangioplasty balloon exhibits a neo-Hookean

behavior, it is expected to become unstable when Λ¼ 71/6� 1.38309. . ., where

Λ¼ a/A. This phenomenon explains, in part, why neuroradiologists had trouble

controlling the expansion of the neuroangioplasty balloon based on pressure2 and

reveals yet again the importance of a careful analysis in the design and use of a

medical device.Whereas the present analysis holds approximately for the inflation

of an isolated balloon, its inflation within a vessel will change its geometry and

thus complicate the analysis. With an appropriate theoretical framework and a

reasonable descriptor of the material properties, however, the more complex

analysis for nonspherical geometries can be conducted with the aid of a computer.

The take-home message here is simply that we must often appreciate and employ

the general methods of nonlinear continuum mechanics in the design of many

medical devices and, furthermore, in troubleshooting clinical complications.

Observation 6.2. The eye is a remarkable organ; it collects and focuses incom-

ing light on the retina, which, in turn, serves to convert the light into electrical

signals that the brain can interpret in bold and vibrant hues of the rainbow. The

eye consists of an outer shell, five-sixths of which is the collagenous, opaque

sclera and the remainder is the collagenous, transparent cornea. Contained

within the eye is the lens, which helps to focus the light on the retina and

divides the interior into two chambers: The anterior chamber contains the

aqueous humor and the posterior chamber contains the vitreous humor. The

iris serves as an aperture for the lens to control the amount of incoming light.

The lens is held in place by a thin membrane, the lens capsule, which consists

primarily of type IV collagen and allows the curvature of the lens to be changed

via contraction and relaxation of the ciliary process. Finally, the posteriorly

located optic nerve conducts the signals from the eye to the brain. See Fig. 6.16.

Mechanics plays many roles in ophthalmology. Glaucoma is a disease char-

acterized by an increase in intraocular pressure; it causes pathological changes

in the optical disk and concomitant defects in the field of vision. Diagnosis and

treatment of this pressure-induced disease requires an understanding of the

mechanics. A cataract is a disease of the lens characterized by an opacification

that blurs vision and, in extreme cases, causes blindness. Surgical correction

involves the removal and replacement of the lens with an intraocular device.

Performed over 1.2 million times a year, cataract surgery is currently the most

2 Whereas pressure is not useful for feedback control, volume is. We revisit this
problem in Sect. 10.3 of Chap. 10 in terms of a saline infused balloon.
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commonly performed surgery in the United States. The cornea is nearly 18 mm

in diameter, less than 1 mm thick in the middle, and has radii of curvature of

~7.8 mm and 6.8 mm at its outer and inner surfaces, respectively. The lens

power of the eye is achieved primarily by the curvature of the cornea and

secondarily by the lens. In recent years, surgical alteration of the curvature of

the cornea has become a popular alternative to the use of eyeglasses or contact

lens. This is accomplished by introducing a series of incisions to relieve some

of the corneal stress (e.g., radial keratotomy) or by locally shrinking portions

of the cornea via thermal denaturation (laser thermokeratoplasty) of the type I

collagen in the cornea; in either case, the net effect is that the tension in

the pressurized cornea is altered and it thereby changes its curvature and

thus refractive power. A rigorous biomechanical analysis of this procedure,

for purposes of surgical planning, is beyond the scope of an introductory

textbook because of the nonlinear material behavior of the cornea, the need

FIGURE 6.16 Schema of the eye. Note, in particular, that the sclera, cornea, and lens

capsule have each been assumed to have negligible bending stiffness (i.e., to behave

mechanically as membranes) in various biomechanical analyses. One must be cautious,

however, in adopting assumptions from the literature. The cornea, for example, has

significant bending stiffness, which is likely fundamental to any analysis of clinical

procedures such as radial keratotomy or the more popular LASIK surgery. The lens

capsule, on the other hand, has much less bending stiffness and may be well described as

a membrane in some applications. We are reminded, therefore, that constitutive relations

describe the behavior of a material under specified conditions, not the material itself. We

must always be mindful of the specific application, particularly in biomechanics.
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for fracture-mechanics-type analyses to model the incisions, and the complex

geometry. Of course, not only do we need to predict the change in the config-

uration of the cornea (e.g., thickness and curvature) immediately after the

surgery, we must account for changes due to healing and adaptation, the latter

of which will be stimulated by changes in the stress field experienced by the

cells within the cornea. The interested reader is thus encouraged to research the

different applications of mechanics in opthalmology.

Here, however, let us briefly consider the lens capsule. This tissue consists

primarily of type IV collagen; it is very thin (~10–20 μm for the anterior lens

capsule and 3–4 μm for the posterior lens capsule in the human) and contains a

monolayer of epithelial cells on its anterior portion. Clearly, the stress field

within the lens capsule is altered due to the surgical removal of the lens and

replacement with an intraocular device, which tends to be much smaller than the

native lens. One complication of cataract surgery is a secondary opacification of

the posterior lens capsule, which often requires a revision, corrective procedure

(e.g., thermal ablation). It is thought that this “secondary cataract” is due, in

part, to the migration of epithelial cells to the central region of the posterior lens

capsule and their production of excessive matrix material. Moreover, it is

thought that this altered migration and synthetic activity results from the

surgical perturbation of the stress or strain field in the native lens capsule.

In other words, mechanotransduction mechanisms likely alter the gene expres-

sion by the epithelial cells. It is important, therefore, to quantify the native stress

and strain fields in the lens capsule and how they are altered by cataract surgery.

Indeed, one would hope that biomechanical analyses could identify designs for

the intraocular devices that do not adversely perturb the mechanical environ-

ment of the epithelial cells. As a first approximation, one could think of the

lens capsule as two hemiellipsoids that are loaded by a transmural pressure

(difference in radial stress boundary conditions due to the lens on the inner

surface of the lens capsule and the pressure in the aqueous or vitreous humor).

Notwithstanding the tractions due to the ciliary process, Eqs. (6.52) and (6.53)

could thus be used, to a first approximation, to estimate the membrane stresses

in the native configuration. Hence, we see another application of the equations

of membrane mechanics.

6.5 Residual Stress and Arteries

6.5.1 Biological Motivation

Hypertension, atherosclerosis, aneurysms, and stroke—these and other vascular

diseases continue to be leading causes of mortality and morbidity. Although

manifested differently in each case, the fundamental mechanisms by which

these diseases begin and then progress relate to basic cellular functions: cell
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migration, replication, and apoptosis; the production of vasoactive, growth

regulatory, inflammatory and degratory molecules; and the synthesis and

organization of constituents of the extracellular matrix. As noted in Chap. 1,

many of these cellular functions are influenced, via mechanotransduction

mechanisms, by changes in the local mechanical environment. For example,

an increased blood pressure nonuniformly increases intramural wall stress,

which, in turn, increases cell proliferation and synthesis of the matrix in

hypertension, first in the inner portion of the wall but eventually throughout

the wall. Conversely, decreased blood flow may lead to decreases in wall shear

stress, which, in turn, promote the production of adhesion molecules by the

endothelium and the attendant adhesion of monocytes to the endothelium; these

monocytes subsequently migrate into the subintimal space, transform into

macrophages, and contribute to atherogenesis. There is a need, therefore, to

understand arterial mechanics both in health and disease. Whereas a more

detailed discussion can be found in Humphrey (2002), here we consider the

first step, a simple analysis of wall stress in blood vessels.

First, however, let us briefly review some aspects of the structure of arteries.

Despite the wide variety of arteries in the body—from the aorta to the renal

arteries, coronary arteries, cerebral arteries, and so on—each of these vessels

similarly consist of 3 concentric layers: the tunica intima, tunica media, and

tunica adventitia (Fig. 6.17). Indeed, all blood vessels have an intima, which

consists of a monolayer of endothelial cells and an underlying basal lamina

composed primarily of mesh-like type IV collagen and the adhesion molecules

fibronectin and laminin. In addition to being a smooth, nonthrombogenic

interface between the blood and the contents of the vascular wall, the endothe-

lium is biologically active. In response to chemical and mechanical stimuli,

endothelial cells produce various vasoactive molecules (which dilate or con-

strict the vessel), growth factors (which promote cell replication or the synthesis

of proteins), and factors that regulate the clotting process (e.g., heparan sulfate

and the vascular cell adhesion molecule, VCAM-1). Moreover, the endothelium

can modify blood-borne substances (e.g., lipids) for transport into the wall,

which thereby play an important role in atherosclerosis. In contrast, the medial

layer consists primarily of smooth muscle cells embedded in a plexus of elastin,

various types of collagen (including types I, III, and V), and proteoglycans. In

general, the closer these vessels are to the heart, the more elastin and the farther

away the more smooth muscle. Regardless, wall thickness tends to increase so

as to maintain the mean circumferential wall stress on the order of ~150 kPa.

Whereas smooth muscle is primarily responsible for synthesizing the extracel-

lular matrix proteins during development, it endows the mature vessel with an

ability to constrict or dilate—functions that regulate blood flow locally. Most

smooth muscle cells are oriented in the circumferential direction, although in

some vessels, they are oriented helically or in the axial direction. Note, too, that

smooth muscle hypertrophy (increase in size), hyperplasia (increase in number),
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apoptosis (cell suicide), and migration play especially important roles in

diseases such as aneurysms, atherosclerosis, and hypertension. Loss of matrix

proteins, particularly elastin, similarly plays an essential role in the formation of

aneurysms or vascular dissections. Finally, large vessels have an adventitial

layer that connects with the perivascular tissue. The adventitia consists primar-

ily of fibroblasts and axially oriented type I collagen, but also includes admixed

elastic fibers, nerves and its own small vasculature, the vasa vasorum.

The fibroblasts are responsible for regulating the matrix, particularly the colla-

gen. It is thought that the adventitia serves, in part, as a protective sheath that

prevents overdistension of the media (like all muscle, smooth muscle contracts

maximally at a certain length, above and below which the contractions are less

forceful). In summary, most arteries appear to have the same structural motif:

FIGURE 6.17 The three primary layers of the arterial wall: The inner layer, or intima,

consists primarily of a monolayer of endothelial cells on a basement membrane; the

middle layer, or media, consists largely of smooth muscle with surrounding elastin,

collagen, and proteoglycans; the outer layer, or adventitia, consists primarily of collagen

with abundant fibroblasts, nerves, and, in some vessels, a small vascular network called

the vasa vasorum. Vascular development is seen to begin with endothelial cells (EC) on

a basement layer (BL), with smooth muscle cells (SMC) attracted to the abluminal side

of the BL, where they replicate and produce significant extracellular matrix (ECM). The

adventitia, with abundant fibroblasts (FB), is added last. IEL and EEL denote the

internal elastic lamina and the external elastic lamina, respectively, which demarcate

the media in most large vessels.
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a central parenchymal layer delimited by biologically or structurally important

“membranes,” the intima and adventitia. Although a detailed understanding of

wall mechanics will require detailed modeling of the different properties of

these layers and, indeed, the individual constituents within a layer, let us now

consider a simple introduction to quantification.

6.5.2 Theoretical Framework

Like many other soft tissues, normal arteries often exhibit a nonlinear,

pseudoelastic, heterogeneous, and anisotropic behavior over large physiologic

strains. Moreover, they tend to behave incompressibly in many cases. It can be

shown that in the case of incompressibility, the general constitutive equation

embodied in Eq. (6.23) must be modified. For example, for incompressible

behavior, we have

σ½ 	 ¼ � p I½ 	 þ F½ 	 ∂W
∂E

� 

F½ 	T; ð6:76Þ

where p is a scalar, pressure-like quantity (actually a Lagrange multiplier) that

enforces the incompressibility constraint. That the –p[I] contribution is needed

is seen easily by noting that the second term on the right-hand side of Eq. (6.76)

represents the stress due to deformation, which is zero in the absence of a

deformation.

Imagine then a cube of incompressible material subjected to a hydrostatic

pressure P (Fig. 6.18). Clearly, σ11¼�P, σ22¼�P, and σ33¼�P, with all

shear stresses zero with respect to (x, y, z)� (1, 2, 3), even though there is no

deformation because of incompressibility. Hence, in this case, and this case

alone, the Lagrange multiplier p equals the hydrostatic pressure P and

Eq. (6.76) correctly describes the state of stress in the absence of a deformation.

For a formal derivation of Eq. (6.76), see Humphrey (2002).

FIGURE 6.18 A small

cube of incompressible

material subjected to

a hydrostatic pressure

experiences stress but

not strain. Indeed, the

components of stress

(equal and opposite

the pressure) are the

same regardless of

the coordinate system,

(cf. Exercise 2.9).
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Now, let us consider the deformation of an artery. Although arteries can

have complex geometries (e.g., tapering and bifurcating), we consider here the

simplest case: a short, straight, circular, excised segment of uniform thickness.

Such samples are commonly tested in the laboratory. Moreover, to simulate

in vivo deformations, let us consider a uniform axial extension and inflation via

a constant axial load L and pressure P. If we label a generic point in the cross

section as (ρ, ϑ, ζ) in an unloaded, excised configuration and (r, θ, z) in an

extended and inflated configuration, we can imagine that such a point is

extended uniformly by an amount z¼ λζ, similar to that in each direction in a

biaxial test. Moreover, we might imagine that the deformation is axisymmetric,

which is to say, each point may move out radially or axially, but it will maintain

its angular position; that is, let θ¼ϑ Finally, we could relate r to ρ similar to the

axial motion (through a constant stretch ratio), but careful consideration sug-

gests that a point on the inner (intimal) surface may displace more radially than

a point on the outer (adventitial) surface. Thus, let r ¼ ef ρð Þ; in general. It can be
shown that the deformation gradient [F] associated with this assumed motion,

r ¼ ef ρð Þ, θ ¼ ϑ, z ¼ λζ; ð6:77Þ

is calculated easily and so too the associated stress [σ] given a specific form of

W. Indeed, there are many reports in the literature from the mid-1960s to the

mid-1980s in which this was done. Briefly, these analyses suggested that the

circumferential stress σθθ is comparatively much higher in the inner wall than in

the outer wall (cf. thick-walled inflation solution in Chap. 3). Indeed, some

investigators suggested that this was one cause of atherosclerosis, a disease of

the inner wall. In 1983, however, it was noted that the unloaded, excised

configuration is not stress-free. In particular, if one introduces a radial cut in

such an arterial segment, it “springs open” into a sector. Fung suggested that this

revealed the presence of a residual stress in arteries that was likely due to

differential growth during development. Indeed, Skalak had suggested, in 1981,

the possibility of residual stresses due to growth and remodeling. It was Fung

and colleagues, however, who demonstrated that vascular adaptations via

growth and remodeling processes, such as in hypertension, actually alter this

residual stress field. One of the important consequences of residual stress is that

it appears to homogenize the transmural distribution of stresses within the

arterial wall. If this is true, this would suggest that cells at different locations

within the wall tend to experience similar stresses under normal conditions.

Conversely, altered conditions may render the transmural stress field less

homogeneous and thus induce growth and remodeling processes that are

different at different spatial locations but that together seek to restore overall

normalcy. Quantification of soft tissue growth and remodeling is thus a very

important current area of research. Here, however, let us return to the question

of wall stress in the normal wall.
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Figure 6.19 shows two configurations that occur naturally in an experiment

on an artery: One is the unloaded, excised cylindrical segment and the other is a

fictitious segment associated with the free-body diagram from the in vivo state.

Figure 6.20 shows an additional radially cut configuration for which we label

our previous generic material point via (R, Θ, Z). It can be shown that the

motion from (R, Θ, Z) to (ρ, ϑ, ζ) can be approximated by

ρ ¼ g Rð Þ, ϑ ¼ π

Θ0

Θ, ζ ¼ δZ; ð6:78Þ

where Θ0 is a measure of how much the arterial segment springs open when cut

radially and δ is a possible axial extension associated with this cutting process.

From Eqs. (6.78) and (6.77), therefore, we see that

r ¼ ef g Rð Þð Þ, θ ¼ π

Θ0

Θ, z ¼ λδZ; ð6:79Þ

or

r ¼ f Rð Þ, θ ¼ π

Θ0

Θ, z ¼ ΛZ; ð6:80Þ

where Λ� λδ. It can be shown (Humphrey 2002) that components of the

deformation gradient [F], relative to cylindrical coordinates, can be computed

in general via

F½ 	 ¼

∂r

∂R

1

R

∂r

∂Θ

∂r

∂Z

r
∂θ

∂R

r

R

∂θ

∂Θ
r
∂θ

∂Z
∂z

∂R

1

R

∂z

∂Θ

∂z

∂Z

2
666664

3
777775
: ð6:81Þ

FIGURE 6.19 A segment

of an artery that is

removed from the body

(left) and the same

segment isolated ficti-

tiously in the body via

a free-body diagram.

326 6. Some Nonlinear Problems



Herein, the derivation of the form for [F] is not critical; rather, we will focus on

its use. Nonetheless, note that each term is a nondimensional ratio of a current

length to an original length. This is the reason for the presence of the r and R in

the circumferential terms—a radius times an angle gives an arc length having

units of length rather than radians.

From Eqs. (6.80) and (6.81), therefore, we have for our residually stressed

artery,

FIGURE 6.20 Three configurations of importance in arterial mechanics: a radially cut

unloaded ring, which opens (panel (c)), an intact but unloaded ring (panel (b)), and an

intact and loaded segment (panel (a)). The internal elastic lamina is seen to be waviest in

the intact, unloaded configuration, consistent with the presence of compressive residual

stresses in the inner wall. (From Fung and Liu (1992), reprinted with permission from

the American Physiological Society.) The schema below shows coordinate systems for

each configuration.
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F½ 	 ¼

∂ f

∂R
0 0

0
rπ

RΘ0

0

0 0 Λ

2
6664

3
7775: ð6:82Þ

Recalling that incompressibility requires that det[F]¼ 1, we have

∂ f

∂R

rπ

RΘ0

� �
Λ ¼ 1! r

∂r

∂R
¼ Θ0

πΛ
R; ð6:83Þ

where we let ∂f/∂R�∂r/∂R because r � f. This equation can be integrated,

ð r

ri

r
∂r

∂R
dR ¼

ð R

Ri

Θ0

πΛ
RdR; ð6:84Þ

to yield [because dr¼ (∂r/∂R)dR by the chain rule]

r2 � r2i ¼
Θ0

πΛ
R2 � R2

i

� �
8R 2 Ri;Ra½ 	; ð6:85Þ

where the subscripts i and a denote intimal and adventitial, respectively. Note,

therefore, that incompressibility determines the previously unknown form of

r¼ f(R), which is seen to be quadratic in R. Now, the Green strains are

determined easily from Eq. (6.7):

E½ 	 ¼ 1

2

Θ0R
πΛr

� �2 � 1 0 0

0 rπ
RΘ0

� �2
� 1 0

0 0 Λ2 � 1

2
664

3
775; ð6:86Þ

from which we see that ERR�E11 and EΘΘ�E22 are functions of radius,

whereas Ezz�E33, the axial strain, is not.

Fung’s orthotropic exponential pseudostrain-energy function W [Eqs. (6.25)

and (6.26)] has been shown to describe some arterial behaviors; hence, we will

use it here for illustrative purposes. Note, therefore, that in cylindricals (and for

principal strains), it is

W ¼ 1

2
c eQ � 1
� �

; ð6:87Þ
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with

Q ¼ c1E
2
RR þ c2E

2
ΘΘ þ c3E

2
ZZ þ 2c4ERREΘΘ þ 2c5EΘΘEZZ þ 2c6EZZERR:

ð6:88Þ

Hence, our nonzero components of Cauchy stress are, from Eq. (6.76),

σrr ¼ � pþ Θ0R

πΛr

� �2
∂W

∂ERR

; ð6:89Þ

σθθ ¼ �pþ rπ

RΘ0

� �2
∂W

∂EΘΘ

; ð6:90Þ

σZZ ¼ � pþ Λð Þ2 ∂W

∂EZZ

; ð6:91Þ

where the requisite partial derivatives are computed easily from Eqs. (6.87) and

(6.88). Now, let us turn to the equilibrium equations. First, however, note that

the deformation depends only on the radial direction. In the absence of body

forces, Eqs. (3.11)–(3.13) (equilibrium in cylindrical coordinates) reduce to

dσrr

dr
þ σrr � σθθ

r
¼ 0, � ∂ p

∂θ
¼ 0, � ∂ p

∂z
¼ 0; ð6:92Þ

the last two of which reveal that the Lagrange multiplier p, like the deformation,

depends on r at most. Our only nontrivial equilibrium equation thus becomes

dσrr

dr
¼ σθθ � σrr

r
; ð6:93Þ

which can be integrated as

ð
dσrr

dr
dr ¼

ð
σθθ � σrr

r

� �
dr: ð6:94Þ

Depending on our prescription of the integration limits, this equation allows us

to determine either the transmural pressure P or the Lagrange multiplier. For the

first, consider

ðra

ri

dσrr

dr
dr ¼ σrr rað Þ � σrr rið Þ ¼

ðra

ri

σθθ � σrr

r

� �
dr ð6:95Þ
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or

Pi � Pa � P ¼
ð

σθθ � σrr

r

� �
dr; ð6:96Þ

given stress boundary conditions that σrr(ri)¼�Pi and σrr(ra)¼�Pa, the

intimal and adventitial pressure, respectively. Conversely, consider

ð r

ri

dσrr

dr
dr ¼ σrr rð Þ � σrr rið Þ ¼

ð r

ri

σθθ � σrr

r

� �
dr ð6:97Þ

whereby σrr is given by Eq. (6.89) and thus

� p rð Þ þ Θ0R

πΛr

� �2
∂W

∂ERR

þ Pi ¼
ð r

ri

σθθ � σrr

r

� �
dr ð6:98Þ

allows one to determine p as a function of r. Finally, note that in either case, for

the Fung exponential, Eqs. (6.89) and (6.90) allow us to compute

ð
σθθ � σrr

r

� �
dr ¼

ð
rπ

RΘ0

� �2
∂W

∂EΘΘ

� Θ0R

πΛr

� �2
∂W

∂ERR

" #
dr

r
; ð6:99Þ

where

∂W

∂EΘΘ

¼ ceQ c2EΘΘ þ c4ERR þ c5EZZð Þ; ð6:100Þ

∂W

∂ERR

¼ ceQ c1ERR þ c4EΘΘ þ c6EZZð Þ ð6:101Þ

from Eqs. (6.87) and (6.88), with

ERR ¼
1

2

Θ0R

πΛr

� �2

� 1

 !
, EΘΘ ¼

1

2

rπ

RΘ0

� �2

� 1

 !
,

EZZ ¼
1

2
Λ2 � 1
� �

:

ð6:102Þ

Hence, if we know the material properties (c, c1,. . ., c6), the residual stress

related opening angle Θ0 and extension δ, the radially cut dimensions Ri and Ra,

the stretch λ and either ri, or P, then we can solve for the stresses. The associated

integrals are obviously complex but can be evaluated easily via numerical

methods such as Simpson’s rule or more sophisticated methods such as the

Romberg method or a Gauss quadrature.
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6.5.3 Illustrative Results

Panel a in Fig. 6.21 shows predicted transmural stresses for the case in which we

ignore the residual stress (i.e., assume Θ0¼ π and δ¼ 1) but let λ¼ 1.8 and

P¼ 120 mmHg. Note the steep gradients in stress, which, as noted earlier,

FIGURE 6.21 Panel (a): Predicted transmural distribution of stresses (solid line is

circumferential stress and dashed line is axial stress) when one neglects the effects of

residual stress and smooth muscle activation. Panel (b): Computed residual stresses

alone. Note the different orders of magnitude in the stresses in the two panels and the

compression in the inner wall in Panel (b) consistent with the histology in Figure 6.20.

The following values of the parameters were used in the computations: c¼ 22.4 kPa,

c1¼ 0.0499, c2¼ 1.0672, c3¼ 0.4775, c4¼ 0.0042, c5¼ 0.0903, and c6¼ 0.0585,

whereas, Ri¼ 3.92 mm, Ra¼ 4.52 mm, δ¼ 1.0177, and λ¼ 1.767.
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suggested to some that atherosclerosis occurs because of large intimal stresses.

Panel a in Fig. 6.22 shows, however, that these predicted stresses are much

closer to a homogenous distribution if one includes the residual stress, here with

Θ0¼ 71.4
 and δ¼ 1.017695 (Humphrey 2002). One of the remarkable things

revealed by this (simple) nonlinear analysis is that inclusion of residual stress

FIGURE 6.22 Panel (a): Predicted transmural distribution of stress when residual stress is

accounted for; in comparison to Panel (a) in Fig. 6.21, inclusion of the residual stress

tends to reduce and homogenize the stresses. Panel (b): Despite the presence of residual

stress, high blood pressure (acute hypertension) would tend to increase the stresses and

their transmural gradients in the absence of any functional adaptation. Such deviations

from normal values could set into motion various growth and remodeling processes.
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reduces the computed stresses many fold despite the residual stresses [based on

deformations from (R, Θ, Z) to (ρ, ϑ, ζ) only] actually being very small in

magnitude, ~3 kPa (panel b in Fig. 6.21). This dramatic effect is due solely to

the material and kinematic nonlinearities, which would simply be missed with a

linear analysis [cf. Eq. (3.80)]. Moreover, it is clear that the principle of

superposition of Sect. 5.5 of Chap. 5 does not hold in this case; subtracting a

circumferential residual stress of ~3 kPa from those in Fig. 6.21a clearly does

not yield the computed values in Fig. 6.22a. The full nonlinear analysis is thus

essential here as in most problems in soft tissue biomechanics and likely cell

mechanics.

In conclusion, we emphasize that this analysis was presented simply to

illustrate some of the unique aspects of a nonlinear stress analysis and to

provide a glimpse into methods used in cardiovascular mechanics and other

areas of soft tissue mechanics. This presentation—even for a straight uniform

segment—was simplified, however, for we did not consider the heterogeneity of

the composition of the wall (i.e., different behavior of the media and adventitia)

or the dynamical loading due to pulsatile flow. These and other effects are

addressed in Humphrey (2002). Nevertheless, even in that text, the analysis is

simplified. There is much more to learn about the mechanics of blood vessels,

their basic constitutive relations, especially for smooth muscle, their variations

in properties along the length of a vessel or through a bifurcation, their changes

due to growth and remodeling, and so on. To advance our understanding in

these areas, we must not only apply mechanics, but we must also develop and

extend it. The challenge is great, but so is the need.

Observation 6.3. Amongst the many proteins, glycoproteins, and glycosamino-

glycans that contribute to the structural integrity of arteries, elastic fibers are

unique. Briefly, functional fibers are produced primarily during the perinatal

period and they consist of the protein elastin (~90 %) and associated glycopro-

teins (e.g., fibrillins and fibulins). Unique desmosine and isodesmosine based

cross-links render elastic fibers the most biologically and thermally stable

structural constituent within the arterial wall. In humans, for example, the

half-life of elastic fibers under normal conditions is 50+ years.

Elastic fibers tend to be organized into fenestrated sheets, or laminae, within the

arterial wall. Most muscular arteries (e.g., coronary or renal arteries, but not

cerebral arteries) have two prominent elastic layers, the internal elastic lamina

(IEL) and external elastic lamina (EEL), which demarcate the intimal and medial

layers and the medial and adventitial layers, respectively (cf. Fig. 6.17). Elastic

arteries, which are found closer to the heart (e.g., the aorta), have many concentric

laminae, each of which separates layers of smooth muscle cells, collagens, and

glycosaminoglycans. Multiple genetic mutations lead to defects in the elastic

fibers, which in turn compromise the function or structural integrity of the wall.
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Williams Syndrome results from a defect in the gene coding elastin; these patients

tend to present with supravalvular aortic stenosis. In contrast, Marfan Syndrome

results from a defect in the gene coding fibrillin-1; these patients tend to develop

thoracic aortic aneurysms and dissections, often at a young age. It is interesting,

therefore, that defects that ultimately affect the same constituent of the extracel-

lularmatrix, elastic fibers, can give rise either to a narrowing of an artery (stenosis)

or a dilatation (aneurysm). To understand such different manifestations, one must

understand both the biology and the mechanics.

It appears, for example, that properly cross-linked elastin in development

provides important biological cues to adjacent smooth muscle cells to be quies-

cent and contractile. Without these cues, these cells may proliferate and migrate

inward, hence resulting in a focal or diffuse narrowing. In contrast, association of

fibrillin-1 with elastin appears to contribute significantly to the long-term

mechanical, and perhaps biological, stability of elastic fibers. In cases of reduced

or non-functional fibrillin-1, arterial elastic fibers appear to be more susceptible

to both fatigue-induced mechanical damage (recalling that the human heart

beats, on average, ~31.5 million cycles per year) and proteolytic degradation.

It is also important to note that fibrillin-1 not only has an important mechanical

role, it also serves an important biological role by sequestering latent

transforming growth factor—beta (TGF-β) within the extracellular matrix.

Lack of sequestration can lead to an increased activity of TGF-β and a host of

downstream consequences, including altered cellular behaviors and matrix

turnover. There is, therefore, a pressing need to understand both the biological

and mechanical implications of genetic mutations of extracellular matrix, par-

ticularly in tissues and organs that serve a mechanical role. See the excellent

review article by Wagenseil and Mecham (2012) for more on arterial elastin.

6.6 A Role of Vascular Smooth Muscle

6.6.1 Muscle Basics

Although we only considered the passive (i.e., noncontracting) mechanical

behavior of arteries in Sect. 6.5, the role of smooth muscle activation is funda-

mental to vascular function. Vascular smooth muscle constitutes 40–60 %

(by dry weight) of the medial portion of muscular and resistive blood vessels.

It is responsible for maintaining a “basal tone,” which, in turn, allows the vessel

to vasoconstrict or vasodilate as needed to control local blood flow. Such

regulation is fundamental, for example, for diverting blood to muscles during

exercise, to the digestive system following eating, or away from the skin to

minimize heat transfer when the external temperature is low.

Like all muscle (e.g., skeletal and cardiac), contraction of vascular smooth

muscle depends on the concentration of intracellular free calcium and a sliding
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filament, cross-bridge-mediatedmechanics (Chap. 1). The steady-state cytoplas-

mic calcium is maintained primarily via a calmodulin-regulated Ca-ATPase

activity. Sources of calcium include the intracellular sarcoplasmic reticulum

and transmembrane influx from the extracellular milieu; a rise in cytoplasmic

free calcium triggers a contraction. Despite the similarities, vascular smooth

muscle differs from skeletal and cardiac muscle in numerous ways. Smooth

muscle has a much higher ratio of actin to myosin, and the actin–myosin

complexes are not arranged in sarcomeres, as they are in striatedmuscle. Smooth

muscle can also shorten more than striated muscle, albeit at a much lower rate,

and it can maintain its maximum contraction at a steady level for much longer

periods and at a lower energy expenditure than striated muscle. Finally, whereas

striated muscle generates its greatest force at a length where the passive stress is

nearly zero, smooth muscle generates its greatest force at a length where the

passive stress is significant (Fig. 6.23). The ability to generate force (or stress)

also depends on the contractile state, which can be governed by the concentration

of a particular agonist like the neurotransmitter norepinephrine (NE). An asso-

ciated sigmoidal dose–response curve is illustrated in Fig. 6.24; that is, active

force generation essentially increases with the concentration of the agonist once

a threshold is exceeded, but force generation does not increase beyond a satura-

tion value of the agonist.

6.6.2 Quantification

Despite its fundamental importance and despite the cross-bridge mechanism

being proposed nearly 50 years ago (1954), we still do not have a widely

accepted mathematical descriptor for active stress generation. Indeed, perhaps

one of the greatest unknowns in biomechanics is the multiaxial character of

muscle activation. Historically, muscle has been thought to generate stress only

in the direction of the long axis of the actin–myosin complex (i.e., is one

FIGURE 6.23 Schema of the length—tension response of vascular smooth muscle. This

response is similar to that in skeletal muscle, with the exception that the passive tension

is significant in smooth muscle at that value of stretch where the active force generation

is largest.
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dimension). We now know that muscle activation is multiaxial, but the data and

theory needed for quantification remain lacking. Here, therefore, let us consider

the current state of the art.

It is generally assumed that the passive and active contributions to the stress

are additive; thus, σ¼ σp+ σa, where the superscripts p and a denote passive and

active. Moreover, the smooth muscle is oriented in the circumferential direction

in most blood vessels; hence, it is generally assumed that

σrr � σ p
rr , σθθ ¼ σ

p
θθ þ σ a

θθ, σzz � σ p
zz : ð6:103Þ

Perhaps the best currently available relation for the active component of stress is

that proposed in 1999 by Rachev and Hayashi (see Chap. 7 in Humphrey 2002).

It can be written as

σ a
θθ ¼ T0 Ca2þ

� �
Λθ 1� Λm � Λθ

Λm � Λ0

� �2
" #

; ð6:104Þ

where T0 has units of stress and represents the dose–response dependency on

cytoplasmic free calcium. The second part of this relation represents the stretch-

dependent stress generation, where Λθ is the stretch in the circumferential

direction, Λ0 is the minimum value of stretch where no stress generation is

possible, and Λm is that value of stretch where the active stress generation is

maximum. Typical values of Λ0 and Λm are 0.6–0.8 and 1.5–1.75, respectively.

Note, too, that T0 ~ 50 kPa for a basal tone, but it can range from 0 to ~100 kPa.

From Sect. 6.5, we see that Λθ¼ rπ/RΘ0 where Θ0 is the residual stress related

opening angle and r and R are radii in the current and original (stress-free)

configurations, respectively.

Recall from the previous section that including the effects of residual stress

dramatically reduced the computed values of the circumferential stress, partic-

ularly in the inner wall, and its transmural gradient. Rachev and Hayashi

showed that including a basal smooth muscle tone further reduces the computed

FIGURE 6.24 Dose–response curve for vascular smooth muscle. The concentration of the

agonist could range from 10�7 to 10�4 for a typical test using norepinephrine (NE), a

vasoconstrictor.
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circumferential stress and its gradient (compare panels a and b in Fig. 6.25).

Hence, it appears that a basal smooth muscle tone not only allows vasocon-

striction or vasodilation as needed, it also modifies the normal stiffness of the

wall and thereby helps to homogenize the transmural distribution of stress.

A homogenous stress field in normalcy seems reasonable teleologically because

each cell would experience the same baseline mechanical environment.

Of course, disease, injury, and clinical intervention (e.g., balloon angioplasty)

can perturb the mechanical environment, which, via mechanotransduction

FIGURE 6.25 Panel (a): We repeat panel (a) from Fig. 6.22 to compare it directly to the

case when a basal tone (i.e., smooth muscle activation modeled via T0¼ 50 kPa) is

included in the analysis (Panel (b)). It is seen that smooth muscle activation tends to

reduce the stresses and their gradients.
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mechanisms, tends to set into motion various growth and remodeling responses

that seek to restore normalcy or at least to arrest the damage or insult. As noted

earlier, modeling biological growth and remodeling is one of the most important

and exciting areas of research in biomechanics today. It is, however, mathemat-

ically complex and beyond an introductory text. We merely discuss a few of the

basics of vascular growth and remodeling in Sect. 11.1.

In closing, however, let us see how an abrupt change in blood pressure can

increase the value and gradients of the transmural stresses and how an imme-

diate vasoactive response can tend to restore the stresses toward normal values;

full restoration requires growth and remodeling, however. Whereas panel b in

Fig. 6.25 shows stresses at P¼ 120 mmHg, panel a in Fig. 6.26 shows values for

the same artery at 180 mmHg with the same basal tone. The rise in stress is due

largely to the distention of the vessel and the associated stretching of the

nonlinear passive components of the wall. Indeed, a vasodilatation (panel b in

Fig. 6.22) allows a further distension and thus exacerbates the pressure-induced

increase in wall stress. Conversely, a vasoconstriction (panel b in Fig. 6.26, with

T0¼ 100 kPa rather than 50 kPa) tends to reduce the wall stresses toward their

original values. Hence, vasoconstriction may be one early mechanism that the

blood vessel uses to combat hypertension. Again, however, the detailed

mechanics are very complex and the reader is referred to Humphrey (2002)

and the archival literature for more details. Indeed, this chapter was but a brief

introduction to the nonlinear mechanics of tissues and cells, hopefully an

appetizer that has stimulated the reader’s desire to learn more and to explore

more deeply this important and fascinating area of research.

Chapter Summary

Nonlinearities manifest in many areas of biomechanics, particularly in consti-

tutive responses and in the finite strains and rotations experienced bymany cells,

tissues, or organs. The latter is evident in the heart, for example, which experi-

ences complex finite strains and rotations upon every contraction. Section 6.1

revealed important restrictions of the linearized strain ε that was used throughout

Chaps. 2–5 (and which restricted many of the associated solutions) whereas

Sect. 6.2 presented both a nonlinear stress—stretch relation that is commonly

used in soft tissue mechanics and a clever method introduced by Y.C. Fung to

obtain such a relation directly from data. Indeed, one of the most important

realizations is that linear relationships can be defined uniquely (e.g., y¼mx+ b,

where m is the slope and b the intercept) whereas nonlinear relationships cannot

be so defined. There is need, therefore, for clever, theoretically motivated

experiments for formulating nonlinear constitutive relations, one of the greatest

challenges in biomechanics today.

Because of the finite deformations experienced by many cells, tissues, and

organs, we found that multiple definitions of stress (e.g., Cauchy versus first or
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FIGURE 6.26 Panel (a): Transmural stress distribution at high blood pressure when the

smooth muscle is at its basal tone. Compared to Fig. 6.22b, we see that a basal smooth

muscle activation tends to decrease the stresses from those in the passive state alone.

Indeed, panel (b) shows that further activation (T0¼ 100 kPa rather than the 50 kPa in

the basal case) tends to decrease the stresses in the case of high blood pressure. It seems

reasonable to hypothesize, therefore, that an augmented smooth muscle activation may

be an early response of large vessels to hypertension. Because the stresses are not

restored to normal values and because of the increased energetic demand of fully

contracted muscle, however, subsequent growth and remodeling would be expected.

This is consistent with the observation that hypertensive vessels tend to thicken over

time via an increase in both smooth muscle and extracellular matrix, especially collagen.
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second Piola-Kirchhoff) and strain (e.g., Green versus linearized) are both possible

and useful. There is a need to understand well the different definitions and their

uses. In general, in solid mechanics the Cauchy stress is useful in analytical

analyses, the first Piola-Kirchhoff stress is useful in experimental studies, and

the second Piola-Kirchhoff stress is useful in constitutive formulations. The

illustrative analysis of the in-plane stretching of a thin slab of elastomer or soft

tissue in Sect. 6.3 is thus important for it reveals an analysis that is fundamental to

the interpretation of a common experiment in soft tissue biomechanics and it

provides a simple intuitive situation for comparing multiple definitions of stress

and their separate utilities. Indeed, it is always good to appreciate new concepts via

simple problems, which in turn builds confidence when seeking to understand

more complex situations using the same general approach.

The general concept of stability introduced via the study of column buckling

in Chap. 5 was extended here to a clinically relevant and challenging problem

(neuroangioplasty) wherein the inherent nonlinearities were retained to enable

study of both stable and unstable paths. The interested reader is encouraged to

research the history of this particular problem whereby he or she will discover

that an adverse clinical observation (instability of the neuroangioplasty balloon)

could have been anticipated and controlled had the appropriate nonlinear

analysis been performed during the research and development stage. Moreover,

because such instabilities were well known in the rubber elasticity literature,

it reminds us that we should be well read in related areas. By way of

foreshadowing, this analysis of stability is extended in Chap. 11 to include

solid–fluid interactions that are important in the dynamical stability of intracra-

nial aneurysms.

Finally, we studied one implication of a residual stress field, which was an

important discovery in the mid-1980s, and we illustrated one method for its

calculation. Whereas much more detail can be found in Humphrey (2002), we

showed that deformations experienced by a radially cut, excised segment of

artery (Fig. 6.20) can be described via multiplicative finite deformations, and

that a particular 3-D constitutive relation for arterial behavior (Eq. 6.87)

is merely an extension of the 1-D Fung-elastic relation derived in Sect. 6.2.

Most importantly, however, we found that the existence of residual stresses in a

thick-walled artery (Fig. 6.21) tends to homogenize the transmural stress field

in vivo (Fig. 6.22a), which in turn motivated a fundamental hypothesis of

mechanobiology (Humphrey 2008)—that cells tend to establish, maintain, and

restore a preferred (homeostatic) mechanical environment. In this case, there-

fore, we see how a fundamental solution of biomechanics actually gave rise to

an important biological hypothesis, which reminds us that mechanics can and

should be much more than a means of computing values of stress or strain and

predicting possible material failure.
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Appendix 6: Matrices

A matrix is a mathematical device that is useful for manipulating arrays of

numbers (or variables). In general, a m� n matrix is written with m rows

of entries and n columns; it is convention to enclose these entries within

brackets [ ]. For example, a 2� 2 matrix has four entries, given by two rows

and two columns, represented as

A½ 	 ¼ A11 A12

A21 A22

� 

; ðA6:1Þ

from which we see that the indices denote the (row, column). Hence, the ith

row, jth column entry can be denoted as Aij (i.e., for stress, rows represent faces

and columns the directions). Accepted rules govern the addition, subtraction,

and multiplication of matrices. For example, two matrices [A] and [B] can be

added or subtracted if and only if they have the same number of rows and

columns. A 2� 2 matrix can thus be added to another 2� 2 matrix, but it cannot

be added to a 3� 3 matrix. In the former case, we have

A½ 	 � B½ 	 ¼ A11 A12

A21 A22

� 

� B11 B12

B21 B22

� 


¼ A11 � B11 A12 � B12

A21 � B21 A22 � B22

� 

; ðA6:2Þ

which is to say, addition and subtraction are accomplished by simply adding or

subtracting like entries.

Matrix multiplication is much different. Two matrices can be multiplied if

and only if the number of columns of the first matrix equal the number of rows

of the second matrix. Thus, a m� n matrix cannot be multiplied by a m� n

matrix if m 6¼ n. Rather, a m� p matrix must multiply a p� n matrix (m¼ n

allowed but not required) whereby we find that the resulting number of rows and

columns of the product matrix is (m� p)� (p� n)¼m� n. For example, if

C½ 	 ¼
C11 C12

C21 C22

C31 C32

2
4

3
5, B½ 	 ¼ B11 B12

B21 B22

� 

; ðA6:3Þ

then we expect (3� 2)� (2� 2)¼ 3� 2, namely

C½ 	 B½ 	 ¼
C11B11 þ C12B21 C11B12 þ C12B22

C21B11 þ C22B21 C21B12 þ C22B22

C31B11 þ C32B21 C31B12 þ C32B22

2
4

3
5; ðA6:4Þ

from which we see that each row of [C] multiplies each column of [B].
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In addition to operations such as addition and multiplication, matrix methods

introduce new operations such as the transpose and inverse. The transpose of

a matrix, denoted by the superscript T, such as, transpose ([C])� [C]T, is

computed by exchanging rows and columns. For example,

C½ 	 ¼
C11 C12

C21 C22

C31 C32

2
4

3
5! C½ 	T ¼ C11 C21 C31

C12 C22 C32

� 

; ðA6:5Þ

which reveals that (m� n)T¼ n�m. At this point, note that matrices can have a

single row or a single column. These are often called “vectors,” because the

associated entries can represent components of a vector in an n-space. For

example, n� 1 and 1� n matrices, with n¼ 3 as in Euclidean 3-space, can be

written as

X½ 	 ¼
X1

X2

X3

2
4

3
5, Y½ 	 ¼ X½ 	T ¼ X1 X2 X3½ 	: ðA6:6Þ

Hence,

X½ 	T X½ 	 ¼ X1 X2 X3½ 	
X1

X2

X3

2
4

3
5 ¼ X2

1 þ X2
2 þ X2

3


 �
; ðA6:7Þ

revealing that a 1� 1 matrix also exists, which, of course, can represent the

value of a scalar. Note, too, that (1� 3)� (3� 1)¼ (1� 1), whereas (3� 1)�
(1� 3)¼ (3� 3), namely

X1

X2

X3

2
4

3
5 X1 X2 X3½ 	 ¼

X2
1 X1X2 X1X3

X2X1 X2
2 X2X3

X3X1 X3X2 X2
3

2
4

3
5; ðA6:8Þ

thus revealing that matrix multiplication does not commute in general.

A matrix can be multiplied or divided by a scalar, such as a[A]¼ [B], where

a
A11 A12

A21 A22

� 

¼ aA11 aA12

aA21 aA22

� 

¼ B11 B12

B21 B22

� 

; ðA6:9Þ

and likewise for scalar division. Hence, a scalar acts on each entry individually.

This property allows one to factor out common values, such as the 1/2 in the

definition of the Green strain [E] in terms of the deformation gradient [F], as in

Eq. (6.7).
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Whereas a matrix can be multiplied or divided by a scalar, and a matrix can

be multiplied by another matrix, a matrix cannot be divided by another matrix.

This is similar, of course, to vector algebra: A vector can be multiplied by a

scalar or a vector (e.g., dot or cross products), but a vector cannot be divided by

another vector. In the case of matrices, this issue is addressed in part via the

inverse operation. The inverse of a matrix, denoted by the superscript �1, is
defined such that

A½ 	�1 A½ 	 ¼ I½ 	 ¼ A½ 	 A½ 	�1; ðA6:10Þ

where [I] is the identity matrix, which has values of 0 in off-diagonal entries and

1 in diagonal entries [cf. Eq. (6.5)]. To illustrate, consider the 2� 2 matrix

[A]. Letting

A½ 	 ¼ A11 A12

A21 A22

� 

, I½ 	 ¼ 1 0

0 1

� 

; ðA6:11Þ

it can be shown that

A½ 	�1 ¼ 1

J

A22 �A12

�A21 A11

� 

; ðA6:12Þ

where the scalar J (Jacobian) is the determinant of [A] given by

J ¼ det A½ 	 ¼ A11A22 � A12A21: ðA6:13Þ

Note, therefore, that

A½ 	�1 A½ 	 ¼ 1

A11A22 � A12A21

A22 �A12

�A21 A11

� 

A11 A12

A21 A22

� 


¼ 1

A11A22 � A12A21

A22A11 � A12A21 A22A12 � A12A22

�A21A11 þ A11A21 �A12A21 þ A22A11

� 


¼
1 0

0 1

� 

¼ I½ 	;

ðA6:14Þ

as desired. In general, if we let Aij represent the ith row, jth column entry, then

A�1ij ¼
cof Aij


 �

det A½ 	 ; ðA6:15Þ
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where the cofactor of the entry Aij is defined by

cof Aij


 �
¼ �1ð Þiþ j

M ji; ðA6:16Þ

where Mji is a so-called minor; it is given by the determinant of the entries left

after striking out all entries in row i and column j. For example, given

Eq. (A6.1), the M11 minor is A22, the M12 minor is A21, the M21 minor is A12,

and the M22 minor is A11.

Finally, the determinant of [A] is defined by

det A½ 	 ¼
Xn

j¼1
Aij �1ð Þiþ j

Mij ðA6:17Þ

for any i.

Although the inverse and determinant can be difficult to compute for large

matrices, they are straightforward for 2� 2 and 3� 3 matrices, which are

particularly useful in mechanics to represent 2-D and 3-D states of stress or

strain. In cases of larger matrices, computers are essential. Finally, another

operation that is useful in matrix methods is the trace, denoted tr, which is

simply the sum of the diagonals of a square matrix. For example, for the 2� 2

matrix [A] above, we have tr[A]¼A11+A22.

Exercises

6.1 Given a motion defined by

x ¼ Λ1X þ κ1Y, y ¼ X þ Λ2Y, z ¼ Z;

find [F], [E], and [ε] and discuss.

6.2 It can be shown (Humphrey 2002) that det[F]¼ 1 if the deformation is

volume conserving (i.e., isochoric). If

x ¼ ΛX, y ¼ ΛY, z ¼ βZ

describes an “equibiaxial stretching” of amount Λ in the in-plane (x, y)

directions, determine the value of β such that volume is conserved.

6.3 Assuming an isochoric motion (i.e., det[F]¼ 1), find the value of Λ in

terms of β, when

x ¼ βX þ κY, y ¼ κX þ βY, z ¼ ΛZ:
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6.4 It can be shown that in cylindrical coordinates (see Humphrey 2002),

F½ 	 ¼

∂r

∂R

1

R

∂r

∂Θ

∂r

∂Z

r
∂θ

∂R

r

R

∂θ

∂Θ
r
∂θ

∂Z
∂z

∂R

1

R

∂z

∂Θ

∂z

∂Z

2
666664

3
777775

for a particle originally at (R, Θ, Z) that is currently at (r, θ, z), with

r¼ r(R, Θ, Z), and so forth. Find [F] and [E] for the following specific

motion:

r ¼ βR, θ ¼ Θ, z ¼ ΛZ;

where β and Λ are stretch ratios. Interpret this motion.

6.5 Find the solution to Eq. (6.10) using a direct integration method. Hint:

Note that

dΣ

dΛ
¼ αþ βΣ! 1

αþ βΣ

dΣ

dΛ
¼ 1:

6.6 Using the stress–stretch function of the form

Σ ¼ α

β
eβ Λ�1ð Þ � 1
� �

and letting values of the parameters be α¼ 10 MPa and β¼ 2.5, plot the

associated Σ versus Λ and dΣ/dΛ versus Σ curves. Additionally, plot ln Σ

versus Λ (for Λ up to 1.2) and discuss how such information (if Σ and Λ

came from an experiment) could be used to find a constitutive function.

6.7 Given the stress–stretch relation Σ¼Σ(Λ) in Exercise 6.6, note that the

relation is nonlinear in terms of the material parameter β. Because of the

exponential relation, however, one may be able to determine the values of

α and β from data using a linear instead of a nonlinear least-squares

regression. Find the requisite equations for the linear regression. Hint:

Use the natural logarithm.

6.8 Use the general solutions for axisymmetric membranes [Eq. (6.58)] to

determine the stress resultants (tensions) for the inflation of an elliptical

membrane, an approximate example of which is the lens capsule of the eye.

6.9 The neo-Hookean strain energy function W was used in Sect. 6.4 to

examine the stability of an elastomeric spherical membrane. This W was

written in terms of the in-plane principal components of the Green strain

[Eq. (6.63)]. Show that an equivalent form is
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W ¼ C Λ2
1 þ Λ2

2 þ Λ2
3 � 3

� �
;

where E11 ¼ Λ2
1 � 1

� �
=2 and so forth. Moreover, note that for a mem-

brane, W is written in terms of in-plane components only. If we enforce

incompressibility kinematically, rather than constitutively, then det

[F]¼ 1 requires that Λ1Λ2Λ3¼ 1 if [F]¼ diag[Λ1, Λ2, Λ3] Rewrite

W in terms of Λ1 and Λ2 alone.

6.10 In addition to the Fung exponential for a 2-D membrane,

W ¼ c eQ � 1
� �

, Q ¼ c1E
2
11 þ c2E

2
22 þ 2c3E11E22;

relative to principal directions, another often used relation for

bio-membranes is the Skalak, Tozeren, Zarda, Chien (STZC) relation:

W ¼ c

8
4 E2

11 þ E2
22

� �
þ Γ 4½ E2

11 þ E2
22

� �
þ 8E11E22

�

þ16E2
11E22 þ 16E11E

2
22 þ 16E2

11E
2
22

��
;

where c and Γ are material parameters. If

E11 ¼
1

2
Λ2 � 1
� �

, E22 ¼
1

2
Λ2 � 1
� �

;

as in the analysis of the neuroangioplasty balloon, show that

T1 ¼ T2 ¼ T ¼ c

2
Λ2 � 1þ ΓΛ2 Λ4 � 1

� �
 �
:

6.11 Based on the previous exercise, determine if a STZC spherical mem-

brane exhibits a limit point instability in inflation if c> 0 and Γ> 0. Hint:

First, show that

P Λð Þ ¼ c

A
Λ� 1

Λ
þ Γ Λ5 � Λ

� �� �
:

6.12 Repeat the previous exercise for a Fung spherical membrane with c> 0,

c1¼ c2, and c1+ c3�Γ> 0.

6.13 Given the following dataset, use Eq. (6.50) to find best-fit values of the

four material parameters; the units of the stress resultants are g/cm

(convert them to N/m). [Data from Harris JL (2002) Thermal modifica-

tion of collagen under biaxial isotonic loads. Ph.D. dissertation, Texas

A&M University, College Station.]
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Data points

1 2 3 4 5 6 7 8 9 10 11 12

T1 1.0 1.2 1.3 1.6 2.4 4.9 6.6 8.5 10.5 13.0 15.0 16.8

Λ1 1.44 1.44 1.44 1.44 1.44 1.43 1.43 1.43 1.43 1.43 1.44 1.44

T2 1.0 1.3 1.7 2.6 5.4 14.8 23.8 32.0 42.6 52.1 64.5 73.2

Λ2 1.06 1.12 1.19 1.26 1.33 1.40 1.41 1.43 1.43 1.43 1.44 1.44

6.14 Plot and compare the active stress–stretch response [Eq. (6.104)] for

values of T0¼ 0, 20, 40, 60, and 80 kPa. Use values of Λ0¼ 0.7 and

Λm¼ 1.5.

6.15 Repeat Exercise 6.14 with T0¼ 50 kPa and (Λ0, Λm) pairs of (0.6, 1.3),

(0.7, 1.4), and (0.8, 1.5) and discuss.

6.16 Given the proposed 1-D descriptor for smooth muscle behavior in

arteries,

σ a
θθ ¼ T0 Ca2þ

� �
Λθ 1� Λm � Λθ

Λm � Λ0

� �2
" #

;

where T0 ~ 50 kPa in the basal state, Λm is the circumferential stretch at

which activation is maximum (Λm ~ 1.5), and Λ0 is that value of stretch

at which active force generation ceases (Λ0 ~ 0.6), add this contribution

to the passive stress of Eq. (6.90) and recompute and plot the stress fields

in Fig. 6.22. Note, too, that Λθ is simply the circumferential stretch and,

thus, Λθ¼ πr/Θ0R.

6.17 P. Hunter, at Auckland New Zealand, proposed a different form of

T(Ca2+, Λ) for cardiac muscle. It is T(Ca2+, Λ)¼ T0(Ca
2+)f(Λ), where

Λ is a stretch ratio for the sarcomere. Specifically, he let

T Ca2þ;Λ
� �

¼ Ca2þ½ 	n

Ca2þ½ 	 þ Cn
50

� �
Tmax 1þ β Λ� 1ð Þ½ 	;

where

Cn
50 ¼

4:35ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4:75 L�1:58ð Þ � 1
p

and where L is the sarcomere length in μm (range from 1.58 to 2.2 μm),

n¼ 2, Tmax¼ 100 kPa, β¼ 1.45, and Λ¼L/1.58 μm. Plot and compare

values of T for sarcomere lengths from 1.58 to 2.2 μm for two different

calcium levels: 1.8 and 1.04 μM.

6.18 Using results from Exercise 6.17, compare the active stress generation

(kPa) at a sarcomere length of 1.8 μm for all calcium concentrations from

1.04 μM to 1.8 μM; that is, plot T versus [Ca2+].
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6.19 The total axial force f on the artery is computed via

f ¼
ð2π

0

ðra

rl

σzzrdrdθ:

Because of the Lagrange multiplier p, however, it proves useful to (do it)

convert the integral to

f ¼ π

ðra

ri

2σzz � σrr � σθθð Þrdr � πr2i σrr rið Þ þ πr2aσrr rað Þ:

Hint: Let σzz¼ σzz� σrr+ σrr, integrate by parts, and use the radial

equilibrium equation

dσrr

dr
þ σrr � σθθ

r
¼ 0:

6.20 Find the components of [C]¼ [A][B] if

A½ 	 ¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5, B½ 	 ¼

B11

B21

B31

2
4

3
5:

6.21 If [I] is the identity matrix, show that [I][A]¼ [A]¼ [A][I].

6.22 If [X] is a 3� 1 matrix, we sometimes call it a column matrix or simply a

vector. Noting from Eq. (A6.7) that [X]T[X] yields a scalar equal to the

sum of the squares of the entries, compare this result to the vector dot

product X ·X if

X ¼ X1ê 1 þ X2ê 2 þ X3ê 3:

We see, therefore, that operations in matrix methods can yield the

same results as those in vector methods. Matrix methods are particularly

well suited if m and/or n are >4 in a m� n matrix.

6.23 Show that det[A]¼ det[A]T.

6.24 If

A½ 	 ¼
2 4 2

2 �1 �2
4 1 �2

2
4

3
5;
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show that

A½ 	�1 ¼ 1

4

4 10 �6
�4 �12 8

6 14 �10

2
4

3
5;

and that [A][A]�1¼ [I].

6.25 In contrast to the neo-Hookean descriptor for rubber (Exercise 6.9), some

prefer the Mooney-Rivlin relation. In terms of principal stretches, it is

W ¼ C Λ2
1 þ Λ2

2 þ Λ2
3 � 3

� �
þ Γ

1

Λ2
1

þ 1

Λ2
2

þ 1

Λ2
3

� 3

� �� 


where C and Γ are material parameters. Recompute results in Fig. 6.15

for Γ¼ 0.1. See Humphrey (2002), Chap. 4.

6.26 Related to the discussion in Sect. 6.3, Humphrey et al. (1990) presented a

solution for the finite deformation of a thin slab of excised passive

myocardium that was motivated by the desire to identify a specific

functional form of the requisite nonlinear constitutive relation directly

from experimental data. Re-derive the basic equations that allow one, in

principle, to determine the two associated “response functions” in terms

of experimentally measurable quantities, including the applied loads,

geometry, and deformations.

6.27 Whereas the discussion of torsion in Chap. 4 was restricted to linearly

elastic responses over small strains, Humphrey et al. (1992) presented a

solution for the finite extension and torsion of a papillary muscle from

the heart (i.e., a cylindrical specimen). Re-derive the basic equations that

allow one, in principle, to determine the two associated “response func-

tions” in terms of experimentally measurable quantities, including the

applied loads, geometry, and deformations. Contrast the difficulty of this

analysis with that of problem 6.26. Finally, note that Criscione

et al. (1999) extended this solution of Humphrey et al. to delineate

effects due to the myocardium and endocardium that constitute a papil-

lary muscle.

6.28 Simon et al. (2012) presented a novel finite deformation solution for a

long-standing assay of cell—matrix interactions, the free-floating fibro-

blast-seeded collagen gel. Similar to the in-plane biaxial stretching

problem discussed in Sect. 6.3, under some conditions it appears that

the strain field may be homogeneous and equibiaxial and the stress field

planar in this experiment. Reformulate this boundary value problem and

reproduce the numerical findings presented in Figure 1 in Simon

et al. Discuss the implications of the residual type stress field that is

implicated.
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6.29 Observation 3.1 introduces the topic of “stress concentrations,” which

typically result due to an abrupt change in geometry, material properties,

or applied loads. The classical discussion of stress concentrations

focuses on stresses at the edge of a hole, typically circular, within a

thin plate that is subjected to uniform far field stresses. Associated stress

concentration factors (i.e., values of maximum stress at the edge relative

to the value of stress in the far field) are typically reported to be ~2–3.

Whereas such results are usually based on linearized isotropic elasticity,

David and Humphrey (2004) showed that stress concentration factors

can be very different in cases of nonlinear elasticity and anisotropy.

Re-derive the governing ordinary differential equation from David and

Humphrey (2004) upon which these nonlinear results are based.

6.30 Atomic force microscopy (AFM) is discussed in Sect. 5.4.2 because one

can use ideas from linear beam theory to design and calibrate the

cantilevered-based probe, which typically experiences small strains dur-

ing use. On the other hand, many investigators inappropriately use

linearized elasticity to interpret the associated force—indentation data

when using AFM to assess mechanical properties of cells or tissues.

Re-derive the basic equations presented by Na et al. (2004), which are

based on the theory of “small deformations superimposed on large” and

thereby are better for interpreting such AFM data. Yet, because of the

complexity involved in most AFM studies, inverse Finite Element

Methods are probably best for data analysis.
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Part III
Biofluid Mechanics



7
Stress, Motion, and Constitutive
Relations

7.1 Introduction

A fluid can be defined as any substance that flows under the action of a shear

stress, no matter how small the shear. Alternatively, some define a fluid as any

substance that quickly assumes the shape of the container in which it is placed.

Regardless of the specific definition, common experience shows that materials

in either their liquid or their gaseous phases can fall within the purview of fluid

mechanics.

As noted in Chap. 1, biofluid mechanics is a very important field within

biomedical engineering. For example, biofluid mechanics helps us to under-

stand blood flow within the cardiovascular system, airflow within the airways

and lungs, and the removal of waste products via the kidneys and urinary

system. Biofluid mechanics is thus fundamental to understanding basic physi-

ologic processes as well as clinical observations. We also know that the human

body, and similarly each of its cells, consists largely of water (~70 %). Research

over the last two decades has revealed that interstitial water in tissues and

organs and, likewise, the cytostolic water in cells each play key roles in many

biomechanical as well as biochemical processes. For example, the extensive

water within the cartilage in articulating joints, such as the knee, carries a

significant portion of the early compressive loading during standing, walking,

and running. These tissues are porous, however, and the fluid can flow into or

out of the tissues. Such fluid flow plays a key role in governing both the

mechanical properties and many of the mechanotransduction mechanisms.

Hence, again, biofluid mechanics is very important. Finally, biofluid mechanics

is fundamental to the design of medical devices such as artificial hearts,

ventricular-assist devices, heart valves, artificial arteries, mechanical ventila-

tors, heart–lung machines, artificial kidneys, IV pumps, and so on. Exercise 7.1
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asks you to brainstorm other medical devices that can be designed only with

knowledge of biofluid mechanics.

In addition to its importance in the clinical setting, biofluid mechanics plays a

key role in the research laboratory. One frequently finds fluids moving through

tubes, pumps, valves, and so forth in the biomedical laboratory, with research

varying from studies of the effects of pharmacologic agents on the behavior of

the heart, kidney, or arteries to Earth-based studies of the effects of microgravity

on gene expression in cells. Again, specific examples are manifold. Let us

accept, therefore, that biofluid mechanics is essential to basic and applied

research as well as to clinical care, and thus begin our study.

Just as in solid mechanics, we generally divide fluid mechanics into two

general categories: statics and dynamics (cf. Fig. 1.4). In the former, we are

interested only in the pressure distribution within the fluid; in the latter, we are

generally interested in calculating both the pressure and the velocity fields, for

from these we can compute any quantity of interest (e.g., normal and shear

stresses, acceleration, and vorticity). Whether static or dynamic, to solve any

problem in mechanics, we must, in general, address five classes of relations:

Kinematics: to compute velocities, accelerations, shear rates, and so forth.

Stresses and tractions: to quantify the intensity of forces acting over oriented

areas.

Balance relations: to ensure the balance of mass, momentum, and energy.

Constitutive relations: to describe mathematically the behavior of the material.

Boundary/initial conditions: for mathematical and physical completeness.

Indeed, a review of our problem formulations in Part II reveals that we used

these five classes of relations in most problems. Within this general five-step

approach, there are multiple ways of formulating problems in biofluid mechan-

ics: in terms of differential equations, which provide the most detail; in terms of

integral equations, which provide gross or average information; and via semi-

empirical methods that exploit the availability of particular data. We illustrate

each approach in Chaps. 8–10.

7.2 Stress and Pressure

Recall from Chap. 2 that Euler and Cauchy first showed that the concept of

stress is extremely useful in studying the mechanics of continua. In particular,

depending on the application, one can define stress in various ways—the

Cauchy stress [σ], the first Piola–Kirchhoff stress [Σ], or the second Piola–

Kirchhoff stress [S] as discussed in Chap. 6. Whereas each of these “measures”

of stress is useful in nonlinear solid mechanics, experience has shown that

Cauchy’s definition of stress is the most useful when studying the mechanics
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of fluids whether they exhibit a linear or a nonlinear behavior. Recall from

Chap. 2, therefore, that the Cauchy stress is a measure of a force acting on an

oriented area in the current configuration. Moreover, because we can resolve

any force that acts on a generic cube of material in terms of three components,

the three orientations of the faces of the cube yield nine components of the

Cauchy stress, which can be represented using a 3� 3 matrix [σ] at each point in

general. Fortunately, only six of these components are independent due to the

need to respect the balance of angular momentum.

Because our discussion of Cauchy stress in Chap. 2 was independent of the

material or the deformation, everything holds equally well for a fluid. Hence,

we will again be interested in components denoted as

σ faceð Þ directionð Þ ð7:1Þ

with respect to the coordinate system of interest [Eqs. (2.8)–(2.12)]. If needed,

the stress transformation relations [Eqs. (2.13)–(2.21)] similarly hold.

In contrast to solid mechanics, however, the concept of pressure is particu-

larly important in describing the mechanical behavior of fluids as well as in the

solution of initial boundary value problems of interest. The hydrostatic pressure

is defined herein as �1/3 of the sum of the diagonal components of the Cauchy

stress when it is written in matrix form. For example, in Cartesians,

σ½ 	 ¼
σxx σxy σxz
σyx σyy σyz

σzx σzy σzz

2
4

3
5 ð7:2Þ

and thus the pressure p is given by

p ¼ �1
3
σxx þ σyy þ σzz
� �

: ð7:3Þ

Because this combination of components is a coordinate invariant quantity

(cf. Exercise 2.4), we equivalently have

p ¼ �1
3

σ
0

xx þ σ
0

yy þ σ
0

zz

� �
ð7:4Þ

and similarly for cylindrical, sphericals, and other convenient coordinate sys-

tems. Pressure is thus a scalar field quantity, its value being independent of

coordinate system. We will see in Sect. 7.4 that pressure and stress each play

important roles in the constitutive formulation of a common class of fluid

behaviors.
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7.3 Kinematics: The Study of Motion

Let us next consider the motion of a fluid element in a flow field. For convenience,

we follow an infinitesimal fluid element having a fixed identifiable mass Δm,

which occupies a region ΔxΔyΔz in its current configuration (Fig. 7.1). As Δm

moves in a flow field, several things may happen: It may translate, rotate, stretch,

or shear. Although each of these motions may occur in three dimensions, it is

useful to visualize them first in two dimensions. If the element translates

(Fig. 7.2a), each particle undergoes the same displacement; for example, a particle

at location (x0, y0, z0) at time t0moves to a different location (x, y, z), at any time t,

and the associated displacement or velocity vector holds for all particles of Δm.

If the element rotates, it again moves as a rigid body, but the particles do not

experience the same displacement. Figure 7.2b shows a rotation of the element

FIGURE 7.1 Schema of a

differential cube that

defines a fluid element

of mass ρΔxΔyΔz,

where ρ is the mass

density. Whereas actual

cubes of solid (like an

ice cube) are convenient

for study, this is merely a

fictitious cube of fluid.

FIGURE 7.2 Four different

types of motion (shown

here in two dimensions

for simplicity) that can be

experienced by a fluid

element: (a) a rigid-body

translation, (b) a rigid-

body rotation, (c) an

extension, and (d) a pure

shear.
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about a z coordinate axis; clearly, the central particle does not change its location

(x0, y0, z0), whereas all other particles do. In general, of course, the element may

rotate about all three of the coordinate axes at the same time. In addition, the fluid

element may deform or “strain.” Just as in solids, the deformation may be thought

to consist of two types: changes in lengths (extensions) and changes in internal

angles (shear). See Fig. 7.2c, d. In fluids, we are often interested in the (time) rate

of change of the deformation, not just the displacements or their spatial gradients

(i.e., strains). This will be discussed in detail below. In general, therefore, a fluid

element may undergo a combination of translation, rotation, extension, and shear,

all in three dimensions, during the course of its motion.

7.3.1 Velocity and Acceleration

Consider a particle located at (x, y, z) at time t. Its position vector, relative to an

origin at (0, 0, 0), is x ¼ x tð Þî þ y tð Þ ĵ þ z tð Þk̂ with respect to a Cartesian

coordinate system. Velocity is defined as the rate of change of position. Hence,

we have

v¼ dx

dt
¼ dx

dt
î þ dy

dt
ĵ þ dz

dt
k̂ : ð7:5Þ

Because velocity is a vector,1 it can be written as

v ¼ vx î þ vy ĵ þ vzk̂ ð7:6Þ

with respect to a Cartesian coordinate system. If so, its Cartesian components

are simply

vx ¼
dx

dt
, vy ¼

dy

dt
, vz ¼

dz

dt
: ð7:7Þ

Similarly, relative to a cylindrical coordinate system, one can have2

v ¼ vr ê r þ vθêθ þ vzêz: ð7:8Þ

The primary difference between the Cartesian and cylindrical representations is

that the Cartesian bases î , ĵ , k̂
� �

do not change with position, whereas two of

the cylindrical bases (êr, êθ, êz) do change with position; that is, the directions of

1 We shall make extensive use of vectors in our discussion of fluids. A brief review is in
Appendix 7.

2 For consistency, we could let î�êx, ĵ�êy, and k̂�êz in Eq. (7.6).
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êr and êθ change with θ (Fig. 7.3). This will prove important below, when

velocity gradients are calculated.

Acceleration is simply the rate of change of velocity, but there are two ways

of computing the acceleration. The most natural way is to take the time

derivative of Eq. (7.5) (and similarly for cylindricals and other coordinate

systems); that is,

a ¼ dv

dt
¼ d2x

dt2
î þ d2y

dt2
ĵ þ d2z

dt2
k̂ : ð7:9Þ

Because acceleration is also a vector, we have

a¼ax î þ ay ĵ þ azk̂ ; ð7:10Þ

thus, the Cartesian components are

ax ¼
d2x

dt2
, ay ¼

d2y

dt2
, az ¼

d2z

dt2
: ð7:11Þ

This approach for computing a is common in solid mechanics and rigid-body

dynamics; it is usually called a Lagrangian formulation. A prime example in

rigid-body dynamics would be the calculation of the acceleration of a baseball

after it leaves the bat; one only needs to know the (x, y, z) position of the mass

center of the ball at each time as you “follow it” over the fence. Recall, too, that

in solid mechanics, it is often useful to define the displacement vector u(t) as the

difference between where we (a material point) are and where we were, namely

FIGURE 7.3 Illustration of the base vectors for a cylindrical-polar coordinate system.

The direction of êr changes with changes in θ and so too for the direction of êθ. It is for
this reason that spatial gradients of these base vectors need not be zero, in contrast to the

case of Cartesian bases. This difference proves to be important in the derivation of many

equations in biofluids because of the cylindrical shape of many conducting tubes (e.g.,

arteries, airways, and ureters).
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u tð Þ ¼ x tð Þ � x 0ð Þ½ 	îþ y tð Þ � y 0ð Þ½ 	 ĵþ z tð Þ � z 0ð Þ½ 	k̂ ; ð7:12Þ

from which the acceleration can alternatively be computed as

a ¼ d2ux

dt2
îþ d2uy

dt2
ĵþ d2uz

dt2
k̂ : ð7:13Þ

Equations (7.11) and (7.13) are equivalent because the original positions x(0), y

(0), z(0) at time t¼ 0 do not change with time.

A second approach for computing acceleration arises if we recognize that the

velocity v is a field quantity (i.e., rather than following a single particle at each

time t, we compute/measure v at each point x and each time t). For example, in

Cartesians, we recognize that, in general,

v ¼ v x; y; z; tð Þ; ð7:14Þ

for which we must use the chain rule to compute the time derivative:

a ¼ dv

dt
¼ ∂v

∂t

dt

dt
þ ∂v

∂x

dx

dt
þ ∂v

∂y

dy

dt
þ ∂v

∂z

dz

dt
: ð7:15Þ

From Eq. (7.7), therefore, the acceleration becomes

a ¼ ∂v

∂t
þ vx

∂v

∂x
þ vy

∂v

∂y
þ vz

∂v

∂z
; ð7:16Þ

or, in more compact notation,

a ¼ ∂v

∂t
þ v �∇ð Þv; ð7:17Þ

where ∂v/∂t is called the local acceleration and (v ·∇)v is called the convective

acceleration. A very important definition in fluids is that of a steady flow:A flow

is said to be steady if ∂v/∂t¼ 0 (i.e., if there is no local acceleration). Of course,

in Cartesians, the del operator ∇ can be written as3

∇ ¼ î
∂

∂x
þ ĵ

∂

∂y
þ k̂

∂

∂z
: ð7:18Þ

3 Because∇ is a differential operator, we remember that it operates on quantities to its
right to form a gradient∇ϕ of a scalar ϕ, divergence∇ · v of a vector v, or curl∇� v of
a vector.
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Before continuing, it is instructive to show that Eqs. (7.16) and (7.17) are indeed

equivalent. Given Eq. (7.16), we can factor out the common term, v, leaving us

with

a ¼ ∂v

∂t
þ vx

∂

∂x
þ vy

∂

∂y
þ vz

∂

∂z

� �
v: ð7:19Þ

Now, resolving each term in the parentheses into its vector components, we are

left with

a ¼ ∂v

∂t
þ vx îþvy ĵ þ vzk̂
� �

� î
∂

∂x
þ ĵ

∂

∂y
þ k̂

∂

∂z

� �� 

v; ð7:20Þ

whereby we arrive at Eq. (7.17),

a ¼ ∂v

∂t
þ v �∇ð Þv: ð7:21Þ

In so doing, note that v ·∇ 6¼∇ · v because the former yields a differential

operator and the latter a scalar value. Finally, recognizing that a is a vector,

Cartesian components are thus

ax ¼
∂vx

∂t
þ vx

∂vx

∂x
þ vy

∂vx

∂y
þ vz

∂vx

∂z
,

ay ¼
∂vy

∂t
þ vx

∂vy

∂x
þ vy

∂vy

∂y
þ vz

∂vy

∂z
,

az ¼
∂vz

∂t
þ vx

∂vz

∂x
þ vy

∂vz

∂y
þ vz

∂vz

∂z
:

ð7:22Þ

This approach for computing acceleration is often adopted in fluid mechanics; it

is called an Eulerian approach. In contrast to the aforementioned Lagrangian

approach in which we follow material particles at different times, in the

Eulerian approach we “watch” what happens to particles that go through

multiple fixed points in space. A simple example that illustrates these

approaches is to watch snowflakes fall while driving a car at night. One can

either watch a particular snowflake approach the car and flow over the hood and

past the windshield (a Lagrangian approach) or one could focus on a point in

space and watch what happens to all the snowflakes that go through the point of

interest (an Eulerian approach). The latter approach would typically be adopted

by a fluid mechanicist and repeated at multiple points of interest to quantify the

entire flow field v¼ v(x, y, z, t). From Eq. (7.17), we recognize that a fluid

particle moving in a flow field may accelerate for either of two reasons. For

example, a fluid particle accelerates or decelerates if it is forced by an unsteady
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source (e.g., a pulsatile pump like the heart). This is a local acceleration.

Alternatively, a fluid particle accelerates if it flows through a constriction

even if acted upon by an unchanging force (e.g., gravity flow through a funnel

or venous flow through a stenotic valve). See Fig. 7.4. In this case, the particle is

accelerated because it is convected to a region of higher velocity, hence the

terminology convective part of a.

Similarly, in cylindricals, the acceleration vector can be written as

a ¼ ar ê r þ aθê θ þ azê z; ð7:23Þ

where it can be shown (Humphrey 2002) that the components are

ar ¼
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
� v2θ

r
þ vz

∂vr

∂z
,

aθ ¼
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ

þ vrvθ

r
þ vz

∂vθ

∂z
,

az ¼
∂vz

∂t
þ vr

∂vz

∂r
þ vθ

r

∂vz

∂θ

þ vz
∂vz

∂z
:

ð7:24Þ

Note that “extra” terms arise in cylindrical coordinates [cf. Eq. (7.22)] because

we are taking derivatives of the velocity (magnitude and direction) with respect

to both time and direction. In contrast to Cartesians wherein∂ðî Þ=∂x ¼ 0and so

forth, in cylindricals

FIGURE 7.4 Schematic drawing of a stenosis (i.e., local narrowing) within a blood

vessel. Stenoses often arise due to atherosclerosis, but other causes exist as well (e.g.,

extravascular blood due to a subarachnoid hemorrhage will cause a local vasospasm,

whereas a local trauma due to a crushing injury or the overaggressive use of a vascular

clamp during surgery can damage the vessel). Clearly, a fluid particle within the

narrowed region will travel at a greater velocity than one in the inlet region; thus, the

particles may accelerate as they enter the constriction despite no “time-dependent”

change in the velocity.
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∂

∂θ
êrð Þ ¼ êθ and

∂

∂θ
êθð Þ ¼ �êr; ð7:25Þ

as suggested by Fig. 7.3 and demonstrated in Appendix 7. These derivatives of

the base vectors are very important to remember. Similarly, in spherical coor-

dinates, acceleration becomes

a ¼ ar êr þ aθêθ þ aϕê ϕ; ð7:26Þ

for which it can be shown (Humphrey 2002) that

ar ¼
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
�
v2θ þ v2ϕ

r
þ vϕ

r sin θ

∂vr

∂ϕ
,

aθ ¼
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ
þ vrvθ

r
�
v2ϕ

r
cot θ þ vϕ

r sinϕ

∂vθ

∂ϕ
,

aϕ ¼
∂vϕ

∂t
þ vr

∂vϕ

∂r
þ vθ

r

∂vϕ

∂θ
þ vrvϕ

r
þ vθvϕ cot θ

r
þ vϕ

r sinϕ

∂vϕ

∂ϕ
:

ð7:27Þ

Again, the “extra” terms arise because of the derivatives of the base vectors,

in particular

∂

∂θ
ê rð Þ ¼ ê θ,

∂

∂θ
ê θð Þ ¼ �ê r,

∂

∂ϕ
ê rð Þ ¼ sin θê ϕ,

∂

∂ϕ
ê θð Þ ¼ cos θê ϕ;

ð7:28Þ

and

∂

∂ϕ
ê ϕ

� �
¼ � sin θê r � cos θê θ: ð7:29Þ

We will use spherical coordinates in Chap. 11 to investigate the interaction of

cerebrospinal fluid and an intracranial saccular aneurysm.

Example 7.1 Given the following velocity field, determine if the Eulerian

acceleration is zero:

v ¼ Axî � Ay ĵ ;

where A is a number.

362 7. Stress, Motion, and Constitutive Relations

http://dx.doi.org/10.1007/978-1-4939-2623-7_11


Solution: Although v is independent of time and thus does not have a local

component of acceleration (i.e., it is a steady flow), we must check the convec-

tive part. Note, therefore, that the Cartesian components of v are

vx ¼ Ax, vy ¼ �Ay

and the velocity gradients are

∂vx

∂x
¼ A,

∂vx

∂y
¼ 0,

∂vy

∂x
¼ 0,

∂vy

∂y
¼ �A:

Hence, from Eq. (7.22),

a ¼ 0þ Ax Að Þ þ �Ayð Þ 0ð Þ þ 0½ 	î þ 0þ Ax 0ð Þ þ �Ayð Þ �Að Þ þ 0½ 	 ĵ þ 0k̂ ;

or

a ¼ A2 xî þ y ĵ
� �

and, consequently, the acceleration is not zero.

Before concluding this section, we emphasize that velocity and acceleration

are both field quantities; that is, they depend on position as well as time in

general. Consequently, it is useful to note some common terminology. A flow is

said to be one, two, or three dimensional if the velocity field depends on,

respectively, one, two, or three space variables. For example, with respect to

Cartesians, a velocity field would be one dimensional if v¼ v(x) but two

dimensional if v¼ v(x, y). Note, therefore, that one, two, or three dimensional

does not have anything to do with the number of components, vx, vy, or vz, that

are nonzero; the dimensionality merely specifies the spatial dependence of all

components. A flow in which only one component is nonzero with respect to a

given coordinate system is said to be unidirectional regardless of its dependence

on position.

Observation 7.1. Mathematically, a field is simply a contiguous collection of

points in a region of space. When a quantity is defined at any such point, we say

that it is a field quantity. Scalar quantities such as mass density, temperature,

and pressure are examples of field quantities. Herein, we see too that velocity is
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FIGURE 7.5 Schema of some of the large vessels that comprise the vasculature. There

are, for example, ~1.2� 105 arteries, 2.8� 106 arterioles, 2.7� 109 capillaries,

1.0� 107 venules, and 7.0� 105 veins in a 20-kg dog. From Humphrey (2002), with

permission.
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a field quantity because it can depend on position as well as time. Figure 7.5 is a

schematic drawing of part of the cardiovascular system of the dog. Clearly, the

vasculature consists of a complex network of curved, tapering, and branching

tubes called blood vessels. It is easy to imagine, therefore, that the velocity of

the blood varies tremendously from point to point as well as throughout the

cardiac cycle. Indeed, even locally within a curved region (aortic arch),

bifurcation (aorto-iliac) or stenosis (Fig. 7.4), the velocity can vary tremen-

dously in both magnitude and direction. The same is true, of course, in the

airways within the lung and in the urinary tract. Quantification of the pressure

and velocity fields is a prime objective in biofluid mechanics; this will require

four governing equations, in general – one for pressure and one for each of

the three components of velocity. We discuss these governing equations below.

7.3.2 Fluid Rotation

As noted above, we can imagine a fictitious cube of fluid (of mass Δm) rotating

about all three axes x, y, and z. Such rotations can be described by an angular

velocity vector, namely

ω ¼ ωx î þ ωy ĵ þ ωzk̂ ; ð7:30Þ

where ωx is the rotation about the x axis, ωy is the rotation about the y axis, and

ωz is the rotation about the z axis. To evaluate the components of this rotation

vector ω, we may define the angular velocity about an axis as the average

angular velocity of two initially perpendicular differential line segments in a

plane perpendicular to the axis. For example, the component of rotation about

the z axis is equal to the average angular velocity of two originally perpendic-

ular infinitesimal line segments in the x–y plane (Fig. 7.6). The rate of rotation

of line segment oa of length Δx, is given by

ωoa ¼ lim
Δt!0

Δα

Δt
; ð7:31Þ

where tan Δα ~Δα for small-angle changes during the period Δt and tan Δα is

simply the opposite over the adjacent. (Note: In contrast to the small-angle

assumption used by some to derive the small strain ε of Chap. 2, specification of

a small-angle change here is not an assumption, it is merely consistent with the

consideration of changes over a short interval of time Δt). If point o travels

vertically at velocity vy, then point a must have a greater velocity in order for

Δα to change from 0 (at time t¼ 0) to some nonzero but small value at time t

+Δt. Hence, if point a moves vertically at velocity vy+Δvy, then by the Taylor

series expansion,
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Δvy ¼
∂vy

∂x
Δxþ H:O:T: ð7:32Þ

where H.O.T. stands for higher-order terms, which are negligible with respect to

terms that are linear in delta such asΔx orΔy (recall our derivation in Sect. 3.1).

Thus, in the increment of time Δt, point a moves vertically a distance (which is

given by a velocity multiplied by time)

vy þ
∂vy

∂x
Δx� vy

� �
Δt ð7:33Þ

relative to o, and ωoa becomes

ωoa ¼ lim
Δt!0

1

Δt

∂vy=∂x
� �

ΔxΔt

Δx

� �
¼ ∂vy

∂x
: ð7:34Þ

Similarly, the angular velocity of line segment ob about the z axis is

ωob ¼ lim
Δt!0

Δβ

Δt
; ð7:35Þ

where b is moving in the negative x direction. If o moves leftward at velocity –

vx, then b must move at –(vx+Δvx), where, again, we appeal to the Taylor’s

series. The distance along the negative x axis moved by b relative to o is thus

FIGURE 7.6 Rigid-body rotation of a fluid element in two dimensions. Note that such a

rotation implies that the velocity must vary from point to point, such as the y-direction

velocity at point a (e.g., vy+Δvy) must be greater than that at point o (e.g., vy) for the
line oa to rotate counterclockwise. A similar difference must exist in vx at points b and o.
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� vx þ
∂vx

∂y
Δy� vx

� �
Δt ð7:36Þ

and, therefore, ωob becomes

ωob ¼ lim
Δt!0

1

Δt

� ∂vx=∂yð ÞΔyΔt

Δy

� �
¼ �∂vx

∂y
: ð7:37Þ

The mean angular velocity about the z axis, ωz, is thus defined as the mean of

ωoa and ωob, or

ωz ¼
1

2

∂vy

∂x
� ∂vx

∂y

� �
: ð7:38Þ

Similarly, for ωx and ωy, it is easy to show that (do it)

ωx ¼
1

2

∂vz

∂y
� ∂vy

∂z

� �
,ωy ¼

1

2

∂vx

∂z
� ∂vz

∂x

� �
; ð7:39Þ

where ω ¼ ωx î þ ωy ĵ þ ωz k̂ ; and therefore

ω ¼ 1

2

∂vz

∂y
� ∂vy

∂z

� �
î þ ∂vx

∂z
� ∂vz

∂x

� �
ĵ þ ∂vy

∂x
� ∂vx

∂y

� �
k̂

� 

: ð7:40Þ

If we recognize the term in the square brackets as the curl v�∇� v in

Cartesian coordinates, then we can rewrite this result in a more compact (and

general) vector notation as

ω ¼ 1

2
∇� v: ð7:41Þ

Moreover, if we define a new quantity, ζ ¼ 2ω, then

ζ ¼ ∇� v; ð7:42Þ

where ζ is called the vorticity—it is an alternate measure of the rotation of fluid

elements. A flow in which the vorticity is zero is said to be irrotational. We will

see later that irrotational flows allow significant simplification in the governing

differential equations of motion; thus, it is useful to compute the vorticity for a

given flow field.

Finally, note that in cylindrical coordinates, the vorticity is given by
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∇� v ¼ 1

r

∂vz

∂θ
� ∂vθ

∂z

� �
êr þ

∂vr

∂z
� ∂vz

∂r

� �
êθ

þ 1

r

∂ rvθð Þ
∂r

� 1

r

∂vr

∂θ

� �
ê z:

ð7:43Þ

Likewise, in spherical coordinates, the vorticity is

∇� v ¼ 1

r sin θ

∂ vϕ sin θ
� �

∂θ
� 1

r sin θ

∂vθ

∂ϕ

� �
ê r

þ 1

r sin θ

∂vr

∂ϕ
� 1

r

∂ rvϕ
� �

∂r

� �
ê θ þ

1

r

∂ rvθð Þ
∂r

� 1

r

∂vr

∂θ

� �
ê ϕ:

ð7:44Þ

Here, we recognize one of the advantages of writing general results [Eq. (7.42)]

in vector form. To derive Eqs. (7.43) and (7.44), we did not have to draw

differential elements for cylindrical or spherical domains and determine how

associated line elements rotate about each axis of interest; we merely used the

del operator in the coordinate system of interest to compute general relations for

the curl of the velocity. Such an approach is common in continuum mechanics:

Based on the underlying physics, derive a relationship of interest with respect to

Cartesian coordinates, which is generally the simplest to derive, and then extend

the generalized result to other coordinate systems as needed using mathematical

manipulations alone.

Example 7.2 Determine if the velocity field in Example 7.1 is irrotational.

Solution: Given that, vx¼Ax and vy¼�Ay,

ζ ¼ 1

2
0þ 0ð Þî þ 1

2
0þ 0ð Þ ĵ þ 1

2
0þ 0ð Þk̂ ;

hence the velocity is irrotational.

7.3.3 Rate of Deformation

During extensional deformations, a fluid element will simply change in length.

Rather than using strain to quantify the extension, as in solid mechanics, it

proves to be convenient in fluid mechanics to focus on the rate of extension (i.e.,

the stretching or rate of strain). Like strain, such rates of change can also be

described by nine scalar components relative to a coordinate system of interest,
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six of which are independent. To measure the rate of change of extension in one

direction, consider Fig. 7.4, in which a fluid accelerates, and thereby

“stretches,” within a constriction. A normalized rate of extension

(or stretching) can be defined as the rate at which a line element lengthens

divided by its original length; that is, it can be computed by knowing the

difference in lengths at two times. Let the original length be Δx at time t. For

this length to have increased at time t +Δt, the various particles cannot have

moved at the same velocity. Hence, let the leftmost points have velocity vx and

the rightmost points have velocity vx+Δvx, both at time t +Δt, which allows a

lengthening. Because a distance can be computed via a velocity multiplied by

time, we have the length Δx+ΔvxΔt at time t +Δt. Hence, the rate of length-

ening, normalized by the length at time t, is

Dxx ¼ lim
Δt! 0

Δx! 0

1

Δt

Δxþ ΔvxΔtð Þ � Δx

Δx

� �
; ð7:45Þ

where Δvx¼ (∂vx/∂x)Δx from a Taylor’s series expansion: vx(x+Δx)¼ vx(x)

+ (∂vx/∂x)Δx+H.O.T. Thus, the rate of extension becomes

Dxx ¼ lim
Δt! 0

Δx! 0

1

Δt

Δxþ ∂vx=∂xð ÞΔxΔt½ 	 � Δx

Δx

� �
¼ ∂vx

∂x
: ð7:46Þ

Likewise, it can be shown that

Dyy ¼
∂vy

∂y
,Dzz ¼

∂vz

∂z
: ð7:47Þ

Because they quantify rates at which lengths change, Dxx, Dyy, and Dzz are

sometimes called components of a stretching matrix [D]. As an aside, it is

interesting to note (do it) that

∇ � v ¼ ∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
� Dxx þ Dyy þ Dzz: ð7:48Þ

This will prove useful later. Indeed, a flow in which ∇ · v¼ 0 is said to be

incompressible because it says that a fluid element that is lengthening in one

direction must be thinning proportionately in other directions in order to

conserve its volume.

Angular deformations of a fluid element involve changes in an angle between

two initially perpendicular line segments in the fluid. To measure the rate of

change of angles, or shear rates, consider the differential element in Fig. 7.7. In

particular, imagine a rectangular fluid element that is contained between two
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solid plates and initially at rest. If the upper plate is moved with respect to a

fixed lower plate, we can easily imagine that the fluid elements would be

sheared (Fig. 7.7a). Similar to our analysis of the rigid rotation about the

z axis [cf. Eq. (7.38)], let us consider the rate at which the internal angles

change. For example (Fig. 7.7b), similar to Fig. 7.6

tanΔα ¼ vy þ ∂vy=∂x
� �

Δx

 �

� vy
� �

Δt

Δx
; ð7:49Þ

whereas in contrast to Fig. 7.6,

tanΔβ ¼ vx þ ∂vx=∂yð ÞΔy½ 	 � vxf gΔt
Δy

; ð7:50Þ

because the enclosed angle is assumed to get smaller over time during a

(positive) shearing motion (i.e., we are not looking at rigid-body rotation as

before). Because these results are good for a short interval of time Δt, note that

Δα and Δβ must likewise be small. By the small-angle approximation, there-

fore, tan ΔαffiΔα and tan ΔβffiΔβ and we have

FIGURE 7.7 Panel (a): Schema of an experimental system that gives rise to a simple

shear of a fluid element; panel (b): similar to Fig. 7.6 except for a pure shear rather than a

rigid-body rotation. In this case, the internal angle decreases a small amount, (Δα+Δβ),

over an interval of time Δt.
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Δα � vy þ ∂vy=∂x
� �

Δx

 �

� vy
� �

Δt

Δx
,

Δβ � vx þ ∂vx=∂yð ÞΔy½ 	 � vxf gΔt
Δy

:

ð7:51Þ

To find the rate at which these angles change, take the limit as Δt! 0 of the

time-averaged mean of the two changes in angle, namely

Dxy ¼ lim
Δt! 0

1

Δt
lim
Δx!0
Δy!0

1

2
Δαþ Δβð Þ

0
@

1
A ¼ lim

Δt!0

1

Δt

1

2

∂vy

∂x
Δtþ ∂vx

∂y
Δt

� �� 

;

ð7:52Þ

or

Dxy ¼
1

2

∂vy

∂x
þ ∂vx

∂y

� �
: ð7:53Þ

It is easy to show (do it) that

Dxz ¼
1

2

∂vx

∂z
þ ∂vz

∂x

� �
,Dyz ¼

1

2

∂vy

∂z
þ ∂vz

∂y

� �
: ð7:54Þ

Similar to the situation for strains, which are useful measures of the deformation

in solids, it can be shown that, by definition,Dxy¼Dyx, Dxz¼Dzx and Dyz¼Dzy.

These quantities can thus be written in (a symmetric) matrix form as follows:

D½ 	 ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

2
4

3
5; ð7:55Þ

where

Dxx ¼
∂vx

∂x
, Dxy ¼

1

2

∂vy

∂x
þ ∂vx

∂y

� �
¼ Dyx,

Dyy ¼
∂vy

∂y
, Dyz ¼

1

2

∂vy

∂z
þ ∂vz

∂y

� �
¼ Dzy,

Dzz ¼
∂vz

∂z
, Dzx ¼

1

2

∂vx

∂z
þ ∂vz

∂x

� �
¼ Dxz:

ð7:56Þ

Similarly, it can be shown that in cylindrical,
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D½ 	 ¼
Drr Drθ Drz

Dθr Dθθ Dθz

Dzr Dzθ Dzz

2
4

3
5; ð7:57Þ

where

Drr ¼
∂vr

∂r
, Drθ ¼

1

2
r
∂

∂r

vθ

r

� �
þ 1

r

∂vr

∂θ

� �
¼ Dθr,

Dθθ ¼
1

r

∂vθ

∂θ
þ vr

r
, Dθz ¼

1

2

1

r

∂vz

∂θ
þ ∂vθ

∂z

� �
¼ Dzθ,

Dzz ¼
∂vz

∂z
, Dzr ¼

1

2

∂vr

∂z
þ ∂vz

∂r

� �
¼ Drz:

ð7:58Þ

Finally, in spherical coordinates, it can be shown that

D½ 	 ¼
Drr Drθ Drϕ

Dθr Dθθ Dθϕ

Dϕr Dϕθ Dϕϕ

2
4

3
5; ð7:59Þ

where

Drr ¼
∂vr

∂r
, Drθ ¼

1

2
r
∂

∂r

vθ

r

� �
þ 1

r

∂vr

∂θ

� �
¼ Dθr,

Dθθ ¼
1

r

∂vθ

∂θ
þ vr

r
, Dθϕ ¼

1

2

sin θ

r

∂

∂θ

vϕ

sin θ

� �
þ 1

r sin θ

∂vθ

∂ϕ

� �
¼ Dϕθ,

Dϕϕ ¼
1

r sin θ

∂vϕ

∂ϕ
þ vr

r
þ vθ cot θ

r
,

Drϕ ¼
1

2

1

r sin θ

∂vr

∂ϕ
þ r

∂

∂r

vϕ

r

� �� �
¼ Dϕr:

ð7:60Þ

Here, let us make a few observations. First, recall from Chap. 2 that although

displacements u are intuitive and measured easily, it was discovered that

particular combinations of displacement gradients (called strains) are more

useful in the analysis of the mechanics of solids. So, too, in fluid mechanics,

we will see that combinations of velocity gradients are more useful in analysis

than the intuitive and easily measured velocities v. This reminds us that theory

and its associated concepts, not simply the ease of making a measurement, must

guide experimentation. Second, whereas the diagonal terms of [D] provide

information on rates of change of lengths, or stretching, the off-diagonal

terms provide information on rates of change of internal angles, or shearing.

Because of this, some prefer to refer to [D] as a rate of deformation rather than a

measure of stretching; indeed, others refer to it as a strain rate, for it is easily
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seen that the components of [D] could be computed from the components of the

strain [ε] if the displacement gradients were computed with respect to the

original not current positions (i.e., with respect to X not x). Because [ε] is

based on a linearization of the exact measure of strain [E], however, this

correspondence may lead one to the false conclusion that [D] is also a linear-

ization of some measure of the motion—it is not. The small changes in lengths

and angles used in deriving the components of [D] are consistent with the small

time steps Δt! 0; hence, there is no linearization. The take-home message,

therefore, is that regardless of its name (stretching, rate of deformation, or strain

rate), [D] is an exact, useful measure of the motion of particles in a fluid, just as

[E] is an exact, useful measure of the motion of particles in a solid. That said, we

shall refer to [D] as a rate of deformation and the particular off-diagonal terms

as shear rates.

Example 7.3 Compute the components of [D] for the velocity field in Example

7.1. Consider only x–y terms.

Solution: Given that v ¼ Ax î � Ay ĵ we have

Dxx ¼
∂vx

∂x
¼ A, Dxy ¼

1

2

∂vy

∂x
þ ∂vx

∂y

� �
¼ 0,

Dyx ¼
1

2

∂vy

∂x
þ ∂vx

∂y

� �
¼ 0, Dyy ¼

∂vy

∂y
¼ �A:

Relative to x and y, therefore, we would say that this flow is shearless as well as

irrotational (see Example 7.2).

Example 7.4 Determine the divergence of the velocity field in Example 7.3.

Solution:

∇ � v ¼ ∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
¼ Aþ �Að Þ þ 0 ¼ 0:

Hence, based on the above definition, this flow is incompressible (i.e., volume

conserving).

Again, that ∇ · v¼ 0 implies conservation of mass for an incompressible

fluid will be proven in Sect. 8.1 of Chap. 8.

7.4 Constitutive Behavior

Recall from Chap. 2 that a constitutive relation describes the response of a

material to applied loads under conditions of interest, which, of course, depends

on the internal constitution of the material. Thus, metals behave differently than
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polymers, and so too water behaves differently than glycerin, which behaves

differently than blood, and so on. Recall, too, that in biosolid mechanics, we

sought to relate stress to strain to describe linear and nonlinear elastic behaviors

(Chaps. 2 and 6). In contrast, experience has proven that it is more useful to

relate stress to rates of deformation in order to describe the behavior of most

fluids. Nevertheless, as is the case for solids, the formulation of a constitutive

relation for a fluid involves five steps (DEICE): delineating general character-

istics, establishing an appropriate theoretical framework, identifying a specific

form of the relation, calculating best-fit values of the material parameters, and

evaluating the predictive capability of the final relation. Let us now consider in

detail one class of fluids that we will focus on herein.

7.4.1 Newtonian Behavior

To begin our discussion of the experimental investigation of the constitutive

behavior of fluids, let us consider a greatly simplified situation. Assume that we

can pour a fluid onto a flat surface such that it does not wet the surface (i.e., it

forms a broad “bead” of fluid like water on a newly waxed car). Moreover,

assume that we can place a thin rigid solid plate on this thin layer of fluid, giving

a situation like that in Fig. 7.8. Let us then apply an end load to the plate, which

causes it to move at a constant velocity U0 in the x direction, which, in turn,

causes the fluid to flow. If the fluid has the same velocity, at the points of

contact, as the solid that it contacts, and ignoring effects near the ends (e.g.,

surface tension), the velocity field v in this simple case is v ¼ vx yð Þî ; where

vx ¼ U0

y

h

� �
, vy ¼ 0, vz ¼ 0: ð7:61Þ

In particular, note that vx (y¼ 0)¼ 0 and vx(y¼ h)¼U0, the velocities of the

bottom surface and the top plate, respectively. Assuming that a fluid has the

FIGURE 7.8 Couette flow

between two rigid parallel

plates. The bottom plate is

stationary,whereas the top

platemoves at velocityUo

in the positive x direction.
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same velocity as the solid it contacts is called the no-slip boundary condition.

Albeit an approximation, this assumption tends to be very good in many cases.

Consequently, the only nonzero component of [D], from Eq. (7.56), is

Dxy ¼
1

2

∂vy

∂x
þ ∂vx

∂y

� �
¼ 1

2
0þ U0

h

� �
¼ Dyx; ð7:62Þ

which we note is the same at all points (x, y, z) in the fluid (if we are away from

the end effects). By definition, the shear stress σxy exerted on the fluid by the

plate is equal and opposite the shear stress imposed by the fluid on the plate

(by Newton’s third law). In this case, σyx¼ f/A, where f is the applied load and

A is the surface area of contact between the plate and fluid. It is observed

experimentally that the fluid shear stress σyx is related linearly to its shear rate

Dyx for many fluids under many conditions (Fig. 7.9). Convention dictates that

the slope of this shear stress versus shear-rate relation be denoted as 2μ, where μ

is the (absolute) viscosity, much like the shear modulus G for solids. Viscosity

is thus an important property of many fluids. Simply put, viscosity is a measure

of the resistance to flow when a fluid is acted upon by a shear stress; in other

words, it is a measure of the “thickness” of the fluid. Molasses, for example, is

much more viscous than water (at the same temperature).

In most fluids, repeating this simple experiment in the y and z directions will

result in the same slope 2 μ (i.e., the same linear relationship between σyz and

Dyz and σxz and Dxz). Hence, the response of many fluids is typically isotropic

(i.e., independent of direction). Common experience reveals further that a fluid

can also support a pressure p and that if compressible, experiments reveal that

the normal stress will vary linearly with∇ · v, a measure of the volume change.

When a fluid exhibits these linear and isotropic characteristics, it is said to be

Newtonian to commemorate Sir I. Newton’s (1642–1727) suggestion that the

FIGURE 7.9 Shear stress plotted versus shear rate for a Newtonian fluid. Note the linear

relationship, the slope of which is denoted by 2 μ, where μ is the (absolute) viscosity.

The factor 2 is included simply to cancel the 1/2 that appears in the expression for shear

rates [e.g., Dxy, as in Eq. (7.56)].
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shear response of fluids was proportional to the shearing force. Newton did not

formulate his mechanics for continua, however, nor did he have the concepts of

stress, strain, or shear rates. As noted in Chap. 2, these ideas came later, due

largely to L. Euler (1707–1783) and A. Cauchy (1789–1857). Hence,

formal quantification of this linear behavior of fluids, based on extensive

experimentation, was put in mathematical form much later and is given by the

Navier–Poisson equations4

σxx ¼ � pþ λ ∇ � vð Þ þ 2μDxx, σxy ¼ 2μDxy ¼ σyx,

σyy ¼ � pþ λ ∇ � vð Þ þ 2μDyy, σyz ¼ 2μDyz ¼ σzy,

σzz ¼ �pþ λ ∇ � vð Þ þ 2μDzz, σxz ¼ 2μDxz ¼ σzx:
ð7:63Þ

where ∇ · v¼Dxx+Dyy+Dzz [Eq. (7.48)] and λ is a second material property/

parameter. G. Stokes (1819–1903) hypothesized that λ ~�2μ/3, which is often

employed. Regardless, these Navier–Poisson equations are similar for other

coordinate systems, such as for cylindricals,

σrr ¼ �pþ λ ∇ � vð Þ þ 2μDrr, σrθ ¼ 2μDrθ ¼ σθr,

σθθ ¼ � pþ λ ∇ � vð Þ þ 2μDθθ, σθz ¼ 2μDθz ¼ σzθ,

σzz ¼ �pþ λ ∇ � vð Þ þ 2μDzz, σrz ¼ 2μDrz ¼ σzr:
ð7:64Þ

and sphericals,

σrr ¼ � pþ λ ∇ � vð Þ þ 2μDrr, σrθ ¼ 2μDrθ ¼ σθr,

σθθ ¼ � pþ λ ∇ � vð Þ þ 2μDθθ, σrϕ ¼ 2μDrϕ ¼ σϕr,

σϕϕ ¼ � pþ λ ∇ � vð Þ þ 2μDϕϕ, σθϕ ¼ 2μDθϕ ¼ σϕθ:
ð7:65Þ

In the case of an incompressible behavior, it can be shown (see Chap. 8) that

∇ · v¼ 0 and thus the Stoke’s hypothesis for λ becomes a moot point. Of course,

when∇ · v¼ 0, these constitutive equations simplify tremendously. For example,

for an incompressible, Newtonian behavior, relative to Cartesian coordinates, we

have the incompressible Navier–Poisson equations [recalling Eq. (7.56)]

σxx ¼ � pþ 2μ
∂vx

∂x
, σxy ¼ μ

∂vy

∂x
þ ∂vx

∂y

� �
¼ σyx,

σyy ¼ � pþ 2μ
∂vy

∂y
, σxz ¼ μ

∂vx

∂z
þ ∂vz

∂x

� �
¼ σzx,

σzz ¼ � pþ 2μ
∂vz

∂z
, σyz ¼ μ

∂vy

∂z
þ ∂vz

∂y

� �
¼ σzy;

ð7:66Þ

4 L. Navier (1785–1836) and S. D. Poisson (1781–1840).
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which we shall use extensively in Chaps. 8 and 9; they are directly analogous to

the so-called Hooke’s law for solids [Exercise 2.18], which relates the stresses

and strains in a linear fashion.5 Indeed, Hooke’s law was also formulated by

Navier and others in the nineteenth century; it contains two independent

material parameters in the case of isotropy (E and v), similar to the compressible

Navier–Poisson equation (with parameters μ and λ). As noted earlier, however,

pressure plays a particularly important role in the constitutive relation here in

contrast to that for a Hookean solid.

Example 7.5 Although the p that appears in Eq. (7.66) is actually a Lagrange

multiplier that enforces the incompressibility constraint, similar to its role in

Eq. (6.76) for nonlinear solids, its value is equivalent to the hydrostatic pressure

for an incompressible Newtonian fluid. Prove this.

Solution: Recall from Eq. (7.3) that the hydrostatic pressure is defined as

p ¼ �1
3
σxx þ σyy þ σzz
� �

;

hence, for the incompressible Navier–Poisson relation, we have

�1
3
σxx þ σyy þ σzz
� �

¼ �1
3
� pþ 2μDxx � pþ 2μDyy � pþ 2μDzz

� �

¼ p� 2

3
μ Dxx þ Dyy þ Dzz

� �

¼ p� 2

3
μ

∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z

� �

¼ p� 2

3
μ ∇ � vð Þ;

where we said that ∇ · v will be shown to be zero for incompressible flows.

In this case, therefore, the p in Eq. (7.66) is the hydrostatic pressure. This is not

true, in general, for incompressible solids. Finally, note the term �2
3
μ that

multiplies the divergence of the velocity. This term reveals where the afore-

mentioned Stokes’ hypothesis originated.

5 It is interesting that the simple (i.e., linear) descriptions of solid and fluid behavior are
called Hookean and Newtonian after the contemporaries/adversaries R. Hooke and Sir
I. Newton even though the particular equations were put forth much later.
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Example 7.6 In the case of pure fluid statics, the fluid is at rest and thus the

velocity and acceleration of the fluid are both zero (note: actually, we only need

a¼ 0 for statics by Newton’s second law). Show that in this case, the only

possible stress in the fluid is a hydrostatic pressure. Moreover, show that if a

cube of a static fluid is oriented with respect to an (o; x, y, z) coordinate system,

then the only stresses with respect to an (o; x0, y0, z0) coordinate system are still

hydrostatic.

Solution: If v¼ 0, then vx¼ vy¼ vz¼ 0 and all components of [D] are zero.

From Eq. (7.66), therefore,

σxx ¼ � p, σyy ¼ � p, σzz ¼ � p,

σxy ¼ 0 ¼ σyx, σxz ¼ 0 ¼ σzx, σyz ¼ 0 ¼ σzy

and the stress is hydrostatic (i.e., the normal stresses at a point equal the

negative of the pressure at that point). Moreover, if we consider a rotation

about the z axis (i.e., in the x–y plane), then

σ
0
xx ¼ σxx cos

2αþ 2σxy cos α sin αþ σyy sin
2α,

σ
0
xy ¼ σ yy � σxx

� �
cos α sin αþ σxy cos 2α� sin 2αð Þ,

σ
0
yy ¼ σxx sin

2α� 2σxy cos α sinαþ σyy cos
2α

from Eqs. (2.13), (2.17), and (2.21). Hence, in our case,

σ
0
xx ¼ �p cos 2αþ 0� p sin 2α ¼ � p,

σ
0
xy ¼ � pþ pð Þ cos α sinαþ 0 ¼ 0,

σ
0
yy ¼ � p sin 2α� 0� p cos 2α ¼ � p

for all α, and the stress is indeed hydrostatic in pure fluid statics regardless of the

coordinate system (Fig. 7.10).

Although discussed in detail in Chap. 8, note that if μ is negligible, then

σxx ¼ �p, σ yy ¼ � p, σzz ¼ � p ð7:67Þ

and all shear stresses are zero. A fluid that can only support a pressure, not a

shear stress, is said to be inviscid. Whereas no fluid has zero viscosity, the

assumption of negligible viscosity (like that of a rigid member in a truss in

statics even though no material is truly rigid) has proven useful in many areas of

fluid mechanics, particularly in aerospace applications.
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7.4.2 Non-Newtonian Behavior

Not all fluids exhibit a Newtonian (i.e., linear) behavior. Figure 7.11 contrasts a

Newtonian behavior with two general non-Newtonian behaviors: pseudoplastic

and dilatant. Pseudoplastic behavior is characterized by a viscosity (i.e., resis-

tance to flow) that is lower at higher shear rates than it is at lower shear rates; for

this reason, pseudoplastic behavior is sometimes called shear thinning. This can

be due to particles within the fluid that aggregate at low shear rates but “break

up” at higher shear rates, which lowers the viscosity. Of particular importance

in biofluids, whole blood is such a fluid. At low shear rates, the red blood cells

tend to aggregate, a phenomenon known as rouleaux (Fig. 7.12), which depends

on the presence of fibrinogen and the globulins. Of course, in the limit as the

shear rate goes to zero, the blood will tend to aggregate further, eventually

FIGURE 7.10 So-called hydrostatic state of stress (shown in two dimensions simply for

convenience) wherein the normal components each equal –p, the fluid pressure, and the
shear components are all zero—both relative to all coordinate systems.

FIGURE 7.11 Two common non-Newtonian (i.e., nonlinear) behaviors exhibited by

fluids. A pseudoplastic behavior is characterized by a resistance to flow that decreases

with increasing shear rates, whereas a dilatant behavior is characterized by a resistance

to flow that increases with increasing shear rates. In both cases, the behavior at high

shear rates appears Newtonian; that is, the resistance to flow (or viscosity) is nearly

constant at high shear rates. Note, too, that the pseudoplastic and dilatant behaviors are

illustrative only; they could appear on either side of the Newtonian curve, the slope of

which varies from fluid to fluid and with temperature.
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leading to a process known as clotting, which involves additional mechanisms,

including platelet activation and the conversion of fibrinogen to fibrin, an

essential component of a clot. As the shear rate increases from low, but nonzero

values, however, the rouleaux break up and blood behaves like a Newtonian

fluid; the latter is often assumed in large arteries, thus, μ ~ constant (often cited

to be ~3.5 cP, or centiPoise) and one can employ the Navier–Poisson equations

to describe many flows of blood in large arteries. Plasma (i.e., whole blood

minus cells) always behaves as a Newtonian fluid, with a viscosity μ ~1.2 cP.

It should also be noted, however, that in capillaries, which are ~5–8 μm in

diameter, the red blood cells go through one at a time, with plasma in between.

In this case, the blood should be treated as a two-phase flow—a solid and fluid

mixture, which is beyond the scope of this book.

Because of its non-Newtonian behavior, whole blood has been modeled using

various relations.6 For example, Fung (1990) advocates the following model for

blood:

σxx ¼ � pþ 2η J2ð ÞDxx, σxy ¼ 2η J2ð ÞDxy,

σ yy ¼ �pþ 2η J2ð ÞDyy, σ yz ¼ 2η J2ð ÞDyz,

σzz ¼ �pþ 2η J2ð ÞDzz, σxz ¼ 2η J2ð ÞDxz;
ð7:68Þ

where

η J2ð Þ ¼
1ffiffiffiffiffi
J2
p μ2J2

� �1=4 þ 1ffiffiffi
2
p ffiffiffiffiffi

τy
p

� �2

; ð7:69Þ

FIGURE 7.12 Aggregation of red blood cells, called rouleaux, that occurs at low shear

rates. Such aggregation tends to increase the resistance of blood to flow at low shear

rates and thus is responsible in part for the pseudoplastic type of behavior of blood.

6 When behavior is linear, the relation is unique; when the behavior is nonlinear, many
different constitutive relations can often “fit” the data.
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J2 ¼
1

2
Dxx þ Dyy þ Dzz þ 2DxyDyx þ 2DxzDzx þ 2DyzDzy

� �
; ð7:70Þ

and μ is a viscosity at a high shear rate and τy is a solidlike yield stress at low

shear rates. To better appreciate the implications of this complex relation, let us

return to the simple experiment in Fig. 7.8, which allowed our observation of

linear behavior for a Newtonian fluid. In this simple case, Dxy is nonzero and all

other components of [D] are zero. Hence, Fung’s relation reduces to

σxy ¼ 2η J2ð ÞDxy; ð7:71Þ

with

η J2ð Þ ¼
1ffiffiffiffiffiffiffi
D2

xy

q μ2D2
xy

� �1=4
þ 1ffiffiffi

2
p ffiffiffiffiffi

τy
p

� �2

: ð7:72Þ

When Dxy is very small, η tends to become large, its value depending largely on

the values of τy/2Dxy; τy is also small, usually on the order of 0.005 Pa.

Conversely, when Dxy is large, the yield stress becomes negligible and ηffi μ,

the Newtonian case wherein σxy¼ 2μDxy. Hence, Fung’s relation accounts for

the pseudoplastic character illustrated in Fig. 7.11, including Newtonian behav-

ior at high shear rates.

Because the pseudoplastic character of blood is due largely to the red blood

cells, note the following. At a low hematocrit H (i.e., percent concentration of

red blood cells), such as H ~8.25 %, η(J2) is nearly constant (i.e., η ~ μ) over a

range of shear rates from 0.1 to 1,000 s�1. ForH ~18 %, however, η(J2) is nearly

constant only for shear rates above 600 s�1. Normal shear rates range from

100 to 2,000 s�1 in large arteries and from 20 to 200 s�1 in large to small veins.

Normal values of the hematocrit are about 42 and 47 % in women and men,

respectively, hence the Newtonian response only at high shear rates. As noted

earlier, the value of η(J2) at high shear rates is on the order of 2–3.5 cP for whole

blood. Note: 1 Poise¼ 0.1 kg/ms¼ 0.1 Ns/m2, where cP denotes centiPoise

(after J. Poiseuille).

A good example of a dilatant behavior is given by a cornstarch solution.

As some learn in kindergarten, slowly pulling one’s fingers through a cornstarch

solution meets little resistance, whereas quickly pulling one’s fingers meets

with considerable resistance; that is, the apparent viscosity increases with

increased shear rate (cf. Fig. 7.11). Dilatant behavior is typical of suspension

of solids, in which the solid content is very high (e.g., 80 %) so that it forms

large masses within the suspension. Increasing shear rates break up such

masses.
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Finally, note that some fluids exhibit a changing (apparent) viscosity over

time when at a constant shear rate; that is, an internal structure may build up or

break down over time. A non-Newtonian behavior characterized by a decreas-

ing viscosity over time is called thixotropic; one characterized by an increasing

viscosity over time of shear is called rheopectic. Because of these behaviors, a

hysteresis loop will be seen in plots of shear stress versus shear rate if the fluid is

sheared at an increasing rate for some time followed by a decreasing rate. Some

man-made models of synovial fluid exhibit such non-Newtonian characteristics.

Synovial fluid is found in articulating joints and is a remarkable lubricant.

It shall be discussed in more detail later.

Observation 7.2. We discuss in Chap. 11 multiple examples wherein one must

study together the fluid and the solid mechanics; such problems are often

referred to as fluid-solid interaction (FSI) problems. One of the most important

interactions in the vasculature is the cyclic deformation of the arterial wall in

response to local changes in blood pressure that occur throughout the cardiac

cycle; such deformations change the domain through which the blood flows and

hence the hemodynamics. One of the earliest studies of such fluid-solid inter-

actions resulted in the so-called Moens-Korteweg equation, which can be

written c2¼Eh/2ρa, where c is the speed of the pressure wave, E is the Young’s

modulus of linearized isotropic elasticity, h and a are the thickness and inner

radius of the tube, respectively, and ρ is the mass density of the fluid (see

Example 11.1). Hence, the wave speed c depends on both the geometry (a and

h) and physical properties (E and ρ), noting that Eh reveals that it is the

structural (not just material) stiffness that governs the pressure wave.

As expected, this equation predicts that the wave speed becomes infinite

when E becomes infinite, that is, if the tube is rigid. This observation warns

us of inherent limitations of solutions of the Navier–Stokes equations such as

those presented in Sects. 9.2, 9.4, and 9.5, each of which assumes a rigid wall.

The fundamental importance of pulse wave velocity in central arteries (e.g.,

the aorta and carotid arteries) has been recognized over the past few decades.

For example, an increased pulse wave velocity within the aorta causes the

reflected waves to return earlier during the cardiac cycle, thus augmenting the

systolic blood pressure in the proximal aorta rather than the diastolic pressure,

as in health. Increased systolic pressure and decreased diastolic pressure in the

proximal aorta results in an increased workload on the heart and decreased

coronary perfusion during diastole, both of which decrease cardiac function.

Although the Moens-Korteweg equation does not strictly apply to the arterial

tree (i.e., blood is not inviscid and arteries do not exhibit isotropic linear

elasticity and they are not straight, uniform thickness tubes over large dis-

tances), this equation provides considerable qualitative insight. Increases in

material stiffness, as in aging, and increases in wall thickness, as in
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hypertension (cf. Sect. 11.1), can each lead to increased pulse wave velocity and

thus clinical concern. Moreover, increasing information on structure—function

relations in arterial wall mechanics suggest that many genetic mutations (e.g.,

those to fibrillin-1 in Marfan syndrome; cf. Observation 6.3) can similarly lead

to arterial stiffening and adverse clinical outcomes. Again, therefore, there is

strong motivation to understand better the coupled effects of the solid and fluid

mechanics as well as the associated mechanobiological and mechanochemical

effects on diverse cell types, which in arterial mechanics predominantly means

smooth muscle cells, fibroblasts, and endothelial cells.

7.5 Blood Characteristics

Although the flow of air in the lungs and the flow of urine in the renal system are

very important problems in biofluid mechanics, both of these fluids can be

assumed to exhibit a Newtonian behavior in most cases. Indeed, the flows of

physiologic salt solutions in laboratory and clinical settings can likewise be

treated as Newtonian. Here, therefore, let us consider blood in more detail, both

because of its central role in hemodynamics and as an illustrative

non-Newtonian fluid.

7.5.1 Plasma

Blood is a viscous solid–fluid mixture consisting of plasma and cells. Plasma is

composed of ~90 % water and contains inorganic and organic salts as well as

various proteins: albumin, the globulins, and fibrinogen. Collectively, these

proteins represent about 7–8 % of the plasma by weight. Albumin, the smallest

plasma protein, is present in the largest concentration and represents about half

of the protein mass; it has a major role in regulating the pH and the colloid

osmotic pressure. The alpha and beta globulins, usually 45 % of the plasma

protein mass, are antibodies that fight infection. Fibrinogen is the largest of the

plasma proteins and, through its conversion to long strands of fibrin, has a major

role in the process of clotting; it accounts for only about 5 % of the plasma

protein mass. Serum is simply the fluid that remains after blood is allowed to

clot. For the most part, the composition of serum is the same as that of plasma,

with the exception that the clotting proteins, primarily fibrinogen, and platelets

have been removed. As noted earlier, plasma and, thus, serum exhibit a New-

tonian behavior; the viscosity of plasma, for example, is ~1.2 cP at 37 
C and its

specific gravity is 1.03. For comparison, the viscosity of water is ~1.0 cP at

20 
C and ~0.7 cP at 37 
C.
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7.5.2 Blood Cells

The cellular portion of blood consists of three primary types of cell: erythrocytes,

leukocytes, and platelets. The most abundant of these are the erythrocytes, or red

blood cells (RBCs), which constitute about 95–97 % of the cellular component

of blood. This class of cells has a normal life span on average of 120 days, which

corresponds to a net turnover rate of ~0.8 % per day. They are produced by the

bone marrow and removed primarily by the spleen. Erythrocytes consist of a

thin, flexible membrane with an interior filled with a hemoglobin solution;

whereas the membrane can be modeled as a solid, the hemoglobin solution can

be modeled as a fluid with a viscosity of ~6 cP. Clearly, then, there is great

advantage to packaging the hemoglobin within deformable membranes rather

than transporting it directly through the circulation. The major role played by the

RBCs is the transport of oxygen that is bound to the hemoglobin, which

constitutes about 95 % of their dry weight. Consequently, the density of a red

blood cell is higher than that of plasma, and in a quiescent state, the RBCs tend to

settle. This settling is used in the laboratory to determine the volume fraction of

red blood cells, called the hematocrit and often denoted byH; its value typically

varies between 40 and 50 %.

Red blood cells in blood that is not flowing have a unique shape described as a

biconcave discoid with a major diameter of approximately 7.6 μm, a maximum

thickness of about 2.8 μm, and a minimum thickness of 1.44 μm. The average

human red blood cell has a volume of about 98 μm3 and a surface area of

130 μm2. There are about 5� 106 red blood cells in a cubic millimeter of

blood; hence, there is tremendous surface area available for gas exchange.

When subjected to low shear rates, red blood cells can form face-to-face stacked

structures called rouleaux, which, in turn, can clump together to form larger RBC

structures called aggregates (Fig. 7.12). Both rouleaux and aggregates break

apart under conditions of increased blood flow, or higher shear rates as noted

earlier, which contributes to the pseudoplastic character of blood.

Example 7.7 The biconcave shape of the RBC increases its surface area-to-

volume ratio. Compute this ratio and compare it to the value that would hold for a

spherical cell.

Solution: Given the stated volume V and the surface area A of 98 μm3 and

130 μm2, respectively, we have a ratio of 1.33 μm�1 for the biconcave shape.

If the RBC were a sphere of volume 98 μm3, then its radius would be

r ¼ 3V=4πð Þ1=3 ¼ 2:86μm:
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The associated surface area would thus be A¼ 4πr2¼ 103 μm2; thus, for a

sphere, the ratio of surface area to volume would be 103/98¼ 1.05 μm�1.
This value is significantly less than that for the biconcave disk. Of course, in

the capillary, the RBC deforms significantly from its baseline shape, which

could further increase the ratio of surface area to volume, although some have

suggested that the surface area tends to remain constant. A constant surface area

can be accounted for constitutively for the membrane as a kinematic constraint

(Humphrey 2002).

The next most abundant cell type in blood is the platelets, which constitute

about 4.9 % of the cell volume. There are (2.5–3.0)� 105 platelets per cubic

millimeter of blood, with cell diameters ~2.5 μm and thicknesses ~0.5 μm.

As the name implies, they have a platelike disk shape. The platelets are major

players in the coagulation of blood and thus the prevention of blood loss. The

remaining 0.1 % of the cellular component of blood consists of leukocytes, or

white blood cells (WBCs), which form the cellular component of the immune

system. There are (5–8)� 103 WBCs per cubic millimeter of blood in health.

The three primary classes of WBCs are the monocytes (16–22 μm in diameter),

granulocytes (10–12 μm in diameter), and lymphocytes (7 μm in diameter).

Although much fewer in number than the RBCs, there are ~37� 109 (37 billion)

WBCs circulating in the blood of a healthy adult. Because the white blood cells

and platelets only constitute 5 % of the cellular component of blood, their effect

on the macroscopic flow characteristics of blood is typically assumed to be

negligible; that is, the non-Newtonian character of blood is controlled primarily

by the hematocrit and, to a lesser degree, the fibrinogen.

7.5.3 Additional Rheological Considerations

Rheology is a science concerned with the deformation and flow of materials.

This name comes from the Greek rheo, meaning something that flows.

Notwithstanding its non-Newtonian character, which renders blood more

difficult to study than Newtonian fluids, the rheological behavior of blood is

complicated further by its heterogeneous composition; that is, recall that we

mentioned earlier that RBCs tend to go through capillaries in single file, with

plasma between them, and, consequently, that such flows are best studied as a

solid–fluid mixture. Regardless of the diameter of the vessel through which it

flows, blood is always a suspension of blood cells in plasma; thus, its rheological

properties depend on the concentration, mechanical properties, and interactions

of its constituent parts. In particular, the rheology of blood depends strongly on

the deformation of individual cells, especially the erythrocytes. For this reason,

cell mechanics is as important in biofluid mechanics as it is in biosolid
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mechanics (indeed, the study of the inflammatory response due to WBCs

depends largely on the mechanics of their adhesion to the endothelium, thus

rendering the study of leukocytes likewise important). Actually, because of the

ease of isolating RBCs in vitro, they were among the first cells to be studied

within the context of mechanics, which began in earnest in themid- to late-1960s

with the birth of modern biomechanics itself.

A marked aggregation of red blood cells at low shear rates is reflected by the

yield stress τy, which must be exceeded for the material to flow. Many hetero-

geneous fluids that contain a particulate phase that forms aggregates at low

shear rates exhibit a yield stress. The presence of a yield stress alone renders the

behavior of a fluid non-Newtonian and, indeed, gives it an initial solidlike

behavior. Materials that exhibit a yield stress but thereafter behave as a New-

tonian fluid are called Bingham plastics—clay suspensions being a prime

example. Recall that Fung’s proposed constitutive equation for blood

[Eq. (7.68)] accounted for both the initial yield stress and the pseudoplastic

character. As noted earlier, another characteristic of a non-Newtonian behavior

is that the viscosity varies with shear rate. For non-Newtonian fluids, the local

slope of the stress versus shear-rate curve at a given value of the shear rate is

often called the apparent viscosity, sometimes denoted as μa. The apparent

viscosity of blood is shown in Fig. 7.13 as a function of hematocrit H and shear

rate at a temperature of 37 
C. Consistent with its pseudoplastic character, the

apparent viscosity of blood is high at low shear rates due to the presence of

rouleaux and aggregates. At shear rates above about 100 s�1 only individual

cells exist, and blood behaves macroscopically as if it were a Newtonian fluid.

Actually, blood flow in large arteries and veins is Newtonian only near the

vessel wall, where the wall shear rate is significantly higher than 100 s�1.
As one gets closer to the centerline of the vessel, the shear rate can approach

zero (shown in Chap. 9) and blood may exhibit its non-Newtonian character.

Many investigators ignore this complexity and model large vessel flows assum-

ing a constant apparent viscosity, yet we must be mindful of the actual physics

in cases wherein the heterogeneity of the blood is important.

FIGURE 7.13 Viscosity of

blood as a function of

shear rate and hematocrit

H (i.e., percentage of red

blood cells by volume).

The deformability and

the volume fraction of

red blood cells both

affect the viscosity.
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Whereas the erythrocytes represent the major cell species in determining the

flow properties of blood in health, leukocytes, platelets, and blood-borne

proteins may play significant roles in abnormal or disease conditions. Recalling

that an increase of the hematocrit increases the resistance of blood to flow, note

that the same effect is seen when the fibrinogen concentration is increased.

Indeed, if the clotting protein fibrinogen is removed, while keeping the hemat-

ocrit unchanged, the resulting RBC suspension behaves nearly like a Newtonian

fluid for shear rates as low as 0.01 s�1. Fibrinogen and its effect of increasing

interactions between RBCs thus appears to play a role in the non-Newtonian

behavior at low shear rates; that is, the other plasma proteins, such as albumin

and the globulins, do not contribute significantly to the non-Newtonian behavior

of blood, although their concentration will affect the viscosity of the plasma.

Finally, it should be noted that the deformability alone (i.e., solid mechanics)

of the red blood cells plays a key role in the rheology of blood. Note, therefore,

that the solidlike RBC membrane is capable of moving around the fluidlike cell

contents much like a tank-tread moves around the wheels of a tank. This

movement of the cell membrane appears to aid the RBCs in their adapting to

a flow: normal RBCs undergo shearing deformations and their long axes show a

preferential alignment with flow. This clearly affects the overall rheology of

blood. In diseases such as sickle cell anemia, which alters the shape and

properties of the erythrocytes, one sees an associated tremendous change in

the rheological properties of the blood. Indeed, the importance of RBC

deformability is revealed well by studying suspensions of similarly sized but

rigid spheres. The apparent viscosity of a fluid—rigid sphere solution increases

nonlinearly with an increase in the volume fraction of the spheres and asymp-

totes near a 50 % concentration, where it ceases to flow. In comparison, blood

could flow with even a 98 % hematocrit (Fung 1993). In other words, the

viscosity of blood is about one-half that of a similar suspension of hard spheres.

Observation 7.3. Another fluid in the body that exhibits a strong non-Newtonian

character is the synovial fluid in articulating joints. This fluid is secreted into the

joint cavity at the synovial membrane. It is normally clear and colorless, often

looking like raw egg white. Indeed, its name comes from syn (meaning like) and

ovial (meaning egg). Synovial fluid is a dialysate of plasma; it contains proteins

(e.g., 3.4 g/dL in pigs, including albumin and globulins), hyaluronan (119mg/dL),

and a small amount of phospholipids (19 mg/dL). The hyaluronan, which

is commonly called hyaluronic acid, is the simplest glycosaminoglycan; it consists

of a sequence of up to 25,000 repeating disaccharide units, and is a very large

molecule (molecular weight ~8� 106). It is the hyaluronic acid that gives synovial

fluid its advantageous non-Newtonian characteristics (a shear-thinning viscosity, a

normal stress effect, and an elastic effect at high frequencies of loading), which

can be lost in diseases such as rheumatoid arthritis. Understanding the mechanical
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behavior of synovial fluid is thus important in understanding health and disease.

Figure 7.14 shows the shear-thinning behavior, which is thought to be due to the

increased alignment of the hyaluronic acid molecules at high shear rates.

It is commonly known that synovial fluid plays an important role as a

lubricant for the relative motion of cartilage-to-cartilage in a joint such as the

knee (Fig. 7.15). It is remarkable, therefore, that this is accomplished with such

a small amount of synovial fluid. The human knee joint contains only 0.2 mL of

synovial fluid, with a layer thickness that is typically on the order of microme-

ters to perhaps even nanometers. The associated coefficient of friction ranges

from 0.001 to 0.03, which is remarkably small. For more on lubrication within

diarthroidal joints, see Mow et al. (1990) and Chap. 5 in Handbook of Bioen-

gineering edited by Skalak and Chien (1987).

7.6 Cone-and-Plate Viscometry

Recall from Chap. 3 that we derived governing differential equations for

equilibrium (Sects. 3.1 and 3.2) that can be solved exactly in certain cases

(Sect. 3.6). Such solutions are very valuable in biomechanics, particularly in

the design and interpretation of experiments that are used to determine consti-

tutive relations and likewise in the analysis of stress in studies of

mechanotransduction. We will derive similar governing differential equations

for fluids in Chap. 8 and obtain a number of exact solutions in Chap. 9. Never-

theless, in both biosolid and biofluid mechanics, much simpler approximate

FIGURE 7.14 Shear thinning of synovial fluid, the primary lubricant in articulating joints

(left). Another important characteristic of a non-Newtonian fluid is its ability to generate

a shear-rate-dependent normal stress (right). Quantification of the 3-D behavior of

non-Newtonian fluids is beyond an introductory text, however, and the reader is referred

to Tanner (1985) for an introduction.
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solutions are often useful; examples include the “strength of materials solutions”

for torsion and bending in Chaps. 4 and 5. Here, let us consider one such

approximate solution of experimental utility in biofluid mechanics: the relation-

ship between the viscosity of a fluid and the applied loads and geometry of a

common experimental device.

A device (or meter) that measures viscosity is called a viscometer. There are

many different types of viscometers, including the capillary viscometer, con-

centric cylinder viscometer, the parallel-disk viscometer, the falling-sphere

viscometer, and the cone-and-plate viscometer. In each case, solutions are

needed for the viscosity μ in terms of experimentally measurable quantities.

A concentric cylinder viscometer is discussed in detail in Chap. 9, but here let us

consider two approximate solutions. Figure 7.16 shows the so-called parallel-

plate and cone-and-plate viscometers. In each case, a fluid is placed between

two rigid solids: a fixed-bottom plate and an upper flat plate or a small-angle

cone. Obviously, the more viscous the fluid, the more difficult it would be to

rotate the upper plate or cone. One thus seeks to relate the viscosity of the fluid

FIGURE 7.15 Schema of the knee showing the important constituents for geometric

modeling and constitutive behavior. Cartilage and joint lubrication are considered

briefly in Chap. 11.
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to the applied load (torque T) and the geometry of the device (radius a, gap

height h, or cone angle α) for a given constant angular velocity ω of the upper

plate or cone. Although these may appear to be simple devices based on simple

ideas, the generated steady-state flow field (once transients disappear due to

starting the device) is at least two dimensional; the velocity will depend on both

r and z. Hence, here we derive an approximate (incomplete) rather than exact

(full) solution. Let us consider the cone-and-plate device. Obviously, the veloc-

ity vector of any point of the cone will have but a circumferential component,

which will equal rω, where ω is the constant angular velocity; that is, the

velocity is zero at the centerline and maximum at the outer edge. Let us assume,

therefore, that the fluid contacting the cone will have the same velocity as the

surface of the cone, namely

vθ ffi rω! dvθ ffi ωdr; ð7:73Þ

where, from geometry, tan α¼ dz/dr, and thus dr¼ cot αdz. Hence, our velocity

gradient at the surface of the cone can be approximated as

∂vθ

∂z
� ω cot α; ð7:74Þ

or for small α (i.e., α� 1 whereby cos α ~ 1 and sin α ~ α), we have a constant

shear rate

FIGURE 7.16 Schema of two “viscous-meters,” or viscometers, that are used to deter-

mine the viscosity of a fluid: the parallel-plate (left) and the cone-and-plate (right)
devices.
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∂vθ

∂z
� ω

α
: ð7:75Þ

If we now assume a Newtonian behavior, then at the surface of the cone, we

have, from Eqs. (7.58) and (7.64),

σzθ ¼ 2μ
1

2

1

r

∂vz

∂θ
þ ∂vθ

∂z

� �� 

: ð7:76Þ

Hence, the approximate shear stress in the fluid acting on the surface of the cone

is

σzθ � μ
∂vθ

∂z
¼ μ

ω

α
: ð7:77Þ

Now, the stress on the solid, called the wall shear stress τw, is equal and opposite

that of the fluid. It acts over a differential area on the cone, which we approx-

imate as dA¼ rdθdr for θ2 [0, 2 π] and r2 [0, a], a reasonable approximation if

α� 1. This wall shear stress, acting at each point over its respective cross-

sectional area (i.e., τw dA), gives rise to a differential force. The sum of all such

differential forces acting at a distance r from the centerline of the device gives

rise to a differential twisting moment that balances the applied torque T, which

is measurable; that is [cf. Eq. (4.16)],

T �
ð a

0

ð2π

0

rτwdA ¼ 0; ð7:78Þ

or

T ¼
ð a

0

ð2π

0

r
μω

α

� �
rdθdr ¼ 2πμω

α

ð a

0

r2dr ¼ 2πμωa3

3α
: ð7:79Þ

Hence,

μ ¼ 3Tα

2πωa3
ð7:80Þ

for the cone-and-plate viscometer (Alexandrou 2001, p. 486). Clearly then, μ is

“measurable” given specifications for the device (α and a) as well as measure-

ments of the applied torque T that is required to maintain the cone at a constant

angular velocity ω. Note that for a Newtonian fluid, μ¼ constant, which is to

say, T/ω would likewise be constant. If this ratio is not constant for different

values of ω, the fluid is said to be non-Newtonian and μ could be estimated for
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different values of the shear rate ω/α. Each value of μ so determined would be

called an “apparent” viscosity. Because the viscosity of a non-Newtonian fluid

varies with shear rate, the cone-and-plate device is useful because the shear rate

near the surface of the cone is approximately constant (¼ω/α). This solution is

approximate (incomplete), of course, because we did not account for the no-slip

boundary condition at the bottom fixed plate and we assumed that α! 0.

Using a similar approach, it can be shown that (Alexandrou 2001, p. 485)

μ ffi 2hT

πωa4
ð7:81Þ

for the parallel-plate viscometer. For a description of the design of actual

viscometers, see Ferry (1980, pp. 96–102). Just as in biosolid mechanics,

quantification of material behavior in biofluid mechanics is fundamental to

success in real-life analysis and design. It must remain a high priority in all

R&D.

Chapter Summary

This Chapter is the first of four that redirects our attention to the analysis of

materials that exhibit fluidlike behaviors, which we loosely refer to as fluids.

Noting that a fluid can exist in either a liquid or gaseous form, it is generally

defined as either a substance that occupies the container in which it is placed or

a substance that flows in response to a shear stress, no matter how small the

shear. Whereas the concept of (Cauchy) stress is the same for solidlike and

fluidlike behaviors, because of the importance of “flow” in biofluid mechanics,

we expanded our discussion of kinematics from displacements and strain

(Chap. 2) to include velocity and acceleration (Sec. 7.3.1), vorticity

(Sect. 7.3.2), and rate of deformation (Sect. 7.3.3). Because these basic kine-

matical concepts hold for all fluids, regardless of their constitutive behavior,

they must be understood well.

We also introduced three different classes of constitutive behaviors for fluids.

The first considered was that of a Newtonian fluid, that is, one exhibiting a linear

relationship between stress and rate of deformation (see Fig. 7.9, with viscosity

reflected by the slope of the linear relationship and providing a measure of

the resistance to flow). Quantified via the Navier-Poisson relations

(Eqs. (7.63)–(7.65)), the Newtonian behavior of a fluid is analogous to the

Hookean behavior of a solid (i.e., a linear relation between stress and strain,

with stiffness indicated by the slope of the linear relationship and providing a

measure of the resistance to deformation). Nevertheless, a Newtonian behavior

is not limited theoretically to particular ranges of rates of deformation and thus

is more general than a Hookean behavior, which is limited to small strains.
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Incorporation of the Navier-Poisson relations within linear momentum balance

gives rise to the famous Navier–Stokes equation in fluid mechanics (Sect. 8.3),

which are similarly analogous to the Navier Space Equilibrium equation in solid

mechanics (Sect. 3.2). When viscous effects are negligible, the Navier-Poisson

relation reduces to a constitutive relation for an ideal fluid (i.e., inviscid and

incompressible), which gives rise to the famous Euler and Bernoulli equations

of motion that are discussed in detail in Chap. 8.

Just as nonlinear constitutive relations are needed in biosolid mechanics

(cf. Chap. 6), so too nonlinear relations are needed in biofluid mechanics.

For example, blood at low shear rates and the synovial fluid within joints both

exhibit nonlinear behaviors. Amongst the many different classes of nonlinear

constitutive behaviors of fluids, we introduced a simple non-Newtonian relation

in Sect. 7.4.2 wherein the viscosity depends on both an invariant measure of the

rate of deformation and a threshold value of shear stress (Eqs. (7.68)–(7.70)).

An illustrative solution of the flow of such a non-Newtonian fluid can be found

in Sect. 9.6.

Finally, recall from the acrostic DEICE introduced in Sect. 1.7 that the

formulation of a constitutive relation starts with the Delineation of general

characteristic behaviors, which arise from the microstructural constitution of

the material. Hence, we reviewed briefly the origin of blood rheology (the

interested reader is again referred to books on Histology) as well as a common

experimental method (cone-and-plate viscometer) for quantifying the constitu-

tive response of blood (Sect. 7.6). The associated analysis is based on an

approximate solution for the cone-and-plate device that depends, however, on

the assumption of a Newtonian or particular non-Newtonian response, hence

resulting in an expression for viscosity in terms of experimentally measurable

quantities (Eq. (7.80)).

Appendix 7: Vector Calculus Review

A vector is a mathematical quantity having characteristics of magnitude and

direction; a scalar is a quantity having characteristics ofmagnitude only. Vectors

are denoted herein as boldface italics and scalars as italics. Let the vector u be

written in terms of its Cartesian components as u ¼ ux î þ uy ĵ þ uzk̂ and

similarly for the vector v ¼ vx î þ vy ĵ þ vzk̂ ; where î ¼ 1;0;0ð Þ, ĵ ¼ 0;1;0ð Þ,
and k̂ ¼ 0;0;1ð Þ are orthonormal base vectors (recall that a coordinate system is

defined by its origin and a basis); that is, î , ĵ , k̂
� �

are mutually orthogonal and

they are of unit magnitude. We will use the caret to denote a unit magnitude in

most cases [e.g., ŵ ¼w=
��w
��; where the magnitude

��w
��¼ w �wð Þ1=2:]
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Dot Product

The dot product between two vectors yields a scalar quantity. It can be achieved

as follows:

u � v ¼ v � u ¼
��u
����v
�� cos θ; ðA7:1Þ

where θ is the angle between u and v. Vectors u and v are orthogonal if the angle

between them is θ¼ π/2. Thus, u and v are orthogonal if and only if u · v¼ 0.

Alternatively, the dot product can be computed as

u � v ¼ ux î þ uy ĵ þ uzk̂
� �

� vx î þ vy ĵ þ vzk̂
� �

¼ uxvx î � î
� �

þ uxvy î � ĵ
� �

þ uxvz î � k̂
� �

þ uyvx ĵ � î
� �

þ uyvy ĵ � ĵ
� �

þ uyvz ĵ � k̂
� �

þ uzvx k̂ � î
� �

þ uzvy k̂ � ĵ
� �

þ uzvz k̂ � k̂
� �

ðA7:2Þ

Hence, it is good to remember the dot products between base vectors. For

example, î � î ¼
��î
����î
�� cos θ ¼ 1ð Þ 1ð Þ cos 0 ¼ 1: In summary,

î � î ¼ 1, ĵ � î ¼ 0, k̂ � î ¼ 0,

î � ĵ ¼ 0, ĵ � ĵ ¼ 1, k̂ � ĵ ¼ 0,

î � k̂ ¼ 0, ĵ � k̂ ¼ 0, k̂ � k̂ ¼ 1:

ðA7:3Þ

Hence, using these results in Eq. (A7.2), we see that

u � v ¼ uxvx 1ð Þ þ uyvy 1ð Þ þ uzvz 1ð Þ: ðA7:4Þ

The magnitude of a vector, say u, can thus be computed as

��u
�� ¼

ffiffiffiffiffiffiffiffiffi
u � u
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y þ u2z

q
: ðA7:5Þ

Cross Product

The cross product between two vectors yields a vector (i.e., a quantity having

both a magnitude and a direction), and specifically a vector that is perpendicular

to the plane containing the original two vectors. It can be written as

u� v ¼ �v� u ¼
��u
����v
�� sin θê⊥; ðA7:6Þ
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where ê⊥ is a base vector perpendicular to the plane containing u and v. As with

the dot product, it is useful to know the cross products between the base vectors.

For example, î � ĵ ¼
��î
���� ĵ
�� sin π=2ð Þ k̂ ¼ k̂ : In summary,

î � î ¼ 0, ĵ � î ¼ �k̂ , k̂ � î ¼ ĵ ,

î � ĵ ¼ k̂ , ĵ � ĵ ¼ 0, k̂ � ĵ ¼ �î ,
î � k̂ ¼ � ĵ , ĵ � k̂ ¼ î , k̂ � k̂ ¼ 0;

ðA7:7Þ

Hence, the cross product for the vectors u and v can be computed as

u� v ¼ u1 î þ u2 ĵ þ u3k̂
� �

� v1 î þ v2 ĵ þ v3k̂
� �

¼ î � î
� �

u1v1ð Þ þ î � ĵ
� �

u1v2ð Þ þ î � k̂
� �

u1v3ð Þ

þ ĵ � î
� �

u2v1ð Þ þ ĵ � ĵ
� �

u2v2ð Þ þ ĵ � k̂
� �

u2v3ð Þ

þ k̂ � î
� �

u3v1ð Þ þ k̂ � ĵ
� �

u3v2ð Þ þ k̂ � k̂
� �

u3v3ð Þ;

ðA7:8Þ

or

u� v ¼ u2v3 � u3v2ð Þî þ u3v1 � u1v3ð Þ ĵ þ u1v2 � u2v1ð Þk̂ : ðA7:9Þ

There is a special operator that plays a key role in fluid mechanics. Thus, recall

the differential operator∇, also known as the del operator, which, relative to a

Cartesian coordinate system, can be written as

∇ ¼ î
∂

∂x
þ ĵ

∂

∂y
þ k̂

∂

∂z
: ðA7:10Þ

This del operator operates on a scalar function ϕ to produce the gradient of ϕ,

namely

∇ϕ ¼ î
∂

∂x
þ ĵ

∂

∂y
þ k̂

∂

∂z

� �
ϕ ¼ î

∂

∂x
ϕð Þ þ ĵ

∂

∂y
ϕð Þ þ k̂

∂

∂z
ϕð Þ

¼∂ϕ

∂x
î þ ∂ϕ

∂y
ĵ þ ∂ϕ

∂z
k̂ :

ðA7:11Þ

Thus, the gradient of a scalar is a vector; we shall see in Chap. 8 that the

“pressure gradient” plays an important role in the governing equations of

motion for fluids. The del operator can also form a scalar product with a vector

to produce the divergence of the vector:
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∇ �v¼ î
∂

∂x
þ ĵ

∂

∂y
þ k̂

∂

∂z

� �
� vx î þ vy ĵ þ vzk̂
� �

¼ î � ∂
∂x

vx î þ vy ĵ þ vzk̂
� �

þ ĵ � ∂
∂y

vx î þvy ĵ þvzk̂
� �

þ k̂ � ∂
∂z

vx î þ vy ĵ þ vzk̂
� �

;

ðA7:12Þ

which, because î , ĵ , and k̂ do not vary with position, becomes

∇ � v ¼ î � î
� �

∂

∂x
vx

� �
þ î � ĵ
� �

∂

∂x
vy

� �
þ î � k̂
� �

∂

∂x
vz

� �

þ ĵ � î
� �

∂

∂y
vx

� �
þ ĵ � ĵ
� �

∂

∂y
vy

� �
þ ĵ � k̂
� �

∂

∂y
vz

� �

þ k̂ � î
� �

∂

∂z
vx

� �
þ k̂ � ĵ
� �

∂

∂z
vy

� �
þ k̂ � k̂
� �

∂

∂z
vz

� �
ðA7:13Þ

or, by recalling the above results for dot products between the bases,

∇ � v ¼ ∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
: ðA7:14Þ

Recall that the divergence of the velocity vector provides information on the

incompressibility of a fluid flow. The del operator can also form a cross product

with a vector to produce the curl of the vector:

curlv ¼ ∇� v ¼ î
∂

∂x
þ ĵ

∂

∂y
þ k̂

∂

∂z

� �
� vx î þ vy ĵ þ vzk̂
� �

¼ î � ∂

∂x
vx î þ vy ĵ þ vzk̂
� �

þ ĵ � ∂

∂y
vx î þ vy ĵ þ vzk̂
� �

þk̂ � ∂

∂z
vx î þ vy ĵ þ vzk̂
� �

;

ðA7:15Þ

which, again, simplifies considerably because the Cartesian bases do not change

with position (x, y, z). Hence,

curlv¼ î � î
� �

∂

∂x
vx

� �
þ î � ĵ
� �

∂

∂x
vy

� �
þ î � k̂
� �

∂

∂x
vz

� �

þ ĵ � î
� �

∂

∂y
vx

� �
þ ĵ � ĵ
� �

∂

∂y
vy

� �
þ ĵ � k̂
� �

∂

∂y
vz

� �

þ k̂ � î
� �

∂

∂z
vx

� �
þ k̂ � ĵ
� �

∂

∂z
vy

� �
þ k̂ � k̂
� �

∂

∂z
vz

� �
ðA7:16Þ
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or, by recalling the above results for cross products between the bases,

curlv ¼ 0ð Þ ∂

∂x
vx

� �
þ k̂
� �

∂

∂x
vy

� �
þ � ĵ
� �

∂

∂x
vz

� �

þ �k̂
� �

∂

∂y
vx

� �
þ 0ð Þ ∂

∂y
vy

� �
þ î
� �

∂

∂y
vz

� �

þ ĵ
� �

∂

∂z
vx

� �
þ �î
� �

∂

∂z
vy

� �
þ 0ð Þ ∂

∂z
vz

� �
;

ðA7:17Þ

or, finally,

curlv ¼ ∂vz

∂y
� ∂vy

∂z

� �
î þ ∂vx

∂z
� ∂vz

∂x

� �
ĵ þ ∂vy

∂x
� ∂vx

∂y

� �
k̂ : ðA7:18Þ

Recall that the curl of the velocity is a measure of the so-called vorticity in a

fluid, which provides information on the rotation of fluid elements.

Cylindricals

Because arteries, airways, ureters, medical tubing, and so forth are all cylindrical

tubes, we need to be familiar with cylindrical polar coordinates. Although there

are different ways to accomplish this, here we recall the relationships between

cylindricals and Cartesians. Recall, therefore, that

x ¼ r cos θ, y ¼ r sin θ ðA7:19Þ

or,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, θ ¼ tan �1

y

x

� �

and, of course, z¼ z. Moreover,

ê r ¼ cos θî þ sin θ ĵ , ê θ ¼ � sin θî þ cos θ ĵ ; ðA7:20Þ

or

î ¼ cos θê r � sin θê θ, ĵ ¼ sin θê r þ cos θê θ: ðA7:21Þ

The latter results for ı̂ and ĵ can be determined from those for êr and êθ given the

two equations for the two “unknowns.” Note, therefore, that

∂ê r

∂θ
¼ � sin θî þ cos θ ĵ ¼ ê θ: ðA7:22Þ
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and, similarly,

∂ê θ

∂θ
¼ � cos θî � sin θ ĵ ¼ �ê r: ðA7:23Þ

Conversely, êr and êθ do not vary with r.

To determine the del operator ∇ in cylindrical coordinates, recall that

∇ ¼ î
∂ð Þ
∂x
þ ĵ

∂ð Þ
∂y
þ k̂

∂ð Þ
∂z

: ðA7:24Þ

This relation can thus be written (using the transformations for the bases and the

chain rule) as

∇ ¼ cos θê r � sin θê θð Þ ∂ð Þ
∂r

∂r

∂x
þ ∂ð Þ

∂θ

∂θ

∂x

� �

þ sin θê r þ cos θê θð Þ ∂ð Þ
∂r

∂r

∂y
þ ∂ð Þ

∂θ

∂θ

∂y

� �
þ ê z

∂ð Þ
∂z

:

ðA7:25Þ

From Eq. (A7.19), we note that

∂r

∂x
¼ 1

2
x2 þ y2
� ��1=2

2x ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ r cos θ

r
¼ cos θ ðA7:26Þ

and, similarly (show it),

∂r

∂y
¼ sin θ: ðA7:27Þ

Likewise, from calculus, we recall the derivative of the arctangent; hence,

∂θ

∂x
¼ 1

1þ y=xð Þ2
� y

x2

� �
¼ � y

x2 þ y2
¼ � r sin θ

r2
¼ � sin θ

r
ðA7:28Þ

and, similarly (show it),

∂θ

∂y
¼ cos θ

r
: ðA7:29Þ

Hence, Eq. (A7.25) can be shown to become (noting that cos2 θ + sin2 θ¼ 1)

∇ ¼ ê r

∂ð Þ
∂r
þ ê θ

1

r

∂ð Þ
∂θ
þ ê z

∂ð Þ
∂z

: ðA7:30Þ
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The Divergence Theorem

Let us now consider an important theorem in solid and fluid mechanics. The

divergence theorem states that integration over an area of the dot product

between a vector B and an outward unit normal n̂ is equal to an integration of

the divergence of B over a volume:

ðð

Area

B � n̂ da ¼
ððð

Volume

∇ � Bd�v ðA7:31Þ

wherein we use the notation v for volume in fluids to distinguish it from

velocity, even though volume is a scalar and velocity a vector.

Example A7.1 Show numerically that the divergence theorem holds for the

vector B ¼ 4xzî � y2 ĵ þ yzk̂ over a domain defined by a unit cube.

Solution: Let the six faces of the unit cube be denoted as a, b, c, d, e, and f,

where a is the positive x face, b is the positive y face, c is the positive z face, d is

the negative x face, e is the negative y face, and f is the negative z face. Hence,

note that

ððð
∇ � Bd�v ¼

ð1

0

ð1

0

ð1

0

∂Bx

∂x
þ ∂By

∂y
þ ∂Bz

∂z

� �
dxdydz

¼
ð1

0

ð1

0

ð1

0

4z� 2yþ yð Þdxdydz

¼
ð1

0

ð1

0

4z� yð Þ
ð1

0

dx

� 

dydz

¼
ð1

0

4zy� y2

2

� 
����
1

0

dz ¼ 4z2

2
� 1

2
z

� 
����
1

0

¼ 3

2
:

Now, by the divergence theorem, this value must equal that determined by the

sum of the surface integrals:

ðð
B � n̂ dA ¼

ð

a

þ
ð

b

þ
ð

c

þ
ð

d

þ
ð

e

þ
ð

f

;

where these integrals represent values over each of the six faces of the unit cube.

Note, therefore, that
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að Þ n̂ ¼ î , dA ¼ dydz, atx ¼ 1,

bð Þ n̂ ¼ ĵ , dA ¼ dxdz, at y ¼ 1,

cð Þ n̂ ¼ k̂ , dA ¼ dxdy, at z ¼ 1,

dð Þ n̂ ¼ �î , dA ¼ dydz, atx ¼ 0,

eð Þ n̂ ¼ � ĵ , dA ¼ dxdz, at y ¼ 0,

fð Þ n̂ ¼ �k̂ , dA ¼ dxdy, at z ¼ 0;

hence, for surface a,

ð1

0

ð1

0

B � î dA ¼
ð1

0

ð1

0

4xzjx¼1dydz ¼ 4 yj10
� � 1

2
z2
����
1

0

 !
¼ 2:

Similarly, show that

ð

b

¼ �1,
ð

c

¼ 1

2
,

ð

d

¼ 0,

ð

e

¼ 0,

ð

f

¼ 0;

thus

ðð
B � n̂ dA ¼ 2� 1þ 1

2
þ 0þ 0þ 0 ¼ 3

2
;

consistent with the volume integral and thus the divergence theorem as stated.

Exercises

7.1 Generate a list of 20 clinically relevant problems that demand a biofluid

mechanical design or analysis.

7.2 Give short, concise definitions of fluid, steady flow, Eulerian approach,

viscosity, Newtonian fluid, no-slip boundary condition, and convective

acceleration.

7.3 Give short, concise definitions of fully developed flow, vorticity, laminar

flow, pseudoplastic behavior, shear-rate, uniform flow, and 1-D flow.

7.4 Show that v ·∇ 6¼∇ · v in Cartesian coordinates.

7.5 Show that

∇ � v ¼ 1

r

∂

∂r
rvrð Þ þ 1

r

∂vθ

∂θ
þ ∂vz

∂z
;
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where

∇ ¼ ê r

∂

∂r
þ ê θ

1

r

∂

∂θ
þ ê z

∂

∂z

in cylindrical coordinates. Likewise, show that

v �∇ ¼ vr
∂

∂r
þ vθ

r

∂

∂θ
þ vz

∂

∂z
:

Hint: Recall that

∂

∂θ
ê rð Þ ¼ ê θ and

∂

∂θ
ê θð Þ ¼ �ê r:

7.6 Show that

∇ � v ¼ 1

r2
∂

∂r
r2vr
� �

þ 1

r sin θ

∂

∂θ
vθ sin θð Þ þ 1

r sin θ

∂vϕ

∂ϕ
;

where

∇ ¼ ê r

∂

∂r
þ ê θ

1

r

∂

∂θ
þ ê ϕ

1

r sin θ

∂

∂ϕ

in spherical coordinates. Hint: Recall that

∂

∂θ
ê rð Þ ¼ ê θ,

∂

∂θ
ê θð Þ ¼ �ê r,

∂

∂ϕ
ê rð Þ ¼ sin θê ϕ,

∂

∂ϕ
ê θð Þ ¼ cos θê ϕ, and

∂

∂ϕ
ê ϕ

� �
¼ � sin θê r � cos θê θ:

7.7 Consider a velocity vector v ¼ xtþ 2yð Þî þ xt2 � ytð Þ ĵ . (a) Is this a

steady flow, and why? (b) Is this a possible incompressible flow, and

why? (c) Calculate the acceleration.

7.8 Compute the acceleration (in an Eulerian sense) given the following

components of the velocity vector: vx¼ xt2, vy¼ xyt2+ y2, and vz¼ 0.

7.9 Let v ¼ axy î � byzt ĵ , with a and b known scalar constants, then

(a) Calculate the acceleration vector using an Eulerian approach and

(b) determine if ∇ · v¼ 0.

7.10 Show that ∇ · (∇� v)¼ 0.
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7.11 Given the velocity field v ¼ xþ yð Þ î þ x� yð Þ ĵ þ 0k̂ ; (a) determine if

the flow is incompressible (i.e., ∇ · v¼ 0) and (b) determine if it is

irrotational (i.e., ∇� v¼ 0).

7.12 Given the following velocity field v ¼ az2 î þ bzk̂ : (a) Is this a possible
incompressible flow (i.e., ∇ · v¼ 0)? (b) Is this a possible irrotational

flow (i.e., ∇� v¼ 0)?

7.13 Show that

∇� v ¼ 1

r

∂vz

∂θ
� ∂vθ

∂z

� �
ê r þ

∂vr

∂z
� ∂vz

∂r

� �
ê θ þ

1

r

∂ rvθð Þ
∂r

� 1

r

∂vr

∂θ

� �
ê z

in cylindrical coordinates. Hint: Note that

∂vθ

∂r
þ vθ

r
�1
r

∂

∂r
rvθð Þ:

7.14 Show that (v ·∇)v¼ 1/2 ∇ (v · v)� v� (∇� v).

7.15 Derive the expressions for Dyy and Dzz.

7.16 Derive the expressions for Dxz and Dyz.

7.17 If v ¼ vz rð Þê z; where

vz rð Þ ¼ c 1� r2

a2

� �

and c and a are constants, determine (a) if this is a possible incompress-

ible flow and (b) if this is a possible irrotational flow. Note that this

velocity field will be shown in Chap. 9 to correspond to a steady flow in a

rigid cylinder of inner radius a.

7.18 For the velocity field given in the previous exercise, compute Drr and

Drz.

7.19 Compute ∇2�∇ ·∇ in Cartesian coordinates.

7.20 Show that ∇2v can be written in Cartesians as

∇
2v ¼ ∂

2
vx

∂x2
þ ∂

2
vx

∂y2
þ ∂

2
vx

∂z2

 !
î þ ∂

2
vy

∂x2
þ ∂

2
vy

∂y2
þ ∂

2
vy

∂z2

 !
ĵ

þ ∂
2
vz

∂x2
þ ∂

2
vz

∂y2
þ ∂

2
vz

∂z2

 !
k̂ :
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7.21 Show that in cylindricals

∇
2 ¼ 1

r

∂

∂r
r
∂

∂r

� �
þ 1

r2
∂
2

∂θ2
þ ∂

2

∂z2

where ∇2 is called the Laplacian and therefore

∇
2
Φ ¼ 1

r

∂

∂r
r
∂Φ

∂r

� �
þ 1

r2
∂
2
Φ

∂θ2
þ ∂

2
Φ

∂z2

for any scalar Ф. Hint: Remember that the base vectors in cylindrical

coordinates may change with direction and that

∇ ¼ ê r

∂

∂r
þ ê θ

1

r

∂

∂θ
þ ê z

∂

∂z
:

7.22 Sketch the change in the apparent viscosity μa as a function of shear rate

for pseudoplastic, Newtonian, and dilatant behaviors.

7.23 There are about 5� 106 RBCs/mm3 for an average human having 5 L of

blood. Compute the number of RBCs circulating in the body, and if the

net turnover rate is 0.8 % per day, how many cells are produced and

removed per day?

7.24 Data from a viscometer suggest the following:

σrz (Pa) 1.7 2.7 4.8 6.5

Drz (s
�1) 200 300 470 600

Is this a Newtonian behavior? If not, then what type of behavior might it

be?

7.25 According to Ethier and Simmons (2007), the inorganic content of

plasma (i.e., blood minus cells) is: Na+ ~142 mM, K+ ~4 mM, Ca++

~2.5 mM, Mg++ ~1.5 mM, Cl� ~103 mM, HCO3
� ~27 mM, phosphate

(mainly HPO4
2�) ~1 mM, and SO4

2� ~0.5 mM. Compare these values to

those for a standard physiological testing solution such as Krebs or

Hanks and discuss the associated implications.

7.26 It was shown in Sect. 7.6 that the value of the viscosity can be estimated

via a cone-and-plate viscometer, namely

μ ¼ 3Tα

2πωa3
;

where T is the applied torque, α is the cone-angle, ω is the angular

velocity (units of s�1), and a is the maximum radius of the cone. If Tm
is the maximum torque applied and B�T/Tm, show that
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μ � 60
B

N

if α¼ 1.565
, a¼ 2.409 cm, and Tm¼ 673.7 dyn cm, where

N is the number of revolutions per minute (rpm). Note that ω (rad/s)¼
(2π rad/rev)(N rpm)(1 min/60 s).

7.27 Given the results in Exercise 7.26 for a particular cone-and-plate viscom-

eter, plot μ (cP) versus shear rate (s�1) based on the following data:

N (rpm) 3 6 12 30 60

B 2.87 5.77 11.20 21.85 35.50

Classify the fluid (pseudoplastic, Newtonian, or dilatant) based on this

plot. (Data from lecture notes by Professor D.J. Schneck, Virginia Tech.)

7.28 We will discover in Chap. 9 that the volumetric flow rate Q for a steady,

incompressible flow in a rigid circular tube of radius a is given by

Q ¼ πa4

8μ
k;

where k is the pressure drop per unit length [i.e., k¼ (Pi�P0)/L, where

Pi and Po are inlet and outlet pressures, respectively along the tube].

If a ~1.25 cm and Q ~5 L/min, compute the requisite percent increase in

Pi (assuming Po does not change) if μ¼ 6 cP (hemoglobin) rather than

μ¼ 3.5 cP (whole blood). What implications would this have on the

human heart with a cardiac output of 5 L/min?

7.29 Derive Eq. (7.81).

7.30 Find the gap height h for the parallel-plate viscometer in Fig. 7.16 if the

torque T, the angular velocity ω, dimension a, and viscosity μ have

values similar to those in Exercise 7.26.

7.31 Similar to Example A7.1, show that the divergence theorem holds for a

unit cube if B ¼ 2xy î � 2xy ĵ :
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8
Fundamental Balance Relations

Recall from Chap. 1 that one of the best-known equations in science is F¼ma,

which is called Newton’s second law of motion. This equation asserts that,

relative to an inertial frame of reference, the (time) rate of change of the linear

momentummv for a mass particlemmust balance the forces F that are applied to

the particle. For this reason, this “law ofmotion” (actually postulate) is also called

the balance of linear momentum. Whereas Sir I. Newton considered only indi-

vidual mass points (like theMoon or an apple), L. Euler showed that many bodies

can be treated as a continuous collection of mass points (i.e., a continuum), each

particle of which obeys Newton’s second law. Indeed, as it turns out, three basic

postulates provide the equations of motion for any continua,

Balance of mass

Balance of linear momentum

Balance of energy (i.e., first law of thermodynamics)

to which we often add the postulates of the balance of angular momentum and

the entropy inequality (i.e., second law of thermodynamics), both of which can

provide restrictions on the allowable constitutive relations. For example, recall

from Chap. 2 that the balance of angular momentum requires that the Cauchy

stress [σ] be symmetric, which restricts possible constitutive relations that are

formulated in terms of σ. Each of these five postulates can be stated as either

differential equations (for systems) or integral equations (for control volumes).

In this chapter, we focus on the governing differential equations for mass and

linear momentum balance; the differential equation for energy balance is useful

in bioheat transfer, which is not addressed herein. Chap. 10 addresses the

control volume formulation for mass, linear momentum, and energy. Because

these postulates are good for all continua, they apply equally well to biosolids

and biofluids; we will see, however, that some of these equations specialize for
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individual material behaviors, which facilitates the formulation and solution of

particular problems.

8.1 Balance of Mass

We shall require that the identifiable differential mass Δm be conserved for all

time t; that is, in the limit as Δm! dm,

d

dt
dmð Þ ¼ 0! d

dt
ρd�vð Þ ¼ 0; ð8:1Þ

where ρ is the mass density (having units of mass per volume) and d�v is a

differential volume at any time t. Hence, we have by the product rule,

d

dt
ρd�vð Þ ¼ dρ

dt
d�vþ ρ

d

dt
d�vð Þ ¼ 0: ð8:2Þ

For simplicity, let us assume that the differential mass of interest is in the shape

of a cube both at time t¼ 0 and a particular time t sometime during its history.

(Of course, if the original system of interest is cuboidal, it would be expected to

assume many different shapes when flowing. We simply assume that, “remark-

ably,” it is again a cube at some time t, which is the instant on which we will

focus.) Hence, let the differential volume at time t be d�v ¼ dx dy dz, which was

originally a (possibly) different cube having volume d�V ¼ dX dY dZ. For a

cube to deform into another cube, there can be length changes at most (i.e., no

shear). Consequently, whereas the position x of a particle in the cube at time

t could be a function of X, Y, and Z, in general, and thus by the chain rule

dx ¼ ∂x

∂X
dX þ ∂x

∂Y
dY þ ∂x

∂Z
dZ ð8:3Þ

(and similarly for dy and dz). For a cube to deform into a cube, we must have at

each time t, only

x ¼ x Xð Þ ! dx ¼ ∂x

∂X
dX,

y ¼ y Yð Þ ! dy ¼ ∂y

∂Y
dY,

z ¼ z Zð Þ ! dz ¼ ∂z

∂Z
dZ:

ð8:4Þ
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Hence, d�v at time t is

d�v ¼ dx dy dz ¼ ∂x

∂X
dX

∂y

∂Y
dY

∂z

∂Z
dZ ¼ ∂x

∂X

∂y

∂Y

∂z

∂Z
d�V; ð8:5Þ

where d�V does not change in time because it is defined at t¼ 0. The rate of

change of d�v is thus

d

dt
d�vð Þ ¼ d

dt

∂x

∂X

∂y

∂Y

∂z

∂Z

� �
d�V: ð8:6Þ

Employing the product rule,

d

dt
d�vð Þ ¼ d

dt

∂x

∂X

� �
∂y

∂Y

∂z

∂Z
þ ∂x

∂X

d

dt

∂y

∂Y

� �
∂z

∂Z
þ ∂x

∂X

∂y

∂Y

d

dt

∂z

∂Z

� �� 

d�V: ð8:7Þ

Because the original positions (X, Y, Z) are independent of time, we can

interchange the order of the temporal and spatial differentiations. Using

Eq. (7.7) and the chain rule, we have

d

dt

∂x

∂X

� �
¼ ∂

∂X

dx

dt

� �
¼ ∂

∂X
vxð Þ ¼

∂vx

∂x

∂x

∂X
,

d

dt

∂y

∂Y

� �
¼ ∂

∂Y

dy

dt

� �
¼ ∂

∂Y
vy
� �

¼ ∂vy

∂y

∂y

∂Y
,

d

dt

∂z

∂Z

� �
¼ ∂

∂Z

dz

dt

� �
¼ ∂

∂Z
vzð Þ ¼

∂vz

∂z

∂z

∂Z
:

ð8:8Þ

Substituting these results into Eq. (8.7) and then Eq. (8.2), we have

d

dt
ρd�vð Þ ¼ dρ

dt
þ ρ

∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z

� �� 

∂x

∂X

∂y

∂Y

∂z

∂Z
d�V ð8:9Þ

or, by recalling Eq. (7.48),

d

dt
ρd�vð Þ ¼ dρ

dt
þ ρ ∇ � vð Þ

� 

d�v ¼ 0: ð8:10Þ

Because this equation must hold for any d�v, not all zero, this implies that
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dρ

dt
þ ρ ∇ � vð Þ ¼ 0; ð8:11Þ

which is our (local) statement of the balance of mass. Because the mass density

could differ at different points (x, y, z) or at different times, then

dρ

dt
¼ ∂ρ

∂t

dt

dt
þ ∂ρ

∂x
vx þ

∂ρ

∂y
vy þ

∂ρ

∂z
vz; ð8:12Þ

similar to Eq. (7.15) (i.e., the Eulerian description of acceleration). Hence,

Eq. (8.11) could also be written as ∂ρ=∂tþ∇ � ρvð Þ ¼ 0. Regardless, if ρ is a

constant, dρ/dt¼ 0, and the balance of mass requires only that

∇ � v ¼ 0: ð8:13Þ

This is the mass balance relation for an incompressible flow, as alluded to in

Chap. 7.

Finally, it should be noted that because our final expression for mass balance

can be written in vector form, it is independent of coordinate system and

therefore completely general. That is, the derivation based on deforming a

cube into a cube was simply used for convenience; it is not a restricted case.

Using mathematics beyond that typically available to the beginning undergrad-

uate, this derivation can be repeated exactly for an arbitrarily shaped Δm

(Humphrey 2002). Herein, however, we shall simply focus on its use, not its

general derivation. Given Eq. (8.13) and the definition of the del operator for

various coordinate systems (Appendix 7 of Chap. 7), one can show that mass

balance for an incompressible flow requires

∇ � v ¼ ∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
¼ 0 ð8:14Þ

in Cartesians,

∇ � v ¼ 1

r

∂

∂r
rvrð Þ þ 1

r

∂vθ

∂θ
þ ∂vz

∂z
¼ 0 ð8:15Þ

in cylindricals, and

∇ � v ¼ 1

r2
∂

∂r
r2vr
� �

þ 1

r sin θ

∂

∂θ
vθ sin θð Þ þ 1

r sin θ

∂vϕ

∂ϕ
¼ 0 ð8:16Þ

in sphericals. The latter two result from Exercises 7.5 and 7.6.
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Observation 8.1. Note that ∇ � v ¼ tr D½ 	; that is, the divergence of the velocity
equals the sum of the diagonals of the rate of deformation when it is written in

matrix form as [D]. Recall Eqs. (7.55)–(7.60). In Cartesians, therefore,

incompressibility requires that

∇ � v ¼ Dxx þ Dyy þ Dzz ¼ 0;

where Dxx, Dyy, and Dzz are measures of the rates at which line elements change

length in the x, y, and z directions. Our intuition is thus supported by this

equation: for volume to be conserved, lengthening in at least one direction

must be accompanied by shortening in at least one direction.

Example 8.1 Is the following velocity field a possible incompressible flow?

v x; y; z; tð Þ ¼ ρg sin θ

μ
yh� y2

2

� �
î

where ρ is the mass density of the fluid, g (¼9.81 m/s2) is the gravitational

constant, μ is the viscosity of the fluid, θ is some fixed angle (number) relative to

a horizontal datum, and h is some depth of a fluid film.

Solution:

∇ � v ¼ ∂

∂x

ρg sin θ

μ
yh� y2

2

� �� 

þ ∂

∂y
0ð Þ þ ∂

∂z
0ð Þ ¼ 0;

so yes, this is a possible incompressible flow field. This velocity field will be

determined formally in Example 9.3 via the solution of the equation of motion

for a particular boundary value problem.

8.2 Balance of Linear Momentum

As noted earlier, Euler showed that Newton’s statement of the balance of linear

momentum for a mass particle (i.e., F¼ma) can be generalized for a continuum

(i.e., infinite collection of particles). Hence, let us apply Newton’s second law to

our differential mass Δm, which we shall again take to be a differential cube

having volume ΔxΔyΔz and mass density ρ (i.e., Δm¼ ρΔxΔyΔz). Two types
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of forces of importance in continuum mechanics are those that act on every

particle in the continuum, called body forces, and those that act on the body

only through its surface, the surface forces. Let the body force that the fluid

element experiences be defined per unit mass and denoted g¼ gx î þgy ĵ þgzk̂ .

The most common example of a body force is gravity. Moreover, let the forces

acting on the surface of the cube be computed via the appropriate Cauchy stress

(σ(face)(direction) relative to a prescribed coordinate system) multiplied by its

respective surface area. Common surface forces are hydrostatic pressure and

frictional forces between fluid particles moving relative to each other. Desiring

to let the cube shrink to a point (i.e., in the limit as Δx, Δy, Δz!0), let

the components of the stress at the center of Δm be σxx, σxy, σxz, . . ., σzz.

Next, assume that the stress may vary from point to point1; thus, the stresses

on each of the faces of Δm must differ from those in the center (although the

stresses also vary over each face, we shall represent the stresses on a given face

by their mean value, which will be appropriate as we shrink to a point). This

difference from face to face is expected to be small, however, because the

distance from the center, located at (x, y, z), to each face is small (e.g., Δx/2,

Δy/2, Δz/2). Hence, we consider a Taylor’s series expansion about the center.

For example, for the normal stress on the positive x face, we have

σxx þ
∂σxx

∂x

Δx

2

� �
þ H:O:T:; ð8:17Þ

(where H.O.T. stands for higher-order terms such as Δx2 and so forth, which are

negligible with respect toΔx, as shown in Sect. 3.1 of Chap. 3) and similarly for

each component and each face. Remembering that we are summing forces (i.e.,

stresses acting over oriented areas), we have (Fig. 8.1)

X
Fx ¼ max ! σxx þ

∂σxx

∂x

Δx

2

� �� 

� σxx �

∂σxx

∂x

Δx

2

� �� 
� �
ΔyΔz

þ σyx þ
∂σyx

∂y

Δy

2

� �� 

� σyx �

∂σyx

∂y

Δy

2

� �� 
� �
ΔxΔz

þ σzx þ
∂σzx

∂z

Δz

2

� �� 

� σzx �

∂σzx

∂z

Δz

2

� �� 
� �
ΔxΔy

þ ρgxΔxΔyΔz ¼ ρΔxΔyΔzax:

ð8:18Þ

1 This is similar to that done in solids as, for example, letting the moment in the beam
element M(x) be M(x)+ΔM(x) at x +Δx and so on. See also Sect. 3.1 of Chap. 3.
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Simplifying and taking the limit, we have

lim
Δx! 0

Δy! 0

Δz! 0

1

ΔxΔyΔz

∂σxx

∂x
þ∂σyx

∂y
þ∂σzx

∂z

� 

ΔxΔyΔzþρgxΔxΔyΔz�ρaxΔxΔyΔz

� �
¼ 0;

ð8:19Þ

or, as our final result in the x direction,

∂σxx

∂x
þ ∂σyx

∂y
þ ∂σzx

∂z
þ ρgx ¼ ρax: ð8:20Þ

Note that the first subscript on the stress denotes the face on which the force

acts, whereas the second subscript denotes the direction of the force—each σ in

this equation appropriately has x for the second subscript because this is an

x-direction force balance. Balance in the y-direction (Fig. 8.2) similarly yields

X
Fy ¼ may ! σyy þ

∂σ yy

∂y

Δy

2

� �� 

� σyy �

∂σyy

∂y

Δy

2

� �� 
� �
ΔxΔz

þ σxy þ
∂σxy

∂x

Δx

2

� �� 

� σxy �

∂σxy

∂y

Δx

2

� �� 
� �
ΔyΔz

þ σzy þ
∂σzy

∂z

Δz

2

� �� 

� σzy �

∂σzy

∂z

Δz

2

� �� 
� �
ΔxΔy

þ ρgyΔxΔyΔz ¼ ρΔxΔyΔzay:

ð8:21Þ

FIGURE 8.1 Force balance for a fluid element of cuboidal shape that is accelerating and

subjected to body forces. For simplicity, x-direction contributions only are given.
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Again, simplifying and taking the limit, we have

∂σxy

∂x
þ ∂σyy

∂y
þ ∂σzy

∂z
þ ρgy ¼ ρay: ð8:22Þ

Similarly, in the z direction, we find (do it)

∂σxz

∂x
þ ∂σyz

∂y
þ ∂σzz

∂z
þ ρgz ¼ ρaz: ð8:23Þ

Equations (8.20), (8.22), and (8.23) are the general equations of motion relative

to a Cartesian coordinate system. Because we did not specify any particular

material behavior (i.e., constitutive relation) in this derivation, these equations

are true for all materials that can be regarded as continua. Indeed, in the case of

statics (i.e., no accelerations), we recover Eqs. (3.8)–(3.10), which were derived

for solids but likewise are good for all continua.

Similar equations can be found for other coordinate systems. For example, in

cylindricals, we have

∂σrr

∂r
þ 1

r

∂σθr

∂θ
þ ∂σzr

∂z
þ σrr � σθθ

r
þ ρgr ¼ ρar; ð8:24Þ

∂σrθ

∂r
þ 1

r

∂σθθ

∂θ
þ ∂σzθ

∂z
þ 2σrθ

r
þ ρgθ ¼ ρaθ; ð8:25Þ

FIGURE 8.2 Similar to

Fig. 8.1 except for the

y-direction.
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∂σrz

∂r
þ 1

r

∂σθz

∂θ
þ ∂σzz

∂z
þ σrz

r
þ ρgz ¼ ρaz; ð8:26Þ

and in sphericals

∂σrr

∂r
þ 1

r

∂σθr

∂θ
þ 1

r sin θ

∂σϕr

∂ϕ
þ 1

r
2σrr � σθθ � σϕϕ þ σθr cot θ
� �

þ ρgr ¼ ρar;

ð8:27Þ
∂σrθ

∂r
þ 1

r

∂σθθ

∂θ
þ 1

r sinθ

∂σϕθ

∂ϕ
þ 1

r
2σrθ þ σθr þ σθθ � σϕϕ

� �
cotθ


 �
þ ρgθ ¼ ρaθ;

ð8:28Þ
∂σrϕ

∂r
þ1

r

∂σθϕ

∂θ
þ 1

r sinθ

∂σϕϕ

∂ϕ
þ1

r
2σrϕþσϕrþ σϕθþσθϕ

� �
cotθ


 �
þρgϕ¼ ρaϕ:

ð8:29Þ

8.3 Navier–Stokes Equations

To specialize the equations of motion for an incompressible Newtonian behav-

ior, the incompressible ∇ � v ¼ 0ð Þ Navier-Poisson equation [Eq. (7.66)] can

be substituted into the equations of motion [Eqs. (8.20), (8.22), and (8.23)]. For

example, for Cartesian coordinates, the x-direction equation

∂σxx

∂x
þ ∂σyx

∂y
þ ∂σzx

∂z
þ ρgx ¼ ρax ð8:30Þ

becomes

∂

∂x
� pþ 2μ

∂vx

∂x

� �
þ ∂

∂y
2μ

1

2

� �
∂vx

∂y
þ ∂vy

∂x

� �� 


þ ∂

∂z
2μ

1

2

� �
∂vx

∂z
þ ∂vz

∂x

� �� 

þ ρgx ¼ ρax; ð8:31Þ

or

�∂ p

∂x
þ 2μ

∂
2
vx

∂x2
þ μ

∂
2
vx

∂y2
þ μ

∂
2
vy

∂y∂x
þ μ

∂
2
vx

∂z2
þ μ

∂
2
vz

∂z∂x
þ ρgx ¼ ρax: ð8:32Þ
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Now, if we let

2μ
∂
2
vx

∂x2
¼ μ

∂
2
vx

∂x2
þ μ

∂
2
vx

∂x2
ð8:33Þ

and if we interchange the order of mixed derivatives ∂
2
=∂y∂x to ∂

2
=∂x∂y and

so forth, then Eq. (8.32) can be written as

�∂p

∂x
þ μ

∂
2
vx

∂x2
þ ∂

2
vx

∂y2
þ ∂

2
vx

∂z2

 !
þ ρgx þ μ

∂

∂x

∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z

� �
¼ ρax;

ð8:34Þ

or

�∂p

∂x
þ μ∇2vx þ ρgx þ μ

∂

∂x
∇ � vð Þ ¼ ρax: ð8:35Þ

Note: The Laplacian ∇
2 �∇ �∇, which is computed easily. Consistent with

the above incompressibility assumption,∇ � v ¼ 0; thus, our final relation in the

x direction is

�∂ p

∂x
þ μ∇

2vx þ ρgx ¼ ρax: ð8:36Þ

Similarly, the y-direction equation

∂σxy

∂x
þ ∂σyy

∂y
þ ∂σzy

∂z
þ ρgy ¼ ρay ð8:37Þ

becomes

∂

∂x
2μ

1

2

� �
∂vx

∂y
þ ∂vy

∂x

� �� 

þ ∂

∂y
�pþ 2μ

∂vy

∂y

� �

þ ∂

∂z
2μ

1

2

� �
∂vy

∂z
þ ∂vz

∂y

� �� 

þ ρgy ¼ ρay; ð8:38Þ

or

�∂ p

∂y
þ μ∇

2vy þ ρgy þ μ
∂

∂y
∇ � vð Þ ¼ ρay: ð8:39Þ
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Incompressibility thus yields

�∂ p

∂y
þ μ∇2vy þ ρgy ¼ ρay: ð8:40Þ

Finally,

∂σxz

∂x
þ ∂σyz

∂y
þ ∂σzz

∂z
þ ρgz ¼ ρaz ð8:41Þ

can be shown (do it) to reduce to:

�∂ p

∂z
þ μ∇

2vz þ ρgz ¼ ρaz: ð8:42Þ

Considering the three component equations, we see that the incompressible

Navier–Stokes equations (due to Navier (1785–1836) and Stokes (1819–1903))

can be written more generally in vector notation as

�∇pþ μ∇2vþ ρg ¼ ρa; ð8:43Þ

which is good for any coordinate system. Finally, for an Eulerian approach,

recall from Eq. (7.21) that the acceleration has two contributions: local and

convective. Writing these explicitly yields our final form for the incompressible

Navier–Stokes equation:

�∇ pþ μ∇
2vþ ρg ¼ ρ

∂v

∂t
þ v �∇ð Þv

� �
: ð8:44Þ

Hence, this system of equations consisting of the equation of motion (8.44) and

the incompressible mass balance equation [see Eq. (8.13)],

∇ � v ¼ 0; ð8:45Þ

represent our four governing differential equations (three scalar momentum

equations and one scalar mass equation) for an incompressible Newtonian fluid

in terms of our four unknowns (pressure and three components of velocity).

Because of the convective acceleration terms, these are nonlinear coupled

partial differential equations, which are difficult to solve in general; one must

often resort to numerical methods. We shall see in Chaps. 9 and 11, however,

that a number of useful solutions can be found analytically in Cartesian,

cylindrical, and spherical coordinates. In cylindrical coordinates, for example,

the incompressible Navier–Stokes equations are
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�∂ p

∂r
þ μ

∂

∂r

1

r

∂ rvrð Þ
∂r

� �
þ 1

r2
∂
2
vr

∂θ2
� 2

r2
∂vθ

∂θ
þ ∂

2
vr

∂z2

" #
þ ρgr

¼ ρ
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
� v2θ

r
þ vz

∂vr

∂z

� �
;

ð8:46Þ

�1
r

∂ p

∂θ
þ μ

∂

∂r

1

r

∂ rvθð Þ
∂r

� �
þ 1

r2
∂
2
vθ

∂θ2
þ 2

r2
∂vr

∂θ
þ ∂

2
vθ

∂z2

" #
þ ρgθ

¼ ρ
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ
þ vrvθ

r
þ vz

∂vθ

∂z

� �
;

ð8:47Þ

�∂ p

∂z
þ μ

1

r

∂

∂r
r
∂vz

∂r

� �
þ 1

r2
∂
2
vz

∂θ2
þ ∂

2
vz

∂z2

" #
þ ρgz

¼ ρ
∂vz

∂t
þ vr

∂vz

∂r
þ vθ

r

∂vz

∂θ
þ vz

∂vz

∂z

� �
;

ð8:48Þ

which clearly appear as formidable coupled equations (each contains all four

unknowns). Because blood vessels, airways, ureters, medical tubing, and so

forth are cylindrical in cross section, these equations (combined with mass

balance) are perhaps the most important in biofluid mechanics; they are the

focus of much of Chap. 9, in which we will find exact solutions for a few

important classes of problems.

Here, however, let us note that in certain problems, the Navier–Stokes

equations simplify considerably. For example, G. Stokes suggested that it

would be useful to consider flows in which the viscous effects are much greater

than the inertial (i.e., convective acceleration) effects; that is, in slow

(or creeping) flows, the Navier–Stokes equation reduces to

�∇ pþ μ∇
2vþ ρg ¼ ρ

∂v

∂t
; ð8:49Þ

which is a linear second-order differential equation.

Conversely, another simplification can be made if we assume that the viscous

effects are small. Although all fluids resist deformation to some degree, as noted

earlier there are problems wherein the viscosity of the fluid is negligible. In this

case, the fluid is called inviscid and the Navier–Stokes equation reduces to the

so-called Euler equation:

�∇ pþ ρg ¼ ρa; ð8:50Þ
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where the acceleration includes both local and convective parts in general. The

Euler equation is thus a nonlinear first-order differential equation. A fluid that

experiences only incompressible and inviscid flows is called an ideal fluid.

Finally, if the fluid is truly static, then v¼ 0 and a¼ 0, and the Navier–Stokes

equation becomes

�∇ pþ ρg ¼ 0; ð8:51Þ

which is a linear first-order differential equation. Although this equation is often

derived in courses on Engineering Statics, the derivation is typically much

different. Regardless, let us examine the following simple example.

Example 8.2 Consider a container of fluid at rest with a Cartesian coordinate

defined as positive downward and the origin located at the surface of the fluid

(Fig. 8.3). Find the hydrostatic pressure p at the depth h.

Solution: From Eqs. (8.36), (8.40), and (8.42), with g ¼ þρg ĵ , given the

downward oriented coordinate direction, we have

�∂p

∂x
þ 0 ¼ 0, � ∂ p

∂y
þ ρg ¼ 0, � ∂ p

∂z
þ 0 ¼ 0:

From the first and third equations, p¼ p(y) at most, and the partial derivative

becomes an ordinary derivative. Solving by integration,

d p

dy
¼ ρg!

ð
d

dy
pð Þdy ¼

ð
ρg dy

and, consequently, we have

FIGURE 8.3 Determination of the pressure as a function of depth in a static fluid.
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p yð Þ ¼ ρgyþ c:

The integration constant c is found from the boundary conditions. Here, note

that the so-called gauge pressure is defined as the absolute pressure minus

atmospheric pressure. If we assume an atmospheric pressure at the surface, then

p(y¼ 0)¼ 0(gauge) and c¼ 0. Thus, p(y)¼ ρgy. At y¼ h, therefore, we obtain

the well-known result that p¼ ρgh at depth h (that pressure increases with depth

is easily appreciated as we swim deeper in a pool). In a sense, then, this is a

solution of the Navier–Stokes equation. Because of the importance and utility of

the Navier–Stokes equation, much of Chap. 9 is devoted to its solution.

Observation 8.2. In approximately 220 B.C., the Greek mathematician Archi-

medes derived a very important relation in fluid statics that relates the amount of

fluid displaced by an immersed solid to the force exerted on that solid by

the fluid (the so-called buoyant force). Although we could derive this result

by considering an arbitrarily shaped solid, for convenience let us consider

a solid cylinder, as shown in Fig. 8.4. The weight of the cylinder is

W ¼ ρsg πa2ð Þ h2 � h1ð Þ, where ρs is the mass density of the solid and a is its

radius. Whereas this force tends to cause the solid to “sink,” the difference in

pressures on the bottom and top surfaces tends to push upward on the solid. This

buoyant force FB ¼ p2 � p1ð Þπa2 ¼ ρ f gh2 � ρ f gh1
� �

πa2; see Example 8.2. If

W>FB, then the solid will sink;

W¼FB, then the solid is neutrally buoyant;

W<FB, then the solid will float.

In particular, any body that remains fully submerged at a fixed depth (i.e., where

it is placed) is said to be neutrally buoyant. In this case,

ρsg πa2
� �

h2 � h1ð Þ ¼ ρ f g πa2
� �

h2 � h1ð Þ;

FIGURE 8.4 Schema

illustrating Archimedes’

principle. Assuming that

the submerged solid

is a cylinder merely

simplifies the analysis,

the consequence of

which is very general.
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or ρs¼ ρf. Regardless, we see that the buoyant force

FB ¼ ρf g πa2
� �

h2 � h1ð Þ ¼ ρf g�Vs;

where �Vs is the volume of the solid that is in the fluid, which is equal to the

volume of the displaced fluid. Archimedes’ principle states, therefore, that

the net buoyant force exerted on a solid by a fluid equals the force of gravity

on the liquid that is displaced by the solid.

Archimedes’ principle is often used in mechanical tests on soft tissues. Because

soft tissues tend to have a slightly higher mass density (ρ ~ 1,050 kg/m3) than

the physiologic solution in which they are placed, they tend to sink, especially

when mounting fixtures are affixed to them. To render the tissue neutrally

buoyant, therefore, a volume-occupying low-density material (e.g., Styrofoam)

can be attached to the fixtures so that the weight of the total volume of fluid

displaced by the specimen and fixture equals the tissue-fixture weight. Hence, the

only loads on the tissue will be those imposed by the materials testing unit.

[Note to student/instructor: It may be advisable to proceed to Chap. 9 at this

time and return to the following sections on inviscid fluids and methods of

measurements only if desired.]

8.4 The Euler Equation

Comparison of the incompressible Navier–Stokes equation [Eq. (8.44)] to the

Euler equation [Eq. (8.50)] reveals that the former is a system of coupled

second-order partial differential equations (PDEs), whereas the latter is a

system of coupled first-order PDEs. First-order equations tend to be easier to

solve, but because of the convective part of the acceleration [i.e., (v·∇)v], both

equations are nonlinear, and it is often this nonlinearity that poses the greatest

difficulty in solution. For this reason, it can be shown that a judicious choice of a

coordinate system can be helpful in trying to solve even the Euler equation.

Toward this end, let us define two new terms. Let a pathline be defined as the

locus of points through which a material particle passes in a flow field. An

example would be the path taken by a leaf as it flows down a river. Let a

streamline be defined as a locus of points where the velocity is everywhere

tangent. This mathematical definition is less intuitive than that for the pathline.

In cases of steady flows, however, the two lines coincide. Hindsight reveals that

it can be convenient, particularly in steady flows, to define a coordinate system

such that one of the coordinate axes coincides locally with a streamline. Hence,

let us consider the following.
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Question: How do we write Euler’s equation in terms of locally orthogonal

streamline coordinates (s, n, x)? We could use coordinate transformations to get

from equations in terms of (x, y, z) to those in terms of (s, n, x), or we could

directly rederive Euler’s equation in terms of s, n, and x. Let us adopt the second

approach, which is straightforward and will reinforce our earlier derivation.

First, recall, that the constitutive equations for an incompressible, Newtonian

fluid are σxx¼�p+ 2μDxx, σyy¼�p+ 2μDyy, σzz¼�p+ 2μDzz, σxy¼ 2μDxy,

and so on. For inviscid fluids, therefore, μ¼ 0 and σxx¼ σyy¼ σzz¼�p, which
is a hydrostatic state of stress (i.e., an inviscid fluid cannot support a shear stress).

Second, recall from Eqs. (7.3) and (7.4) that a hydrostatic state of stress at a point

relative to one coordinate system is also hydrostatic relative to any coordinate

system at that point. Now, to rederive Euler’s equation in terms of s, n, and x,

consider the differential fluid element taken along a streamline in Fig. 8.5. Let us

assume further that the normal stresses are σss¼ σnn¼ σxx¼�p at the center of
this element and that the pressure can vary from point to point and possibly with

time [i.e., p¼ p(s, n, x, t]. Nonetheless, we shall focus only on possible changes

in the streamline direction. Thus, at the positive and negative s faces (i.e., at

s�Δs/2), we allow the pressure to be slightly larger or smaller than the value p at

the center: On these faces, we let the pressure be p�Δp. Moreover, for the flow

to be in the positive s direction, the pressure must be higher at the negative s face.

Hence, using a typical Taylor series expansion, at any fixed time t,

FIGURE 8.5 Differential fluid element in two dimensions relative to streamline coordi-

nates. Remember, therefore, that a streamline is drawn tangent to the velocity vector at

every point in a flow field. Note, too, the relation of the streamline coordinates with

respect to the Cartesian coordinates, where z is now taken to be vertical, similar to most

derivations of this equation in the literature; x is out of the paper.
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p sþ Δs

2

� �
¼ p sð Þ þ ∂ p

∂s

Δs

2

� �
,

p s� Δs

2

� �
¼ p sð Þ � ∂ p

∂s

Δs

2

� �
;

ð8:52Þ

and we see that the pressure gradient ∂p/∂s< 0 for flow in the positive

s direction. Again, higher-order terms in the Taylor’s series have been neglected

for, in hindsight, they would be negligible. Linear momentum balance in s thus

requires that

X
Fs ¼ mas ! p� ∂p

∂s

Δs

2

� �
ΔnΔx� pþ ∂ p

∂s

Δs

2

� �
ΔnΔx

� ρ g sin βð ÞΔsΔnΔx ¼ ρasΔsΔnΔx:

ð8:53Þ

Simplifying, we have

�∂ p

∂s
ΔsΔnΔx� ρg sin βð ÞΔsΔnΔx ¼ ρasΔsΔnΔx: ð8:54Þ

Dividing this equation by the differential volume and taking the limit, we obtain

lim
Δs! 0

Δn! 0

Δx! 0

1

ΔsΔnΔx
�∂p

∂s
ΔsΔnΔx� ρg sin βð ÞΔsΔnΔx� ρasΔsΔnΔx

� �
¼ 0;

ð8:55Þ

or

�∂ p

∂s
� ρg sin β ¼ ρas: ð8:56Þ

Because sin ß¼∂z/∂s, we have

�∂ p

∂s
� ρg

∂z

∂s
¼ ρas ¼ ρ

∂vs

∂t
þ vs

∂vs

∂s
þ vn

∂vs

∂n
þ vx

∂vs

∂x

� �
: ð8:57Þ

Let us now exploit our choice of a streamline coordinate system. Because the

velocity vector is everywhere tangent to a streamline, the only component of the

velocity is vs; that is, v¼ vs(s, n, x, t)ês relative to streamline coordinates,

whereas v¼ vx(x, y, z, t)êx+vy(x, y, z, t)êy + vz(x, y, z, t)êz relative to a usual

Cartesian system. Both represent possible unsteady 3-D flows, but the

8.4. The Euler Equation 421



simplification is clear for the streamline system. Hence, with vn¼ vx¼ 0, the

s-direction Euler equation becomes

�∂p

∂s
� ρg

∂z

∂s
¼ ρ

∂vs

∂t
þ vs

∂vs

∂s

� �
: ð8:58Þ

Enforcing linear momentum balance via a summation of the forces in the

n direction similarly yields

X
Fn ¼ man ! p� ∂ p

∂n

Δn

2

� �
ΔsΔx� pþ ∂ p

∂n

Δn

2

� �
ΔsΔx

� ρ g cos βð ÞΔsΔnΔx ¼ ρanΔsΔnΔx:

ð8:59Þ

Simplifying,

�∂ p

∂n
ΔsΔnΔx� ρg cos βð ÞΔsΔnΔx ¼ ρanΔsΔnΔx: ð8:60Þ

Dividing this by Δ�v and taking the limit, we obtain

lim
Δs! 0

Δn! 0

Δx! 0

1

ΔsΔnΔx
�∂ p

∂n
ΔsΔnΔx� ρg cos βð ÞΔsΔnΔx� ρanΔsΔnΔx

� �
¼ 0;

ð8:61Þ

or

�∂ p

∂n
� ρg cos β ¼ ρan: ð8:62Þ

Because cos ß¼∂z/∂n, we get

�∂p

∂n
� ρg

∂z

∂n
¼ ρan: ð8:63Þ

For a centripetal acceleration, an ¼ ∂vn=∂t� v2s=R, where vn� 0 and R is the

radius of curvature for the streamline. Thus,

�∂p

∂n
� ρg

∂z

∂n
¼ ρ � v2s

R

� �
: ð8:64Þ
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In summary, for flow in the s-n plane, the Euler equation relative to streamline

coordinates reduces to two equations [Eqs. (8.58) and (8.64)] in terms of two

unknowns: vs and p. Clearly, these equations should be easier to solve than the

more general equations in terms of four unknowns (pressure and three compo-

nents of the velocity).

Observation 8.3. It can be shown that the Laplacian of the velocity

∇
2v ¼ ∇ ∇ � vð Þ �∇� ∇� vð Þ:

Hence, for an incompressible flow,

∇
2v ¼ �∇� ζ;

where ζ is the vorticity vector. In this case, the incompressible Navier–Stokes

equations can be written as

�∇ pþ μ∇
2vþ ρg ¼ ρa! �∇ p� μ ∇� ζð Þ þ ρg ¼ ρa:

Note, therefore, that the Navier–Stokes equation reduces to the Euler equation

(μ¼ 0) when the flow is irrotational (ζ ¼ 0) regardless of the viscosity. In other

words, any incompressible, irrotational flow that satisfies the Euler equation

will likewise satisfy the full Navier–Stokes equations, as we will see in

Chap. 11. One must be careful, however, because Euler solutions will not

satisfy viscous boundary conditions, such as those on shear stress.

8.5 The Bernoulli Equation

The so-called Bernoulli equation is one of the most used, yet probably most

misused, equations in fluid mechanics. As we shall see, Bernoulli’s equation is

an algebraic equation that is much easier to solve than the differential equations

of Navier–Stokes or Euler. This simplification does not come without a price,

however, for there are five important restrictions that must be respected for the

Bernoulli equation to apply. The best way to appreciate restrictions is to derive

carefully the equation of interest—let us so begin.

8.5.1 Bernoulli Equation for Flow Along a Streamline

Let us first derive Bernoulli’s equation from the Euler equation, relative to a

streamline coordinate system (s, n, x). Hence, the first two restrictions are those

for Euler’s equation: incompressible flow and negligible viscosity. Recall that
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such a fluid is said to be ideal. Next, let us restrict our attention to a steady flow

wherein ∂v/∂t¼ 0. This provides our third restriction. Hence, Eq. (8.58)

reduces to

∂p

∂s
þ ρg

∂z

∂s
þ ρvs

∂vs

∂s
¼ 0: ð8:65Þ

Next, note that, in general, the pressure and velocity can each vary from point to

point: that is, p¼ p(s, n, x) and vs¼ (s, n, x). Consequently,

d p ¼ ∂ p

∂s
dsþ ∂ p

∂n
dnþ ∂ p

∂x
dx,

dvs ¼
∂vs

∂s
dsþ ∂vs

∂n
dnþ ∂vs

∂x
dx:

ð8:66Þ

Yet, if we restrict our attention to flow along a streamline s, whereby

dn¼ dx¼ 0, then

d p ¼ ∂p

∂s
ds, dvs ¼

∂vs

∂s
ds, dz ¼ ∂z

∂s
ds: ð8:67Þ

This suggests that if we integrate Eq. (8.65) along a streamline, we obtain

ð
∂ p

∂s
dsþ

ð
ρg

∂z

∂s
dsþ

ð
ρvs

∂vs

∂s
ds ¼

ð
0 ds; ð8:68Þ

or

ð
d pþ

ð
ρg dzþ

ð
ρvs dvs ¼ c: ð8:69Þ

Assuming further that the mass density and gravitational constant do not vary

with position in the z direction, our final relation is

pþ ρgzþ 1

2
ρv2s ¼ c; ð8:70Þ

or, as it is most often written,

p

ρ
þ gzþ v2s

2
¼ C; ð8:71Þ

where C¼ c/ρ. Again, however, we emphasize that this—Bernoulli’s—equa-

tion can be used only if all of the following restrictions are met:
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1. Incompressible flow

2. Inviscid fluid

3. Steady flow

4. Flow along a streamline

5. Constant gravitational forces

Before illustrating some solutions to the Bernoulli equation, let us consider a

few additional interesting findings.

8.5.2 Bernoulli Equation for Irrotational Flow

In this subsection, we show that Bernoulli’s equation holds at all points in a flow

field, not just along a streamline, if the flow is irrotational and the other four

restrictions are still satisfied. Hence, recall that an irrotational flow is one in

which fluid elements moving in the flow field do not undergo any rigid rotation.

Moreover, the vorticity vanishes if the flow is irrotational (i.e., ζ ¼ 0¼∇� v).

Recall, too, that for an incompressible fluid, mass balance requires that

∇ · v¼ 0, and for an inviscid fluid, μ¼ 0; thus, the linear momentum equation

for an ideal fluid reduces to Euler’s equation, �∇p+ ρg¼ ρa, where

a ¼ ∂v

∂t
þ v �∇ð Þv ð8:72Þ

in an Eulerian formulation. Substituting this equation into Euler’s equation for a

steady flow, we obtain

�1
ρ
∇ pþ g ¼ v �∇ð Þv: ð8:73Þ

Now, from vector calculus, it can be shown that (see Exercise 7.14)

v �∇ð Þv ¼ 1

2
∇ v � vð Þ � v� ∇� vð Þ: ð8:74Þ

For an irrotational flow, however, ∇� v¼ 0; thus, Euler’s equation for steady,

irrotational flow can be written

�1
ρ
∇ pþ g ¼ 1

2
∇ v � vð Þ; ð8:75Þ

where v · v¼ jvkvjcos 0¼ v2, with v2 a scalar. Hence, Euler’s equation becomes
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�1
ρ
∇pþ g ¼ 1

2
∇v2: ð8:76Þ

At this point, it is important to note that we have not yet specified a

coordinate system and, in particular, we have not specified streamline coordi-

nates. Thus, consider a generic displacement of a particle in the flow field from

position r to position r+dr (Fig. 8.6). The displacement vector dr is an arbitrary

infinitesimal displacement in any direction. If the only body force is the force

due to gravity, theng ¼ �gk̂ , with z a vertical direction, as in most applications

of Bernoulli’s equation. Taking the dot product of dr ¼ dxî þ dy ĵ þ dzk̂ with

each of the terms in Eq. (8.76), we have

�1
ρ

î
∂ p

∂x
þ ĵ

∂ p

∂y
þ k̂

∂ p

∂z

� �
� dx î þ dy ĵ þ dz k̂
� �

þ �g k̂
� �

� dx î þ dy ĵ þ dz k̂
� �

¼ 1

2
î
∂

∂x
v2
� �
þ ĵ

∂

∂y
v2
� �
þ k̂

∂

∂z
v2
� �� �

� dx î þ dy ĵ þ dz k̂
� �

;

ð8:77Þ

or

�1
ρ

∂ p

∂x
dxþ ∂ p

∂y
dyþ ∂p

∂z
dz

� �
� gdz

¼ 1

2

∂ v2ð Þ
∂x

dxþ ∂ v2ð Þ
∂y

dyþ ∂ v2ð Þ
∂z

dz

� �
;

ð8:78Þ

which can be written more compactly as

FIGURE 8.6 Position

vector r and a small

change therefrom.
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�1
ρ
d p� gdz ¼ 1

2
d v2
� �

: ð8:79Þ

Integration yields the final result, namely

ð
1

ρ
d pþ

ð
gdzþ

ð
1

2
d v2
� �

¼ C! p

ρ
þ gzþ v2

2
¼ C; ð8:80Þ

which is the same equation that we obtained in Eq. (8.71) by focusing our

attention along a streamline. We see, therefore, that Bernoulli’s equation is

valid between any two points in the field if the flow is irrotational; if the flow is

not irrotational, the Bernoulli equation is still valid at any two points along a

streamline. Summarizing then, our five basic restrictions for using the Bernoulli

equation are (1) incompressible, (2) inviscid, (3) steady, (4) along a streamline

or in an irrotational flow, and (5) constant gravitational forces.

For any two appropriate points, say 1 and 2, the Bernoulli equation thus

becomes

p1
ρ
þ gz1 þ

1

2
v21 ¼

p2
ρ
þ gz2 þ

1

2
v22; ð8:81Þ

which reveals its simple algebraic character and, consequently, why many are

tempted to (mis)use it. We will consider a few simple examples later to

illustrate how we might use this simple equation.

First, however, note the following. Because it came from Euler’s equation,

Bernoulli’s equation is also a statement of the balance of linear momentum in an

inertial reference frame. Being a single algebraic equation, it can be solved for

only one unknown. Of course, regardless of the formulation—Navier–Stokes,

Euler, or Bernoulli—one must always simultaneously satisfy both the balance

of mass and the balance of linear momentum, with mass balance providing one

additional equation and thus the ability to solve one additional unknown.

Although we have derived a differential equation for mass balance, let us

consider a special case here. For flow into and out of a rigid, impermeable

pipe or nozzle, the net volumetric flow in, Qin, must equal the net volumetric

flow out, Qout. These flows are defined by

Qin ¼
ð
v � n̂ dAin ¼

ð
v � n̂ dAout ¼ Qout; ð8:82Þ
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where n̂ is an outward unit vector normal to the cross-sectional area A of

interest. If v is taken to be uniform across the differential area of interest and in

the � direction of the outward unit normal vector, then

Qin ¼ Qout ! v1A1 ¼ v2A2; ð8:83Þ

where 1 and 2 denote the inlet and outlet, respectively, and the overbar denotes

a mean value. This simple form of mass balance is often used in problems using

the Bernoulli equation, as we will now see. In combination with Bernoulli, it

allows us to solve for two unknowns between two appropriate points 1 and 2.

Example 8.3 It can be shown experimentally that Bernoulli’s equation can be

used in computations for flows through constrictions but not for flows through

expansions. The reason for this is that in the latter case, adverse pressure

gradients can disturb the flow such that there is a reversal and thus significant

viscous losses. Bernoulli assumes no viscous effects and therefore does not

apply. We shall see in Chap. 10 that the flow in an expansion can be handled

easily using the energy equation. For a constriction, such as a nozzle or needle,

find the injection pressure needed to achieve an exit flow of vo if the flow exits

into a fluid of pressure Po¼Patm.

Solution: Assuming that we know the cross-sectional area within the inlet to

the needle Ai and its exit area Ao, mass balance requires that viAi,¼ voAo, which

allows us to compute vi, given the value of vo. If we assume that the needle is

short, we would expect negligible viscous losses. Indeed, if we further select a

centerline streamline, where the velocity gradient ∂v/∂r should be zero due to

the symmetry of v, viscous losses should be small and, thus, we can use

Bernoulli. Assuming a horizontal situation (Fig. 8.7),

Pi

ρ
þ 1

2

voAo

Ai

� �2

¼ Po

ρ
þ 1

2
voð Þ2 ! Pi ¼ Po þ

1

2
ρv2o 1� Ao

Ai

� �2
" #

:

FIGURE 8.7 Flow through a nozzle (e.g., syringe and needle) over a short length. The

importance of length on the viscous effects will be demonstrated in Chap. 10.
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Example 8.4 Water flows steadily up a short, vertical, 2.54-cm-diameter pipe

and discharges to atmospheric pressure (Fig. 8.8). If a pressure of 16 kPa drives

the fluid at a volumetric flow rate Q of 5 L/min, what height does the fluid

reach?

Solution:

Given:

A1¼ π(1.27)2¼ 5.07 cm2 z1¼ 0

Q ¼ 5
L

min

z2¼ hm

p1¼ 16 kPa g ¼ 9:81
m

s2

p2¼ 0 (gauge)
ρ ¼ 1000

kg

m3
:

Assume:

1. Incompressible

2. Inviscid

3. Steady flow (given)

4. Along a streamline (given)

5. Constant gravitational forces

Moreover, let us assume that the velocity v2¼ 0 at the maximum height of the

fluid column. Hence, from mass balance

Q ¼ v1A1 ! v1 ¼
Q

A1

¼ 5L=min

5:07cm2

1000cm3

1L

� �
¼ 986

cm

min

or v1¼ 0.164 m/s. Hence, from Bernoulli,

FIGURE 8.8 Flow from a

vertical tube/pump that

discharges to atmosphere.

Because of the influence

of gravity, fluid particles

will rise to a particular

height and then fall.
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p1
ρ
þ gz1 þ

v21
2
¼ p2

ρ
þ gz2 þ

v22
2
! p1

ρ
þ 1

2
v21 ¼ gh;

or

h ¼ p1
ρg
þ 1

2g
v21 ¼

16000N=m2

1000kg=m3ð Þ 9:81m=s2ð Þ þ
0:164m=s2ð Þ
2 9:81m=s2ð Þ ¼ 1:64m:

Note that ρg is sometimes called the specific weight and denoted by γ, not to be

confused with the specific gravity SG ¼ ρ=ρH2O
at 4 
C. Given that

1 kPa¼ 7.5 mmHg, what might this suggest with regard to how far blood

might travel if an open needle (having a different diameter) were placed in

the heart?

Example 8.5

Note that Bernoulli and mass balance provide two equations:

p1
ρ
þ gz1 þ

1

2
v21 ¼

p2
ρ
þ gz2 þ

1

2
v22, v1A1 ¼ v2A2;

which can be used to solve for the two velocities, v1 and v2, along a straight

horizontal streamline s in a steady, converging, ideal flow, with A1 and A2

known. To do so, however, we must independently compute or measure the

pressures p1 and p2. Assuming a negligible gravitational field, determine if

the pressure gauges in Fig. 8.9 can be used to determine the pressures along the

center streamline.

Solution: Because we do not know v as a function of (x, y, z) or (r, θ, z), we

cannot determine if Bernoulli holds across the streamline (i.e., if ∇� v¼ 0,

then Bernoulli may hold for any two points). Hence, let us recall the original

Euler equations for a steady ideal flow:

�∂ p

∂s
� ρg

∂z

∂s
¼ ρvs

∂vs

∂s
, � ∂ p

∂n
� ρg

∂z

∂n
¼ � ρv2s

R

fromEqs. (8.58) and (8.64). In particular, from the n-direction equation with g~ 0,

∂ p

∂n
¼ ρv2s

R
;
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where R is the radius of curvature of the streamline. Noting that R!1 for the

locally parallel horizontal streamlines within the regions associated with gauges

A and B, then at each gauge, ∂p/∂n¼ 0, which states that p does not vary in the

normal direction when the streamlines are locally parallel. Hence, the pressure

measured by these gauges, at the wall, equals the pressures at 1 and 2, and

Bernoulli and mass balance can determine v1 and v2 in terms of measured p1, p2,

A1 and A2.

8.5.3 Further Restrictions for the Bernoulli Equation

We have suggested that Bernoulli’s equation is perhaps the most used and

misused equation in fluid mechanics. The latter observation should cause us

to respect the noted restrictions: the flow must be incompressible, inviscid,

steady, irrotational or along a streamline, and within a constant gravitational

field. The last restriction is seldom a concern in the research laboratory or

clinical environment; hence, let us focus on the first four restrictions. If we

know the velocity field, it is obviously easy to check the incompressible (∇ ·

v¼ 0), steady (∂v/∂t¼ 0), and irrotational (∇� v¼ 0) restrictions. This would

be the case wherein we measure v(x, y, z, t) and seek to use Bernoulli to

calculate the pressure field. In many cases, however, we may only know the

velocity at a few select points, not everywhere; hence, rigorously checking

these restrictions is not always so easy. With regard to the inviscid (μ¼ 0)

restriction, we know that all fluids resist flowing to some degree and, thus, have

FIGURE 8.9 A simple internal flow that converges from a larger to a smaller diameter

tube. Assume that the pressure gauges are connected flush to the wall of the tubing and

that they are filled with an incompressible fluid.
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a nonzero μ. The key question then is whether the viscous effects (losses) are

negligible with respect to other factors in the problem. This can often be

answered only via experience or by comparing solutions of the problem with

and without viscosity, which defeats the purpose of seeking an easier approach.

Hence, let us record some well-established observations based on others’

experiences.

It is well known that viscous (frictional) effects become more and more

important over longer lengths of tubes. The Bernoulli equation should thus be

restricted to short lengths (e.g., in a needle). In cases of long lengths (e.g., IV

tubing from the bag to the patient), one must solve the full differential equations

of motion or employ the semi-empirical methods of Chap. 10. Note, too, that

flow from a syringe into a needle is an example of a converging flow. Experi-

ence reveals that Bernoulli holds in many converging flows for which the flow

field is not turbulent (i.e., fluctuating randomly). In contrast, Bernoulli should

not be used to compute flows in diverging geometries or sudden expansions.

Adverse pressure gradients can disturb the flow within such geometries,

resulting in separation of the flow from the wall and the formation of

recirculation zones (e.g., eddies; Fig. 8.10). Note, therefore, that stenoses in

the vasculature can be considered as a converging geometry upstream (proxi-

mal) but a diverging geometry downstream (distal). Hence, there is a possibility

of complex flows, particularly flow separation and recirculation zones just distal

to the stenosis (Fig. 8.11). Therefore, Bernoulli’s equation should not be used

across a severe stenosis, although it may be used to estimate the maximum

velocity in the stenosis, given proximal data. Bernoulli may sometimes be used

in cases of gentle bends, although complex secondary flows can develop in

curved tubes, which disallow the use of Bernoulli (Fig. 8.12). Likewise,

Bernoulli may be used for internal flows entering a rounded entrance

FIGURE 8.10 Formation

of recirculation zones

(sometimes referred to

as eddies) downstream

(i.e., distal) of a sudden

expansion. Such eddies

can dissipate considerable

energy.
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(converging flow), but a sharp entrance may disturb the flow and disallow its

use. Finally, Bernoulli cannot be applied across a pump or propeller. Hence,

Bernoulli could not be used to compare inlet and outlet velocities for an

intravascular ventricular-assist device (IVAD). In this case, the semi-empirical

methods of Chap. 10 would be an appropriate first approximation.

Example 8.6 Determine the time tf it takes for a cylindrical container with a

small central hole to drain.

FIGURE 8.11 Similar to that in Fig. 8.10 except for flow through a stenosis.

FIGURE 8.12 Secondary flows develop in curved tubes and are characterized by com-

ponents of the velocity in the circumferential as well as the axial direction.
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Solution: Referring to Fig. 8.13, let us consider a streamline from the free

surface, at 1, to the drain, at 2. Assuming an atmospheric pressure at 1 and

2, Bernoulli’s equation reduces to

ghþ 1

2
v21 ¼

1

2
v22;

or

v22 � v21 ¼ 2gh tð Þ;

where we emphasize that h varies with time t. Mass balance gives v1A1¼ V2A2;

thus,

v2 ¼ v1
πD2=4

πd2=4
¼ v1

D2

d2

and, therefore,

v21
D4

d4
� 1

� �
¼ 2gh tð Þ ! v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d42gh tð Þ
D4 � d4

:

s

Now, we recognize that v1,¼�dh/dt and, therefore,

1ffiffiffiffiffiffiffiffi
h tð Þ

p � dh

dt

� �
¼ d2

ffiffiffiffiffi
2g
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D4 � d4
p :

Integrating with respect to time,

FIGURE 8.13 Fluid

draining from a reservoir

through a centrally

located bottom hole.
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ð0

H

1ffiffiffi
h
p dh

dt
dt ¼

ðtf

0

�d2 ffiffiffiffiffi
2g
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D4 � d4
p dt;

or

�2
ffiffiffiffi
H
p
¼ �d

2
ffiffiffiffiffi
2g
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D4 � d4
p t f ;

thus,

t f ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H D4 � d4
� �

2gd4

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H D4 � d4
� �

gd4

s

:

Example 8.7

Evaluate the pressure difference between points A and B in Fig. 8.11. Assume

aortic values such that v at A is 0.15 m/s, that the diameter at A is 0.03 m, and

that the diameter at B is 0.01 m. Assume that ρ¼ 1,060 kg/m3.

Solution: Although Bernoulli should not be used across a sudden expansion, it

can be used along a central streamline between sections at A and B. Bernoulli

becomes

p1
ρ
þ 1

2
v21 ¼

p2
ρ
þ 1

2
v22;

where v1A1¼ v2A2. Hence, the pressure difference is

p1 � p2 ¼
1

2
ρ v22 � v21
� �

¼ 1

2
ρv21

A1

A2

� �2

� 1

" #
¼ 1

2
ρv21

πd21
πd22

� �2

� 1

" #
;

or

p1 � p2 ¼
1

2
1060

kg

m3

� �
0:15

m

s

� �2 0:03m

0:01m

� �4

� 1

" #

¼ 954
kg

ms2
¼ 954 kg

m

s2

� �
=m2 ¼ 954Pa;
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where 7.5 mmHg¼ 1 kPa; hence, p1� p2¼ 7.155 mmHg. Note that pressures

can be measured chronically in animals using indwelling catheters whereas

flows are often measured with implanted flowmeters (e.g., Fig. 8.14).

Example 8.8

Under what conditions can you compute the pressure in the system in Fig. 8.15?

Recall that streamlines must be parallel and straight, where the radius of

curvature is infinity, in order for ∂p/∂n¼ 0. Consider multiple possibilities.

Solution 1: For flow along a streamline between points 2 and 4,

p2
ρ
þ gz2 þ

1

2
v22 ¼

p4
ρ
þ gz4 þ

1

2
v24:

From overall mass balance, v2A2¼ v4A4. For the pipe from point 2 to point

4, A2¼A4; therefore, v2¼ v4. With v2¼ v4 and z2¼ z4, Bernoulli’s equation

FIGURE 8.14 Schema of the time-varying volumetric flow rate Q measured in vivo using

an electromagnetic flowmeter.

FIGURE 8.15 Flow from a reservoir through a segment of rigid tubing.
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suggests that the pressures p2 and p4 are equal. Because we discharge to

atmospheric pressure at an assumed subsonic velocity, p4¼ 0 (gauge) and the

pressure at point 2 is also predicted to be zero. Would we expect this to be the

case particularly given that we are driving the flow only via a pressure gradient?

Recall that Bernoulli should not be used over long distances.

Solution 2: For flow along a streamline between points 1 and 2, assuming a

rounded entrance at the chamber-tube interface,

p1
ρ
þ gz1 þ

1

2
v21 ¼

p2
ρ
þ gz2 þ

1

2
v22;

where the pressure at point 1 is zero (gauge) and v1� v2 if A1�A2; thus,

gz1 ¼
p2
ρ
þ 1

2
v22 ! p2 ¼ ρgH � 1

2
ρv22;

where v2 is nonzero and equal to v3 (which is measured via the flowmeter) by

mass balance. We observe, therefore, that one application of Bernoulli suggests

that p2¼ 0, whereas another yields p2 ¼ ρgH � 1=2ρv22. Bernoulli is applicable

across contractions and over short distances.

Example 8.9

A forced vortex flow is given by v ¼ rωoê θ, where ωo is constant (Fig. 8.16).

Determine if Bernoulli’s equation can be used to determine the pressure differ-

ence between two radial locations. Ignore gravity.

Solution: For v ¼ vr ê r þ vθ ê θ þ vzê z, we have

vr ¼ 0, vθ ¼ rωo, vz ¼ 0:

FIGURE 8.16 Schema of

a vortex flow. In a

forced vortex, vθ¼ rω,
whereas in a free vortex,

vθ¼ c/r, where c is a

constant. What is the

vorticity for each?.
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To use the Bernoulli equation, several assumptions must be met:

1. The flow must be steady. Checking in each direction, we get

∂

∂t
vrð Þ ¼ 0,

∂

∂t
rωoð Þ ¼ 0,

∂

∂t
vzð Þ ¼ 0;

thus, this restriction is satisfied.

2. The fluid must be incompressible. For cylindrical coordinates,

∇ � v ¼ 1

r

∂

∂r
rvrð Þ þ 1

r

∂

∂θ
vθð Þ þ

∂

∂z
vzð Þ:

Checking ∇ · v¼ 0, we get

1

r

∂

∂r
r 0ð Þð Þ þ 1

r

∂

∂θ
vωoð Þ þ ∂

∂z
0ð Þ ¼ 0;

thus, this restriction is satisfied.

3. Under certain situations, we can assume that the fluid is inviscid. The

validity of this assumption must be established via experience.

4. The flow must be along a streamline or it must be irrotational, where

∇� v¼ 0. For cylindrical coordinates, ∇� v¼ 0 is given by

1

r

∂vz

∂θ
� ∂vθ

∂z

� �
ê r þ

∂vr

∂z
� ∂vz

∂r

� �
ê θ þ

1

r

∂ rvθð Þ
∂r

� 1

r

∂vr

∂θ

� �
ê z ¼ 0:

With vr¼ vz¼ 0, we have

∇� v ¼ �∂vθ

∂z

� �
ê r þ

1

r

∂ rvθð Þ
∂r

� �
ê z ¼

1

r

∂ r2ωoð Þ
∂r

ê z

or, in the z direction,

1

r
2rωoð Þ ¼ 2ω0:

Therefore, the flow is not irrotational, and Bernoulli’s equation cannot be used

unless along a streamline.
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8.6 Measurement of Pressure and Flow

One of the most important advances in the development of the modern method

of scientific investigation was the realization (by Galileo and others) that theory

and experiment must go hand in hand. Theory is needed to design and interpret

experiments, which, in turn, are needed to test theories. Experimentation often

involves the identification of specific functional relationships between the

dependent and independent variables that theory establishes to be important,

as well as the calculation of the numerical values of the associated material

parameters. Recall from Fig. 1.9 of Chap. 1 that theories, like hypotheses, are

motivated by basic observations. Both observation and experimentation require

measurements.

Measurement implies that we assign a numerical value to a quantity, often via a

comparison to some standard. For example, if we desire to measure the length of

an object, we may choose to quantify the length in terms of meters, where

1 m¼ 1,650,763.73 wavelengths of the orange-red radiation of krypton-86 in a

vacuum. Standard weights and measures are kept by governmental agencies such

as the National Institute for Standards and Technology (NIST) in the United

States and the International Bureau of Weights and Measures in Sèvres, France.

In the modern laboratory, most systems for measurement consist of three

components: a transducer, a signal conditioner, and a recorder. A transducer is

simply any device that converts a physical quantity of interest into another

quantity that is more easily measured. Perhaps the simplest transducer is the

mercury thermometer, which “converts” temperature (thermal energy) into the

displacement of a column of mercury that is easily measured against a ruled

background. Most modern transducers convert physical quantities into electri-

cal outputs, either a voltage or a current. A signal conditioner often consists of a

combination of amplifiers and filters. Amplifiers modify the range of a signal,

whereas filters remove unwanted portions of a signal. A recorder may be any

device that archives the measurement; it may take various forms, including a

still camera, an analog video recorder plus an analog-to-digital (A/D) converter,

or a digital camera and digital memory. Amplifiers, conditioners, and recorders

are discussed in detail in courses on instrumentation. Here, let us focus on a few

basic transducers.

8.6.1 Pressure

A pressure is a net force per unit area that acts normal to and into a surface area.

Stephen Hales was apparently the first, in 1733, to measure the pressure in an

artery under “normal” conditions. Specifically, Hales inserted a small-diameter

vertical tube into the carotid artery of a horse and recorded the height to which
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the blood rose in the tube. A simple free-body diagram of such an experiment

reveals that the blood was acted upon by atmospheric pressure p0 from above and

arterial pressure pa from below. With pa> p0, the net vertical force due to these

pressures, (pa� p0)πa
2, where a is the inner radius of the tube, balanced the

weight of the column of blood, W¼ ρg(πa2h) where h is the height. Hence, this

simple transducer (tube) allowed the gauge pressure p¼ pa� p0 to be inferred

simply in terms of the height that the blood rose (p¼ ρgh), as we know from

fluid statics. Albeit the first method of measurement, this clearly is not the

easiest. (Note: The blood could easily reach a value of 2 m in an excited animal.)

A major advancement in the measurement of blood pressure, therefore,

was the use of a U-shaped mercury manometer by Poiseuille in 1828. The

principle of operation of a U-tube manometer is very simple (Fig. 8.17).

Mercury orignally proved convenient because of its high density:

SGHg ¼ ρHg=ρH2O
4
Cð Þ ¼ 13:55, where ρH2O

4
Cð Þ ¼ 1000kg=m3. Why? Of

course, blood pressure (e.g., 120/80) continues to be measured by physicians

using the units mmHg (where 7.5 mmHg¼ 1 kPa).

Electrical-based resistance strain gauges were first used in the physiologic

measurement of blood pressure in 1947. Briefly, the fluid pressure elastically

deformed a thin metal diaphragm within the transducer, the deformation of

which was measured by a strain gauge and calibrated. Hence, an analysis

similar to that of LEHI beam bending (Chap. 5) allowed the design of such

transducers. Although strain gauge transducers are still used, the ability to use

miniature piezoelectric crystals or fiber optics in catheters has revolutionized

in vivo measurements (see, e.g., the website for Millar Instruments in Houston,

TX). A piezoelectric material is one that generates an electrical output in direct

response to an applied load. For more on physiologic measurements and, in

particular, the need for adequate frequency responses, see Chap. 11 of

Milnor (1989).

FIGURE 8.17 A U-tube

manometer. Relative

differences in height

between the fluid in the

two tubes indicates a

difference in pressure

acting on each column

of fluid.
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8.6.2 Flow

The history of measuring physiological flows dates back to at least 1628 and

Harvey, but recent advances in technology have revolutionized the field.

Nevertheless, let us consider a simple, theoretically motivated method. Noting

from the previous subsection that static pressures are easy to measure, let

us exploit Bernoulli’s equation (i.e., a theory) to design a device to measure

(i.e., perform an experiment or make an observation) the velocity of a flowing

fluid. If we consider a horizontal streamline, then Bernoulli’s equation (8.71)

becomes

p1
ρ
þ 1

2
v21 ¼

p2
ρ
þ 1

2
v22: ð8:84Þ

Now, let us define the so-called stagnation pressure p0. A stagnation pressure is

that value of pressure at a point in a flow field where the fluid is decelerated to

zero velocity due to nonviscous effects. Hence, from Bernoulli, we see that if

point 2 is a stagnation point, then

p1
ρ
þ 1

2
v21 ¼

p0
ρ
! v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p0 � p1ð Þ

ρ

s

: ð8:85Þ

In other words, we can infer the velocity by measuring a pressure difference

along a streamline for a fluid of known, constant mass density ρ. A possible

experimental setup to exploit this theoretical result is shown in Fig. 8.18a.

Recall that ∂p/∂n¼ 0 if the streamlines are parallel [Eq. (8.64)] in the absence

of gravity and with R!1; hence, a wall tap can measure the pressure at

point 1, whereas a tube filled with an incompressible fluid/gel will stop the flow

at point 2 and thus create a stagnation point 0. The difference in pressures

p0� p1 can thus be measured simply by a U-shaped manometer and we see

again that theory guides the design of many transducers. Shown in Fig. 8.18b is

a pitot-static tube (pronounced pea-toe), which is designed based on a similar

idea and assuming that the thin tube (~0.0625 in. diameter) does not disturb the

flow significantly. Indeed, another method of measuring a flow velocity is to use

a heated wire. The rate of cooling of the wire can be related to the velocity of the

flow; actually, one measures the current supplied to the wire to maintain it at a

constant temperature. Such hot-wire anemometers are commercially available

as small as 0.02 mm in diameter and 0.1 mm long, with a 50-kHz frequency

response.
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Whereas the pitot-static tube and hot-wire devices measure the velocity at a

point, many physiological and clinical situations necessitate that one simply

measure the volumetric flow rate Q. An important advance in this regard was

the electromagnetic flowmeter, developed between 1968 and 1974. Briefly,

these devices are based on the fundamental discoveries of Michael Faraday

(around 1832) that the motion of an electrically conductive material within a

magnetic field generates an electromotive force [see Milnor (1989) for further

details]. These flowmeters must be surgically placed around the vessel

directly (Fig. 8.14), and with calibration, the output signal is related to the

mean flow. Blood is electrically conductive, of course, because of the many

ions within.

In some cases, of course, one may wish to simply know qualitative charac-

teristics about the flow field rather than quantitative information. Visualizing

flows can be as simple as placing floats on the surface and watching their

motion or similarly seeding a flow field with neutrally buoyant fluorescent

markers and imaging their motions. Another method is to inject a dye into the

flow field (e.g., Fig. 8.19); indeed the common diagnostic tool of angiography

uses X-rays to image the motion of a radio-opaque contrast agent that is

FIGURE 8.18 A pitot-static tube, which allows velocity to be inferred via the simpler

measurement of pressure. The motivation for the simple device lies in the theory

(Bernoulli equation) and reminds us that theory should always guide the design and

interpretation of experiments.

442 8. Fundamental Balance Relations



FIGURE 8.19 Visualization of the flow through a model carotid bifurcation. Colored dye

is introduced into the flow stream, which allows pathlines to be visualized. In steady

flows, pathlines and streamlines coincide. Albeit not quantitative, flow visualization can

provide important clues into important aspects of a flow, which, in turn, allow us to

focus theoretically or computationally on that which is important. With permission from

Lippincott Williams & Wilkins.

FIGURE 8.20 An aortogram (X-ray) from an experimental model of aortic coarctation,

which is induced by inflating an occluding balloon around the aorta. Coarctation models

are used to induce and then study hypertension proximal to the occlusion. Note the

extensive development of collateral vessels to shunt blood around the obstruction and

thereby respond to the insult. The development of new blood vessels is called angio-

genesis, which is an important area of current research, as it relates to cancer (tumors

develop vessels to supply nutrients and oxygen), tissue engineering (tissues which need

to be fed in vivo if they are to survive post-implantation), and recovery from severe

injuries such as a myocardial infarction. Angiogenesis research requires input from both

biosolid and biofluid mechanics. (Courtesy Dr. M. Miller, Texas A&M University).



injected into the bloodstream. Angiography remains the primary method for

diagnosing coarctations, aneurysms, and obstructive atherosclerotic lesions

(Fig. 8.20).

Advances in technology have led to many additional, sophisticated methods

for quantifying velocities and flows. Ultrasonic (1–8 MHz) transducers and

laser Doppler anemometers (LDA) both rely on the Doppler shift (i.e., the

frequency shift experienced by waves when the distance between the generator

and receiver changes). In the LDA, for example, one focuses a laser beam on a

point (i.e., small volume) in the flow field, which scatters when it hits

indigenous or seeded particles in the flow. A frequency shift between the

scattered and reference light is proportional to the velocity of the scatterer.

LDA is widely used in the laboratory to study the complex flow fields within

tapering, branching models of the vasculature or airways. Clinically, Doppler

ultrasound and magnetic resonance angiography are powerful tools for nonin-

vasively measuring local flows. The interested student is encouraged to research

these modalities further.

8.7 Navier–Stokes Worksheets

One quickly discovers that the solution of the Navier–Stokes and Euler equa-

tions for many different problems and different coordinate systems follow the

same steps. Consequently, we have found it useful to use “work-sheets” to

formulate such problems in a consistent way. These worksheets guide us

through the identification of the physical problem (e.g., via free-body diagrams)

and the identification of appropriate assumptions such as steady flow

(∂v/∂t¼ 0), axisymmetric flow (∂v/∂θ¼ 0), no body forces (g¼ 0), and so

forth. Listing such assumptions and then identifying the terms within the mass

balance and Navier–Stokes (or Euler) equations that drop out accordingly allow

us to find the reduced differential equations that require solution, subject to

appropriate initial-boundary conditions. We encourage the student to make

multiple photocopies of these worksheets, which can then be used to solve the

problems of interest.

444 8. Fundamental Balance Relations



Navier–Stokes Worksheet (Cartesians)

Problem Statement:

Assumptions:

1. Newtonian 3. 5. 7. 9.

2. Incompressible 4. 6. 8. 10.

Mass Balance: ∇·v¼ 0:

∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
¼ 0

Linear Momentum: �∇pþ μ∇2vþ ρg ¼ ρa :

�∂ p

∂x
þ μ

∂
2
vx

∂x2
þ ∂

2
vx

∂y2
þ ∂

2
vx

∂z2

 !
þ ρgx ¼ ρ

∂vx

∂t
þ vx

∂vx

∂x
þ vy

∂vx

∂y
þ vz

∂vx

∂z

� �
,

�∂ p

∂y
þ μ

∂
2
vy

∂x2
þ ∂

2
vy

∂y2
þ ∂

2
vy

∂z2

 !
þ ρgy ¼ ρ

∂vy

∂t
þ vx

∂vy

∂x
þ vy

∂vy

∂y
þ vz

∂vy

∂z

� �
,

�∂ p

∂z
þ μ

∂
2
vz

∂x2
þ ∂

2
vz

∂y2
þ ∂

2
vz

∂z2

 !
þ ρgz ¼ ρ

∂vz

∂t
þ vx

∂vz

∂x
þ vy

∂vz

∂y
þ vz

∂vz

∂z

� �

Reduced Governing Differential Equations:

Boundary/Initial Conditions:
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Navier–Stokes Worksheet (Cylindrical)

Problem Statement:

Assumptions:

1. Newtonian 3. 5. 7. 9.

2. Incompressible 4 6. 8. 10

Mass Balance: ∇·v¼ 0:

1

r

∂

∂r
rvrð Þ þ 1

r

∂vθ

∂θ
þ ∂vz

∂z
¼ 0

Linear Momentum: �∇ pþ μ∇
2vþ ρg ¼ ρa :

�∂p

∂r
þ μ

∂

∂r

1

r

∂ rvrð Þ
∂r

� �
þ 1

r2
∂
2
vr

∂θ2
� 2

r2
∂vθ

∂θ
þ ∂

2
vr

∂z2

" #
þ ρgr

¼ ρ
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
� v2θ

r
þ vz

∂vr

∂z

� �
,

�1
r

∂p

∂θ
þ μ

∂

∂r

1

r

∂ rvθð Þ
∂r

� �
þ 1

r2
∂
2
vθ

∂θ2
þ 2

r2
∂vr

∂θ
þ ∂

2
vθ

∂z2

" #
þ ρgθ

¼ ρ
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ
þ vrvθ

r
þ vz

∂vθ

∂z

� �

�∂p

∂z
þ μ

1

r

∂

∂r
r
∂vz

∂r

� �
þ 1

r2
∂
2
vz

∂θ2
þ ∂

2
vz

∂z2

" #
þ ρgz

¼ ρ
∂vz

∂t
þ vr

∂vz

∂r
þ vθ

r

∂vz

∂θ
þ vz

∂vz

∂z

� �

Reduced Governing Differential Equations:

Boundary/Initial Conditions:
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Chapter Summary

The goal of this chapter was to derive and present general equations of motion

for incompressible fluids, both ideal (i.e., inviscid) and Newtonian (i.e.,

described by the Navier-Poisson constitutive relation). We began by deriving

mass balance in spatial form (i.e., in the current configuration, as is typically the

case in biofluid mechanics) for any fluid, which when reduced for incompress-

ible behavior revealed that the divergence of the velocity field must then be zero

(Eq. 8.13). Although often called the continuity equation, we prefer the more

descriptive terminology of mass balance.

We then showed that linear momentum balance for an ideal fluid results in

the famous Euler equations whereas linear momentum balance for a Newtonian

fluid results in the famous Navier-Stokes equations. Because the former is

actually a special case of the latter, one can focus on the derivation of the

Navier-Stokes equation (Sect. 8.3). It is particularly important to note that, in

both cases, mass balance and linear momentum balance together provide the

requisite equations to determine the unknowns of interest: pressure plus 1, 2, or

3 components of velocity in 1-D, 2-D, and 3-D, respectively. Moreover, just as

we noted in Chap. 2 for biosolids, one should first determine components of

velocity (a vector) relative to the coordinate system that renders easiest the

mathematical solution and only then via appropriate transformation relations

determine the velocities, accelerations, rates of deformation, or stresses that are

most meaningful physically or biologically. Illustrative solutions of the Navier-

Stokes equations are found in Chap. 9.

It was also shown that integration of the Euler equations for certain flow

fields or along particular directions can yield the so-called Bernoulli equation,

one of the most used and misused equations in fluid mechanics. As noted in

Sect. 8.6.2, a general solution of the Bernoulli equation can reveal a clever

experimental approach and thus motivate the design of both a novel transducer

and an associated experiment. In contrast, the temptation to misuse this equa-

tion (i.e., to not respect limitations imposed by the assumptions that led first to

the Euler equation and then to the Bernoulli equation) stems primarily from the

ease of computation—in contrast to the coupled nonlinear differential equations

known as the Euler equations, the Bernoulli equation is algebraic and thus

solved more readily. One infamous example of the misuse of Bernoulli is the

computation of a pressure drop across a stenosis in an artery or vein. Bernoulli

does not apply to this situation because of the adverse pressure gradient that

develops just distal to the stenosis. Hence, one should solve either the Navier-

Stokes equation, which can only be done numerically, or a control volume

based energy equation, the latter of which is derived in Chap. 10. Hence, as we

have emphasized throughout this text, it is essential to remember the limitations

associated with each derived result.
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Appendix 8: Differential Equations

Albeit not without controversy and debate (Boyer 1949; Bell 1986), it is

generally agreed that Sir I. Newton invented the basic ideas of calculus and

that he was so motivated largely by problems of mechanics. The two basic areas

of this subject are, of course, the differential and the integral calculus.

Differential equations allow us to determine how quantities of interest

(dependent variables) vary in space and time (independent variables). Such

equations can depend on but one independent variable (yielding an ordinary

differential equation) or they can simultaneously depend on multiple indepen-

dent variables (thus yielding partial differential equations); they can appear

singly or as systems of equations that must be solved simultaneously; and they

can be linear or nonlinear. There is, therefore, great motivation for the

biomechanicist to be well versed in methods of solving differential equations

and the student is well advised to complete multiple courses in this

important area.

Although we see that the Navier–Stokes and Euler equations of motion, in

combination with mass balance, represent coupled nonlinear partial differential

equations (PDEs), we will consider only simple cases herein and thereby focus

primarily on linear ordinary differential equations (ODEs). For example, con-

sider a simple ODE of the form

dn

dxn
f xð Þð Þ ¼ g xð Þ: ðA8:1Þ

Such equations arise frequently, as in Chaps. 5 and 9, particularly when n¼ 2

or 4. The best way to solve such equations is directly via integration.

Note, therefore, that Eq. (A8.1) can be written as

d

dx

dn�1

dxn�1
f xð Þð Þ

� �
¼ g xð Þ ! d

dx
somethingð Þ ¼ g xð Þ; ðA8:2Þ

whereby we can integrate with respect to x to obtain

ð
d

dx
somethingð Þdx ¼

ð
g xð Þdx! something ¼

ð
g xð Þdxþ c: ðA8:3Þ

The constant of integration c requires additional information for solution. If the

integration is with respect to a spatial variable, we say that we need a boundary

condition to find c; if the integration is with respect to time, we say that we need

an initial condition (i.e., a condition at the time of initiation of the process,

usually at time t¼ 0 or perhaps t¼�1).
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Note from Eq. (A8.3) that the form d/dx(something)dx permits a simple

integration; hence, we should try to put ODEs in this form whenever possible.

For example, note that

d f

dx
þ 1

x
f xð Þ � 1

x

d

dx
x f xð Þð Þ; ðA8:4Þ

hence, if we have

d f

dx
þ 1

x
f xð Þ ¼ g xð Þ ! 1

x

d

dx
x f xð Þð Þ ¼ g xð Þ ðA8:5Þ

and multiplication by x permits a simple solution for f(x),

ð
d

dx
x f xð Þð Þdx � x f xð Þ ¼

ð
xg xð Þdxþ c: ðA8:6Þ

This form [Eq. (A8.4)] occurs frequently in cylindrical coordinates, with

x replaced by the radial coordinate r. A similar situation arises if

d f

dx
þ 2

x
f xð Þ � 1

x2
d

dx
x2 f xð Þ
� �

: ðA8:7Þ

Multiplication by x2 thus yields d/dx(something), which is easily integrated.

Regardless of the form, the direct integration of an ODE reduces the problem to

one of integral calculus, and integration tables for
Ð
g(x)dx,

Ð
xg(x)dx, and so

forth become very useful, as do methods such as integration by parts:

ð b

a

udv ¼ uv
��b
a
�
ð b

a

vdu: ðA8:8Þ

Of course, not all ODEs can be put in a simple form to allow direct integration.

Another commonly encountered form in mathematics is the linear, second-

order ODE with constant coefficients:

d2 f

dx2
þ a1

d f

dx
þ a2 f ¼ 0: ðA8:9Þ

Experience reveals that such equations admit exponential solutions of the form

f(x)/ eλx. Because the equation is linear, we know that its solution is unique.

Hence, if we can find any solution (e.g., by trial and error or by guessing), then

we will have found THE solution. If we guess that f(x)/ eλx, then Eq. (A8.9)

becomes

λ2eλx þ a1λe
λx þ a2e

λx ¼ λ2 þ a1λþ a2
� �

eλx ¼ 0 8x: ðA8:10Þ
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Clearly, this equation is satisfied for all x by ensuring that λ2+a1λ+a2¼ 0,

which is a (simple) quadratic equation in λ. Hence, whereas the method of

Eq. (A8.3) reduces the differential equation to a problem of integral calculus,

here we have reduced it to one of algebra, noting that the solution of our

quadratic equation is

λ2 þ a1λþ a2 ¼ 0! λ1,2 ¼
�a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p

2
: ðA8:11Þ

Clearly, there are three possible types of solution. (1) The values of λ1 and λ2
can be real and distinct, whereby

f xð Þ ¼ c1e
λ1x þ c2e

λ2x; ðA8:12Þ

where c1 and c2 are arbitrary constants (like the constant of integration in

Eq. A8.6) that must be determined via boundary or initial conditions. (2) The

values of λ1 and λ2 can be real and equal, whereby

f xð Þ ¼ c1e
λx þ c2xe

λx λ � λ1 ¼ λ2ð Þ: ðA8:13Þ

Finally, (3) the values of λ1 and λ2 can be complex conjugates (with a1 and a2
real), whereby

f xð Þ ¼ d1e
aþibð Þx þ d2e

a�ibð Þx: ðA8:14Þ

Using Euler’s relations, however,

eibx ¼ cos bxþ i sin bx, e�ibx ¼ cos bx� i sin bx; ðA8:15Þ

we can alternatively write the solution as

f xð Þ ¼ d1 cos bxþ i sin bxð Þeax þ d2 cos bx� i sin bxð Þeax ðA8:16Þ

or by defining c1¼ d1+d2 and c2¼ (d1� d2)i, we have

f xð Þ ¼ eax c1 cos bxþ c2 sin bxð Þ: ðA8:17Þ

In summary, it cannot be overemphasized that the student of biomechanics must

be well versed in the methods of applied mathematics, including differential

equations, which requires undergraduate and graduate courses beyond the basic

2-year sequence required of all students in engineering. This appendix merely

addressed two of the simpler cases encountered in introductory problems.
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Exercises

8.1 Derive the equation of motion [Eq. (8.23)] for the z direction.

8.2 Derive the incompressible Navier–Stokes equation (8.42) for the

z direction taking into account the contributions from the local and

convective acceleration.

8.3 The general incompressible Navier–Stokes equation can be written as

�∇ pþ μ∇2vþ ρg ¼ ρa. (a) Write the equation that governs fluid

statics and (b) use it to find the relationship among the pressure p, the

density ρ, and gravity g in a beaker of water.

8.4 Given the vectorial form of the incompressible Navier–Stokes equation,

find the r-, θ-, and z-direction equations in cylindrical coordinates. Hint:

Remember that the base vectors change with direction in cylindrical

coordinates (see Exercise 7.5).

8.5 Repeat Exercise 8.4 for spherical coordinates (see Exercise 7.6). This is

nontrivial.

8.6 An incompressible fluid flows through the device shown in Fig. 8.21.

If the pressure at the two gauges is the same, then find the value of the

diameter at Section 2 given that the diameter at Section 1 is 2 cm, the

velocity at Section 1 is 10 cm/s, and the height h is 10 cm.

8.7 Derive the streamline direction Euler equation for the case where the

streamlines are horizontal and all parallel; assume an arbitrary body

force vector g, which may include gravity and electromagnetic effects

(see Fig. 8.22).

FIGURE 8.21
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8.8 Explain why the pressure is constant across straight-parallel streamlines

if the fluid is ideal and the flow is steady. Assume no gravity.

8.9 Specific gravity SG is defined as

SG ¼ ρ

ρH2O
at4 
C

;

where ρH2O
at 4 
C is 1,000 kg/m3. Compute the mass density for the

following fluids at room temperature (20 
C) if SG¼ 1.26 (glycerin),

SG¼ 13.55 (mercury), SG¼ 1.025 (seawater), and SG¼ 0.998 (water).

8.10 Glycerin exits a pipe at a mean velocity of vo¼ 1 m/s and rises to a height

h¼ 2 m as in Fig. 8.8. Find the value of the exit pressure assuming

gravity g¼ 9.81 m/s2 (� ĵ ) acts down and the pipe is vertical.

8.11 Water flows through a 90
 elbow of a water slide that is open on the top

to the atmosphere (Fig. 8.23). Assume steady, ideal, irrotational flow and

that vs¼ c/r in the bend, where c is constant. For b> a, and including

gravity, determine whether the flowing fluid will be deeper on the inside

(i.e., at r¼ a) or outside (at r¼ b) in the bend.

FIGURE 8.22

FIGURE 8.23
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8.12 Can Bernoulli’s equation be used to relate the pressures and velocities at

any two points in a flow field given vx¼ x+ y, vy¼ x� y, vz¼ 0 plus

negligible viscosity and negligible body forces? Why?

8.13 A dentist uses a device similar to that in Fig. 8.24. If the supply

volumetric flow rate is Q, and the nozzle tip is d in diameter, what is

the exit velocity.

8.14 Rederive Archimedes’ principle if the immersed solid is a cube of

length a.

8.15 Rederive Archimedes’ principle if the immersed solid is of arbitrary

shape.

8.16 Compare the buoyant force on a ring of artery versus a ring of silicone

rubber. Assume that each is 4 mm in internal diameter, 0.8 mm in

thickness, and 3 mm in length. Compute the volume of Styrofoam that

would need to be glued to each ring to render it neutrally buoyant.

Assume that the density of an artery is 1,050 kg/m3, that of silicone is

1,500 kg/m3, and that of Styrofoam is 40 kg/m3.

8.17 If the density of blood is �1,060 kg/m3 and the blood rose 2 m in Hales’

experiment on blood pressure in a horse, what was the arterial blood

pressure (gauge) in kPa and mmHg, where 7.5 mmHg¼ 1 kPa and

1 Pa¼ 1 N/m2 (1 N¼ 1 kg m/s2).

8.18 If blood pressure is 120 mmHg as measured using a mercury manometer,

what would the value be using a water manometer (i.e., �mmH2O)?

Recall that SGHg¼ 13.55.

8.19 The venturi meter is a commonly used device in engineering to measure

internal flows. Research this device and rederive the requisite equations

that guide its design and use.

8.20 Show that

∇
2v ¼ ∇ ∇ � vð Þ �∇� ∇� vð Þ:

FIGURE 8.24
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8.21 Given that

∇ � v ¼ tr D½ 	

is true regardless of coordinates, show that it is true for sphericals see

[Eq. (7.60)].

8.22 Take two sheets of paper and hold them closely together while blowing

air between them. What happens? Does the forced flow between the

paper cause the sheets to move farther apart or closer together? Use

Bernoulli’s equation to explain your observation.

8.23 Bernoulli’s equation is often used to explain lift of an airfoil (i.e., an

airplane wing). In particular, airfoils are designed such that the distance

from the leading edge to the trailing edge is longer on the top than on the

bottom surface. Consequently, the air must move faster over the top

surface (to reach the trailing edge at the same time as the air traveling

along the bottom surface). Hence, from Bernoulli, we predict a lift (i.e., a

pressure greater on the bottom than on the top surface).

Some have similarly argued that Bernoulli can be used to “explain”

why red blood cells tend to move to the central region of an artery. Note,

therefore, that it will be shown in Chap. 9 that the velocity field for a

steady, incompressible flow in a circular tube is

v ¼ c 1� r2

a2

� �
ê z;

where c is constant, a is the inner radius of the tube, and r is a cylindrical-

polar coordinate r2 [o, a]. This velocity field suggests that, similar to

the airfoil, the velocity is higher on the side of the cell closest to the

centerline. Is it reasonable to use Bernoulli’s equation in this case and

why? See Fig. 8.25.

FIGURE 8.25
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9
Some Exact Solutions

The Navier–Stokes equations are the most famous and perhaps the most

important equations in fluid mechanics. In biofluid mechanics, these equations

can be used to compute the flow of air within the airways, the flow of blood in

large vessels at sufficiently high shear rates, the flow of urine from the bladder,

the flow of crystalloid perfusates in in vitro experiments, and so on. Because

few analytical solutions are available, one must often resort to numerical

methods to solve these important equations. Nonetheless, in this chapter, we

will consider five important analytical solutions to the Navier–Stokes equations.

Recall from Chap. 8 that the two governing differential equations for an

incompressible, Newtonian flow are

∇ � v ¼ 0 ð9:1Þ

which enforces the balance of mass, and

�∇pþ μ∇2vþ ρg ¼ ρ
∂v

∂t
þ v �∇ð Þv

� 

; ð9:2Þ

which enforces the balance of linear momentum. Again, v is the velocity, p is

the fluid pressure, μ is the viscosity, ρ is the mass density, and g is the body force

vector per unit mass; Eq. (9.2) is the so-called incompressible Navier–Stokes

equation.

Here, we will consider three classes of incompressible flows: (1) in vivo

flows, (2) in vitro flows in experiments that are useful in cell biology, and

(3) in vitro flows that can be used to quantify the viscous behavior of particular

Newtonian fluids. With regard to the first class of flows, note that several

complicating conditions exist in large arteries and large airways, such as the
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pulsatility (i.e., unsteadiness) of the pressures as well as the distensibility of the

tubes. These perhaps seemingly simple characteristics add tremendous com-

plexity to the formulation and solution of the associated initial-boundary value

problems. In particular, computing flows within distensible tubes necessitates

the solution of coupled solid–fluid mechanics problems. Such solutions are the

topic of current research and generally beyond the scope of an introductory text;

we address them only briefly in Chap. 11. Fortunately, there are still many

in vivo situations for which it may be reasonable to assume a steady flow within

a “rigid” tube. For example, some left ventricular-assist devices output a steady

flow to the aorta, and aortic stiffness allows only small changes in radius in this

situation. Likewise, venous flows are nearly steady and there is little change in

the radius of the vessel at a given location. If we integrate over time (i.e., over

the cardiac cycle), we also find that the time-averaged shear stress on the arterial

wall is approximated reasonably well in some situations by the steady-flow

solution. Hence, we will carefully consider a number of solutions for steady

flow. Finally, we must remember that blood only exhibits a Newtonian response

at high shear rates. There is a need, therefore, to consider non-Newtonian

behavior as well, which we do briefly in the last section of this chapter.

9.1 Flow Between Parallel Flat Plates

9.1.1 Biological Motivation

Cellular function is so complex that it was realized many years ago that it can be

very useful to study the response of isolated cells to well-controlled stimuli. For

example, the endothelial cells that line the inner (luminal) surface of the vascu-

lature are sensitive to fluid-induced shear stresses. Muscular arteries appear to

vasoconstrict or vasodilate, via smoothmuscle contraction and relaxation, so as to

maintain the wall shear stress τw nearly constant. This vasomotion is controlled,

in part, by endothelial production of vasoactive molecules such as the vasodila-

tors nitric oxide (NO) and prostacyclin (PGI2) and the vasoconstrictors

endothelin-1 (ET-1) and thromboxane (TXA2). In general, as τw is increased by

an increased flow (e.g., during exercise), the endothelium produces more vaso-

dilators to increase the lumen and thereby restore the wall shear stress to its

normal value; the converse occurs when τw is decreased by a decreased flow (e.g.,

due to a sedentary lifestyle). See Fig. 9.1. Of course, many conditions can alter

blood flow, including changes during pregnancy due to the presence of placental

flow, changes in luminal geometry due to atherosclerosis, and the surgical

creation of an arterio-venous fistula (or shunt) in kidney dialysis patients. An

important research goal is to correlate the endothelial production of these various

molecules with alterations in flow-induced shear stresses. To do this, we need

solutions of initial-boundary value problems that represent convenient experi-

mental situations, one of which is flow between rigid parallel plates.
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9.1.2 Mathematical Formulation

A useful in vitro experiment is to culture a monolayer of endothelial cells on

one of two parallel flat plates and then to subject the system to a pressure-driven

flow (Fig. 9.2). Although the monolayer has a cobblestone or undulating

appearance on a microscale, the cells being thicker in the region of their

nucleus, we shall assume for our purposes that both the cell layer and the

opposing plate are flat. This is a reasonable assumption when the variation in

cell height is on the order of micrometers and the spacing between the plates is

on the order of millimeters or centimeters. Moreover, we will assume that

the flow is steady, incompressible, and Newtonian, thus allowing us to formu-

late the experimental boundary value problem within the context of an exact

solution of the Navier–Stokes equation. Indeed, because we are the ones who

design the experiment, we can ensure the use of a fluid that exhibits an

FIGURE 9.1 Schema showing the lumen and section of a vascular wall in response to two

different altered stimuli: a sustained increase in flow, which increases the lumen, and a

sustained decrease in flow, which decreases the lumen. It is not uncommon, for example,

for marathon runners to have significantly larger iliac arteries due to the consistent

elevation of blood flow because of training. It is thought that such changes in lumen

maintain the wall shear stress at its homeostatic value. Albeit not shown, a sustained

increase in pressure results in an increase in the thickness of the vascular wall. It is

thought that this response maintains the circumferential wall stress near its homeostatic

value.
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incompressible Newtonian response as well as a steady flow; that is, we can

appropriately choose the culture media, the pump, and the geometry of the

plates. Let us also assume that the effects of gravity on the flow field are

negligible in comparison to the effects of the applied pressure gradient (i.e.,

difference between the upstream and downstream pressures), that the flow is

unidirectional, and that the flow develops fully before reaching the cells. Hence,

mathematically we have the following assumptions/restrictions:

1. Newtonian fluid (μ¼ constant)

2. Incompressible flow (∇ · v¼ 0)

3. Steady flow (∂v/∂t ¼0)
4. Unidirectional flow (vy¼ vz¼ 0)

5. Negligible body forces (g¼ 0)

6. Fully developed flow (∂v/∂x¼ 0)

7. 1-D flow (∂vx/∂z¼ 0, ∂vx/∂x ¼0)
We recommend at this point that the student use the worksheet from Sect. 8.7

to follow the subsequent derivations.

Note that assumption 6 suggests that there are no “end effects”; that is, the

flow is the same along the length of the test section (recall from Chaps. 2 and 3

that we similarly avoided end effects in designing uniaxial experiments in

biosolid mechanics for this simplified the analysis of the data). The constraint

of an incompressible flow, in Cartesian coordinates, requires that mass balance

according to [Eq. (8.14)]

∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
¼ 0; ð9:3Þ

which is clearly satisfied identically given our assumption that v ¼ vx yð Þî only.
Linear momentum balance, for a Newtonian behavior, requires that we satisfy

the Navier–Stokes equation, which in Cartesian components is [Eqs. (8.36),

(8.40), and (8.42)]

FIGURE 9.2 Steady flow of a Newtonian fluid (e.g., culture media) between two rigid,

impermeable, flat plates that allows one to investigate mechanobiological responses of a

monolayer of cells to changes in flow. Note the parabolic velocity profile, which is

called a Poiseuille flow.
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î : �∂ p

∂x
þ μ

∂
2
vx

∂x2
þ ∂

2
vx

∂y2
þ ∂

2
vx

∂z2

 !
þ ρgx

¼ ρ
∂vx

∂t
þ vx

∂vx

∂x
þ vy

∂vx

∂y
þ vz

∂vx

∂z

� �
;

ð9:4Þ

ĵ : �∂p

∂y
þ μ

∂
2
vy

∂x2
þ ∂

2
vy

∂y2
þ ∂

2
vy

∂z2

 !
þ ρgy

¼ ρ
∂vy

∂t
þ vx

∂vy

∂x
þ vy

∂vy

∂y
þ vz

∂vy

∂z

� �
;

ð9:5Þ

k̂ : �∂ p

∂z
þ μ

∂
2
vz

∂x2
þ ∂

2
vz

∂y2
þ ∂

2
vz

∂z2

 !
þ ρgz

¼ ρ
∂vz

∂t
þ vx

∂vz

∂x
þ vy

∂vz

∂y
þ vz

∂vz

∂z

� �
:

ð9:6Þ

Canceling out terms consistent with the above assumptions (do it), we are

left with

�∂ p

∂x
þ μ

∂
2
vx

∂y2
¼ 0, � ∂ p

∂y
¼ 0, � ∂ p

∂z
¼ 0: ð9:7Þ

The second and third of these equations show that the pressure is a function of

x at most (i.e., it is independent of y and z), thus the final governing differential

equation is

d p

dx
¼ μ

d2vx

dy2
: ð9:8Þ

Note: The only way for a function of x (at most) to equal a function of

y (at most) for all (x, y) is for each function to be a constant. Hence, the pressure

gradient is constant and so too for the right-hand side of Eq. (9.8). Therefore,

integrating this equation, we have

μ

ð
d

dy

dvx

dy

� �
dy ¼

ð
d p

dx
dy; ð9:9Þ

where, from Appendix 8 of Chap. 8, the integral of d(something)/dywith respect

to y yields that something, thus,
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μ
dvx

dy
¼ d p

dx
yþ c1: ð9:10Þ

Integrating again, we have

μ

ð
d

dy
vxð Þdy ¼

ð
d p

dx
yþ c1

� �
dy; ð9:11Þ

or

μvx ¼
d p

dx

y2

2
þ c1yþ c2: ð9:12Þ

As expected, we need two boundary conditions to find the two constants of

integration because we began with a second-order differential equation.

Enforcing the no-slip condition (that a fluid velocity equals that of a solid it

contacts) at the bottom plate, vx(y¼ 0)¼ 0, and likewise at the top plate,

vx(y¼ h)¼ 0, allows us to find the constants

0 ¼ d p

dx

0ð Þ2
2
þ c1 0ð Þ þ c2 ! c2 ¼ 0 ð9:13Þ

and

0 ¼ d p

dx

hð Þ2
2
þ c1 hð Þ þ 0! c1 ¼ �

d p

dx

h

2
: ð9:14Þ

Thus, the velocity field v ¼ vx yð Þî is described fully by the x-direction

component,

vx yð Þ ¼ 1

2μ

d p

dx
y2 � hy
� �

: ð9:15Þ

Note that the velocity distribution is parabolic (Fig. 9.2); it is called a Poiseuille

flow in honor of the French physician J. Poiseuille (1799–1869), who studied

pressure–flow relations for blood flow. After checking that the boundary con-

ditions are indeed satisfied, we could then calculate the maximum velocity of

the flow. To do this, we must first determine that value of y at which the

maximum occurs. This value can be calculated by taking the derivative of the

velocity profile with respect to y and setting it equal to zero as follows:
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dvx

dy
¼ 1

2μ

dp

dx
2y� hð Þ ¼ 0! y ¼ h

2
: ð9:16Þ

Occurring at y¼ h/2, the maximum velocity is

vx
�
max ¼ �

h2

8μ

dp

dx
: ð9:17Þ

Question: Does it make sense that this expression for the maximum velocity has

a minus sign? The answer is yes, of course, because the pressure gradient must

be negative to drive the flow in the positive x direction. In fact, returning to

Eq. (9.8), which reveals that the pressure gradient equals a constant, say c3, we

have

dp

dx
¼ c3 !

ð
dp

dx
dx ¼

ð
c3 dx; ð9:18Þ

or

p ¼ c3xþ c4: ð9:19Þ

The constants c3 and c4 can be found from upstream (proximal) and downstream

(distal) pressures. For example, if p¼ p1 at x¼ x1 and p¼ p2 at x¼ x2, with

p1> p2 for x1< x2 in order to drive the flow in the positive x direction, then

c3 ¼
p1 � p2
x1 � x2

, c4 ¼ �
p1x2 � p2x1

x1 � x2

� �
; ð9:20Þ

where c3 is clearly negative and so too is the pressure gradient. Hence, the

pressure field is

p ¼ p1 � p2
x1 � x2

� �
x� p1x2 � p2x1

x1 � x2

� �
: ð9:21Þ

To calculate the volumetric flow rate Q in the x direction, where

Q¼
Ð
A (v · n) dA, and n � î in this problem, we have

Q ¼
ð

A

vxdA ¼
ð h

0

ð w

0

1

2μ

dp

dx
y2 � hy
� �

dzdy ¼ w

2μ

dp

dx

ð h

0

y2 � hy
� �

dy; ð9:22Þ
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or

Q ¼ � h3w

12μ

d p

dx

� �
; ð9:23Þ

where w is the width of the plates, which is assumed to be large compared to

h so that edge effects are also negligible on each side. Again, the minus sign

appears because the pressure gradient is negative and the value of Q is positive,

as it should be. The average velocity (speed) of the flow is given by

v ¼ Q

A
¼ � h2

12μ

d p

dx
: ð9:24Þ

We see, therefore, that vx
�
max ¼ 3v=2.

Before finishing this problem by computing the fluid shear stress and asso-

ciated wall shear stress, let us formalize two ideas that have been alluded

to. First, we see from Eq. (9.15) that the computed velocity field v is a smooth

function of position (x, y, z). Indeed, as we pick increasingly larger values of y 2
[0, h] the velocity changes in an ordered way, one in which the particles appear

to travel in layers that slide relative to each other (Fig. 9.3). Such an ordered

flow is called laminar for obvious reasons. In contrast, there are cases in which

in fluid particles tend to have a random motion superimposed on an overall

mean flow. Such a flow is termed turbulent (Fig. 9.3), which is mathematically

very challenging to describe. Turbulence could occur in the flow between

parallel plates if the velocity is very large or if the plates are very rough. This

issue is not considered until Chap. 10, however. Second, we see from Eq. (9.15)

that v does not depend on x; that is, the flow is assumed to be the same, within

the region of interest, anywhere along the direction of flow. We would expect,

of course, that the flow would not necessarily be the same at the point that it

FIGURE 9.3 Schematic comparison of laminar versus turbulent flow. The former (left) is
characterized by an orderly flow in which layers of fluid move relative to one another,

whereas the latter (right) is characterized by a random flow superimposed on a net mean

flow. A laminar flow can transition to a turbulent flow if the velocity increases suffi-

ciently or if the surface of the constraining solid is sufficiently rough.
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enters the parallel plates. Indeed, experiments reveal that the flow may develop

from a uniform profile, to a blunted profile, to the final parabolic profile

represented by Eq. (9.15). Illustrated in Fig. 9.4, such a region over which a

flow develops is called an entrance length. Because the velocity field depends

on multiple coordinates when developing, it is much more difficult to describe

mathematically. For both computational and experimental convenience, such

boundary value problems are often formulated so that the region of interest is

within the fully developed region. In other cases, of course, the entrance length

may play a key role in the flow and thus must be considered fully. This often

requires numerical methods.

To calculate the shear stress on the cells, which is essential to enable the

experimentalist to correlate changes in the production of various molecules by

the endothelial cells with changes in flow, we need to calculate σyz at y¼ 0.

Thus, recall the (Navier–Poisson) constitutive relation for Newtonian fluids

[Eq. (7.66)], the yx equation of which is

σyx ¼ 2μ
1

2

∂vx

∂y
þ ∂vy

∂x

� �� 

: ð9:25Þ

Given that vy� 0, we have from Eq. (9.15)

σyx ¼ μ
∂vx

∂y
¼ μ

1

2μ

d p

dx
2y� hð Þ

� �
; ð9:26Þ

which we emphasize is the shear stress in the fluid at any point y (Fig. 9.5). By

Newton’s third law (for every action there is an equal and opposite reaction), the

wall shear stress τw is equal and opposite the shear stress in the fluid at y¼ 0 and

y¼ h. Note, therefore, that at y¼ 0,

FIGURE 9.4 Because of the no-slip boundary condition for a viscous fluid, fluid particles

slow (or stop) when they encounter a stationary solid. Because of the friction between

layers of a viscous fluid, these slowed particles will, in turn, tend to slow neighboring

fluid particles. Regions wherein such solid–fluid interactions are strong are called

boundary layers. The boundary layer in a tube develops until the entire flow is affected.

The entrance length is the region in which in the boundary layer is developing; thereafter

the flow is called fully developed.
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σyx ¼ �
h

2

d p

dx

� �
; ð9:27Þ

whereas at y¼ h,

σyx ¼
h

2

d p

dx

� �
: ð9:28Þ

Because dp/dx< 0, σyx is positive at y¼ 0 and negative at y¼ h. Just as in statics

(cf. Example A1.6 in Chap. 1), when the sign direction is taken positive but the

value is found to be negative, we simply switch the direction of the force or

stress. Hence, the shear stresses acting on a central fluid element act in the

direction opposite the flow, whereas the fluid-induced wall shear stresses act in

the positive x direction, as expected because the fluid tends to “push” on the

solid, whereas the solid tends to “push back.”

At this juncture, it is useful to note that endothelial cells not only produce

various molecules in response to changes in the magnitude of the applied shear

stress, they also tend to align themselves and elongate in the direction of the

applied shear. Indeed, for this reason, the in vivo orientation and elongation of

an endothelial cell provides indirect information on the value of the wall shear

stress that exists at that point. Experimentally, then, it is useful to correlate

changes in morphology and the production of vasoactive molecules with the

magnitude of the applied shear stress, which in the parallel-plate device is now

seen to be

τw ¼
h

2

d p

dx

����
����; ð9:29Þ

FIGURE 9.5 Positive sign convention for fluid stresses σ(face direction) relative to a Carte-

sian coordinate system and the associated actual shear stresses in a fluid element σxy and

on the wall τw in a parallel-plate experiment.
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or in terms of the volumetric flow rate Q, from Eq. (9.23),

τw ¼
6μQ

wh2
: ð9:30Þ

Not all parallel-plate experiments are designed the same, however. In some

cases, investigators leave a small gap of air (actually 95 % air and 5 % CO2)

between the upper plate and the fluid, with the cells cultured on the bottom

plate. In this case, it can be shown that (see Exercise 9.3)

τw ¼
3μQ

wh2
: ð9:31Þ

Clearly, therefore, theory is essential in the design and interpretation of

experiments.

Observation 9.1. Many investigators have used parallel-plate devices to subject

cultured endothelial or epithelial cells to well-controlled steady or pulsatile

shear stresses and to monitor their responses. Here, however, let us consider but

a few of the early findings on endothelial cells as recorded in Chap. 6 in Frangos

(1993), studies which began in 1974 but began to attract heightened attention

around 1981.

Endothelial cells are often taken from either the bovine aorta (BAEC) or the

human umbilical vein (HUVEC). Regardless, the cells are typically cultured on

glass slides coated with synthetic (e.g., polyester or Mylar) or biologic (elastin

or fibronectin) substrates and exposed to a 37 
C culture media (often with 2–

20 % fetal bovine serum and antibiotics) and a 95 % air/5 % CO2 gas mixture.

After reaching confluence on the substrate, the cells are typically subjected to

laminar flows (often with the quantity ρvh=μ 
 100) for periods of hours to

days. Flows between parallel plates tend to become turbulent only after ρvh=μ
> 1, 400; it will be shown later that this nondimensional combination of terms is

called the Reynolds’ number, an important parameter in classifying many flows.

Among other results, it has been shown that endothelial cells tend to have a

polygonal shape under static conditions, but in response to a constant shear

stress ~ 1–10 Pa, the cells tend to elongate and then align with the direction of

flow within 1–4 h of exposure to the shear (Fig. 9.6). Associated with these

morphological changes are changes in the organization of the cytoskeleton. For

example, the F-actin microfilaments tend to form dense peripheral bands under

static conditions, bands that in the presence of shear stress tend to give way,

over time, to the appearance of more centrally located stress fibers that are

oriented in the direction of flow. Hence, the formation and orientation of the

stress fibers coincide with gross changes in cell shape and orientation. That

these two observations are coupled is revealed by tests in which cells are
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exposed to cytochalasin B, which disrupts actin assembly. Cells so treated do

not elongate significantly in response to increases in shear stress. The interme-

diate filament vinculin, which participates in focal adhesion complexes, shows

similar changes. Whereas vinculin may form nearly uniformly around the

periphery of a cell under static conditions, it appears to localize at the upstream

edge of cells subjected to flow. Hence, cells change their adhesion characteris-

tics in response to flow. Indeed, studies have also shown that endothelial cells

produce and organize fibronectin, an important extracellular adhesion molecule,

which aids alignment in the direction of flow. Interestingly, this production

tends to be diminished (with respect to static controls) early on during the

exposure to flow, when the cell needs to be mobile and realign, but to be

increased after alignment. Understanding cell–matrix interactions is obviously

critical to understanding overall vascular biology.

In summary, parallel-plate experiments have revealed tremendous insights

into correlations between shear stress and changes in cell morphology, cyto-

skeletal organization, the production of a host of molecules (vasoactive, growth

regulatory, inflammatory, degradatory, and adhesive), and the production of

extracellular matrix. The primary caveat, however, is that because cells are so

sensitive to their environment, one must be cautious when trying to extrapolate

FIGURE 9.6 Schema of the effects of fluid flow on the shape and constitution of

endothelial cells. Whereas the cells tend to be polygonal in shape under no-flow

conditions, they tend to elongate and reorient with the direction of flow. Such shape

changes are accompanied by changes in the cytoskeleton that include the production and

orienting of stress fibers (cf. Fig. 1.5) in the direction of flow.
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results in culture to in vivo settings. Cell response likely depends primarily on

its recent history (including an initial growth under static conditions), the

particular substrate and its possible deformation, the specific culture media

(i.e., chemical milieu, including antibiotics and growth factors), the flow char-

acteristics (steady, pulsatile, laminar, turbulent), and cell–cell and cell–matrix

interactions. Much remains to be learned.

Example 9.1 It appears that Rosen et al. (1974) first showed in vitro that

endothelial cells alter their production of a specific molecule (histamine) in

response to altered shear stresses. They accomplished this using cultured cells

placed within a parallel-plate device. Their device was 1.3� 1.3� 23.5 cm in

dimension, with the cells placed in the fully developed region (15 cm from the

entrance). Because the flow chamber was not much wider than it was deep,

however, the equations to compute the wall shear stress differed from

Eq. (9.30). Ensuring that h�w allows Eq. (9.30) to be used and facilitates

the easy design and interpretation of the experiment. Toward this end, let us

consider the work by Levesque and Nerem (1985). Their flow chamber was

0.025� 1.3� 5 cm in dimension; hence, h�w and our equations hold. They

plotted the morphological measures for the cells versus wall shear stress τw,

which they computed as

τw ¼
6μ2

ρh2
Re;

where Re is the Reynolds’ number. Show that this relation is correct.

Solution: As noted earlier, let the Reynolds’ number be given by Re ¼ ρvh=μ:
Recall, therefore, that [from Eq. (9.24)]

v ¼ � h2

12μ

d p

dx
! d p

dx
¼ � 12μv

h2
;

hence, from Eq. (9.29),

τw ¼
h

2

d p

dx

����
���� ¼

h

2
� 12μv

h2

� �����
���� ¼ �

6μv

h

����
����:

Now, simply multiply by “one,” namely

τw ¼ �
6μv

h

h

h

ρ

ρ

μ

μ

� �����
���� ¼ �

6μ2

h2ρ

ρvh

μ

� �����
���� ¼

6μ2

h2ρ
Re;

with ρ> 0 and Re> 0 by definition, thus yielding our desired result.

9.1. Flow Between Parallel Flat Plates 467



Note, too, that Levesque and Nerem stated that Re< 2,000 ensured a laminar

flow, and they subjected the cells to steady shear stresses of 1.0, 3.0, and 8.5 Pa

for up to 24 h. Given that the viscosity and density where assumed to equal

those of water and that h¼ 250 μm, find the exact values of Re for their reported

values of τw to check if Re< 2,000. Finally, note a few of their findings: “After

24 h of exposure at shear stresses of 30 and 85 dyn/cm2, there was a significant

reduction in cell surface area, an increase in cell perimeter and length, and a

decrease in cell width . . . the more elongated cells have a higher degree of

alignment with the flow axis. This effect becomes accentuated with increasing

shear stress.” Note that 1 dyn/cm2¼ 0.1 Pa.

Example 9.2

The flow of water at room temperature (μ¼ 1.0� 10�3 N s/m2)

between parallel plates need not be due to a pressure gradient; one can also

generate a flow by moving the plates relative to each other while maintaining

the gap distance at a constant value. Thus, consider the flow in Fig. 9.7, where

the top plate is moving at a constant velocity U0¼ 0.1131 m/s with no

pressure gradient in the x direction. The fluid layer is 2 mm thick and the

plate is 1 m wide. Use the Navier–Stokes equation for Newtonian flows to

find (a) the velocity field, (b) the volumetric flow rate, and (c) the shear

stress field.

Solution: Given

U0 ¼ 0:1131
m

s
, h ¼ 2mm, w ¼ 1m,

d p

dx
¼ 0

Pa

m
:

Assume

1. Newtonian fluid (μ¼ constant)

2. Incompressible flow (∇ · v¼ 0)

FIGURE 9.7 Couette flow induced by the relative motion of an upper plate, at constant
velocityU0, relative to a fixed rigid plate at the bottom. The associated velocity profile in
the fluid is linear and, consequently, the fluid shear stress is uniform.
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3. Steady flow (∂v/∂t¼ 0)

4. Unidirectional flow (vy¼ vz¼ 0)

5. Negligible body forces (g¼ 0)

6. Fully developed flow (∂v/∂x¼ 0)

7. 1-D flow (∂vx/∂z¼ 0, ∂vx/∂x¼ 0)

8. No pressure gradient in x (∂p/∂x¼ 0)

Mass balance is given by Eq. (9.3); it is again satisfied identically because

v ¼ vx yð Þî only. The balance of linear momentum in Cartesian coordinates is

given by Eqs. (9.4)–(9.6). Eliminate the terms that disappear given the above

assumptions and show that we have

μ
∂
2
vx

∂y2
¼ 0, � ∂ p

∂y
¼ 0, � ∂ p

∂z
¼ 0:

The second and third equations, together with assumption 8, reveal that

p¼ constant. Hence, in the absence of a pressure-driven flow, the governing

differential equation of motion is

μ
d2vx

dy2
¼ 0:

Integrating twice with respect to y, we obtain

μvx ¼ c1yþ c2:

Invoking the no-slip condition at the bottom plate, vx(y¼ 0)¼ 0, and the no-slip

condition at the top plate, vx(y¼ h)¼U0, we find that

0 ¼ c1 0ð Þ þ c2 ! c2 ¼ 0;

μU0 ¼ c1 hð Þ þ 0! c1 ¼
μU0

h
:

Thus, the velocity profile is

vx yð Þ ¼ U0

h
y;

which is called a Couette flow. The volumetric flow rate Q, with n ¼ î , is thus

given by
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Q ¼
ð

A

vxdA ¼
ð h

0

ð w

0

U0

h
ydzdy! Q ¼ U0wh

2
:

To calculate the shear stress, recall again that for Newtonian fluids,

σyx ¼ 2μ
1

2

∂vx

∂y
þ ∂vy

∂x

� �� 

;

where, consistent with the assumptions, vy� 0. Hence,

σyx ¼ μ
∂vx

∂y
! σyx ¼ μ

U0

h
;

or in terms of the volumetric flow rate Q,

σyx ¼
2μQ

wh2
:

In contrast to the pressure-driven flow wherein σyx varied with position y and

indeed went to zero at y¼ h/2, we see that σyx is constant in this Couette flow.

Moreover, because the computed value of σyx is everywhere positive, each fluid

element experiences a simple shear (cf. Fig. 7.7). The wall shear stress τw is

equal and opposite the fluid shear stress at y¼ 0 and h.

As we emphasize throughout, although the problem statement requires a

specific computation, it is always better to first solve the problem generally.

Now that we have the general relations, we can substitute the numerical values

given in the problem statement into our equations for the volumetric flow rate

and the shear stress. They are respectively

Q ¼ 1

2
0:1131

m

s

� �
1mð Þ 0:002mð Þ ¼ 0:000113

m3

s
¼ 113

mL

s
;

τwj j ¼
μU0

h
¼ 1:0� 10�3N s=m2
� �

0:1131 m=sð Þ
0:002m

� 0:0566
N

m2
¼ 0:0566Pa:

We will discover in Sect. 9.3.3 that this simple (general) solution has important

implications in various real-world problems, including determination of the

viscosity of a fluid.
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Example 9.3 Fluid flow down an inclined plane is influenced by the force of

gravity. Consider the flow in Fig. 9.8, where a fluid film is subjected to the

effects of gravity alone. Assume that the height of the fluid layer, h, remains

constant and that there is no pressure gradient in the x direction. Use the Navier–

Stokes equation for steady, incompressible Newtonian flows, given the coordi-

nate system in the figure, to find (a) the pressure distribution in the y direction

and (b) the velocity field.

Solution:

Assume

1. Newtonian fluid (μ¼ constant)

2. Incompressible flow (∇ · v¼ 0)

3. Steady flow (∂v/∂t¼ 0)

4. Unidirectional laminar flow (vy¼ vz¼ 0)

5. Fully developed flow (∂v/∂x¼ 0)

6. 1-D flow (∂vx/∂z¼ 0, ∂vx/∂x¼ 0)

7. No pressure gradient in x (∂p/∂x¼ 0)

8. Shear stress due to airflow over the surface of the film is negligible

(σyx(air)� 0)

The balance of mass, given by Eq. (9.3), is again satisfied identically because

v ¼ vx yð Þî only. The balance of linear momentum, in Cartesian coordinates, is

FIGURE 9.8 Uniform thickness flow of a Newtonian fluid down an inclined surface. The

upper surface of the fluid is exposed to quiescent air at atmospheric pressure (i.e., zero

pressure gauge), which is thus called a free surface. The only body force is gravity.
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given by Eqs. (9.4)–(9.6). Given the above assumptions, we again eliminate the

appropriate terms and find that we are left with

μ
∂
2
vx

∂y2
þ ρgx ¼ 0, � ∂ p

∂y
þ ρgy ¼ 0, � ∂p

∂z
¼ 0;

wherein, due to gravity g ¼ �g ĵ 0 , we include the body force acting on the fluid.
This force can be resolved into x and y components using the given coordinate

systems (remember that coordinate systems should be picked for convenience).

Doing so, we see that gx¼ g sin θ and gy¼�g cos θ Thus, we have

μ
∂
2
vx

∂y2
þ ρg sin θ ¼ 0, � ∂p

∂y
� ρg cos θ ¼ 0, � ∂ p

∂z
¼ 0:

Clearly, the pressure is a function of y alone, which can be determined via

d p

dy
¼ �ρg cos θ;

which, upon integration, yields

p yð Þ ¼ �ρg cos θð Þyþ c:

Now, we need a boundary condition to solve for the constant c. Knowing that

the surface of the fluid film, at y¼ h, is subjected to atmospheric pressure

conditions or Patm, we get

Patm ¼ �ρg cos θð Þhþ c! c ¼ Patm þ ρg cos θð Þh:

Thus, the (absolute) pressure distribution in the y direction is

p yð Þ ¼ ρg h� yð Þ cos θ þ Patm:

The gauge pressure is the absolute pressure minus atmospheric pressure. We

also see from the x-direction equation of motion that the velocity is a function of

y alone, thus the final governing differential equation of motion is

d2vx

dy2
¼ � ρg sin θ

μ
:
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Integrating twice, we obtain

vx yð Þ ¼ � ρg sin θ

2μ
y2 þ c1yþ c2:

Invoking the no-slip condition at the face of the inclined plane, vx(y¼ 0)¼ 0, we

find that

0 ¼ 0þ c1 0ð Þ þ c2 ! c2 ¼ 0:

Now, we need an appropriate boundary condition for the top surface of the fluid

film. Recall that when we formulated the problem, we assumed that the shear

stress due to airflow over the fluid film was negligible. Hence,

σyx airð Þ � 0! σyx fluidð Þ y¼h
�� ¼ μ

∂vx

∂y

����
y¼h
¼ 0;

where σyx airð Þ y¼h
�� ¼ �σyx fluidð Þ y¼h

�� : Thus,

μ
∂vx

∂y

����
y¼h
¼ 0 ¼ μ � ρgh sin θ

μ
þ c1

� �
;

or

c1 ¼
ρgh sin θ

μ
:

Thus, the velocity profile is

vx yð Þ ¼ ρg sin θ

μ
yh� y2

2

� �
:

Once we are finished (i.e., when we have found the velocity and pressure fields),

we should always examine special cases, the correctness of which gives us

added confidence in our formulation and solution. Note, therefore, that vx¼ 0

when θ¼ 0, as expected, because there is no pressure gradient or moving solid

to drive the flow. In conclusion, then, having computed the velocity and

pressure fields, we can now calculate any quantity of interest, such as the

shear stress, acceleration, or vorticity. This is left as an exercise, however.
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9.2 Steady Flow in Circular Tubes

9.2.1 Biological Motivation

Most conduits for the flow of fluids within the body are cylindrical or nearly so,

such as arteries, veins, airways, and ureters. Again, because of the sensitivity of

endothelial and epithelial cells to applied shear stresses, it is important to have

full solutions for these flows. In this way, we can understand better both

physiology and pathology, and perhaps, most importantly, we can design better

strategies for diagnosis and treatment. As it is well known, atherosclerosis is

one of the leading causes of morbidity and mortality in the Western world.

Briefly, atherosclerosis is a disease of the innermost layer of the arterial wall,

the intima; it generally begins as a localized accumulation of lipids, sometimes

called “fatty streaks,” that form in preferential sites within the vascular tree.

Over time, these lesions become more complex due to the accumulation of

proliferating smooth muscle cells, excess matrix proteins (e.g., collagen) syn-

thesized by the smooth muscle, and, in later stages, calcium and necrotic debris

(Fig. 9.9). As a result, these lesions begin to compromise the lumen, the region

of the obstruction being called a stenosis.

The three primary methods of treating atherosclerosis all rely heavily on

biomechanics, or at least they should. Surgery typically involves the implanta-

tion of a graft that either replaces or bypasses the diseased region; angioplasty

involves the dilatation of a balloon-tipped catheter within the stenosis to expand

the lumen; and stenting involves the deployment of a metallic device to “hold

open” the diseased region (see Fig. 9.10a–c). Currently, vascular grafts consist

of two basic classes: Synthetic grafts are fabricated from man-made materials

such as Dacron (see Fig. 10.5), whereas natural grafts include the use of arteries

(e.g., internal mammary) or veins (saphenous) from other vascular beds within

the patient. Finally, note that an exciting frontier is that of tissue engineering

wherein one seeks to grow replacement tissues from the patient’s cells. Herein,

let us consider briefly the case of vein grafts.

Perhaps the first research into the potential use of veins as arterial grafts was

that of Carrel and Guthrie (1906). Briefly, they transplanted canine jugular veins

into the position of the carotid artery. Whereas the carotid artery typically

experiences pulsatile flows with luminal pressures changing from ~80 to

120 mm Hg, the jugular vein typically experiences nearly steady flows and a

luminal pressure ~5 mm Hg. Because structure closely follows function in the

body, the normal microstructure and gross morphology of the jugular vein is

(as expected) much different from that of the carotid artery. In humans in

particular, the typical luminal diameter is ~10.1 mm in the jugular vein and

~6.4 mm in the nearby carotid artery (Mortensen et al. 1990).
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As expected, Carrel and Guthrie found that veins transplanted to the arterial

system thicken dramatically in response to increased pressure (Fig. 9.11).

In order to understand, and ultimately to control, the response of vein grafts

to their new environment (i.e., their growth and remodeling processes), we must

understand well the normal properties and environment of the vein itself.

Indeed, as we just saw in Sect. 9.1, the activity of the endothelium is tightly

controlled by the wall shear stress τw, and as we saw in Chap. 6, the activity of

the intramural cells (smooth muscle and fibroblasts) is tightly controlled by the

pressure-induced circumferential stress. Here, let us begin such a study by

considering a simple case—the steady, incompressible flow of a Newtonian

fluid in a nondistending circular tube—in order to determine the wall shear

stress in terms of clinically measurable quantities. In this case, the Navier–

Stokes equations admit another exact solution. Thus, consider the tube in

Fig. 9.12, of inner radius a, wherein the flow is one dimensional (e.g., no lateral

diffusion or secondary flows).

FIGURE 9.9 Schema of the atherosclerotic process, potentially leading from a fatty streak

(defined by the accumulation of lipids in the subintimal space), to an organized plaque

consisting of excess cells and matrix as well as lipids and calcium, to a possibly vulnerable

plaque that may rupture and thrombose. Vulnerable plaques appear to be characterized by

a thin collagenous cap that covers a softer core containing significant amounts of necrotic

debris and lipids. Understanding the rupture of plaque thus requires knowledge of the

solid mechanics (properties of and stresses in the plaque) and the fluid mechanics (the

fluid-induced loads on the plaque, which serve as boundary conditions in the solid

mechanics problem). ec endothelial cell, smc smooth muscle cell. (From Humphrey

(2002), with permission).
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FIGURE 9.11 Intimal

thickening over time of a

vein used as a graft in the

arterial system; note that

the asterisks denote

statistical significance;

VG Vein graft. (From

Han et al. (1998), with

permission fromASME.).

FIGURE 9.10 Three methods by which obstructive atherosclerotic lesions are treated:

bypass grafts seek to restore flow to distal tissue by bypassing the obstruction, balloon

angioplasty seeks to modify the plaque and weaken the wall so that it can distend

more under normal physiologic pressures, and intravascular stents seek to hold open

the lumen. Some stents are made of shape-memory alloys, and thus require advanced

theories of material behavior.
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9.2.2 Mathematical Formulation

Because of the circular geometry, it will prove convenient to employ cylindrical

coordinates. Let us assume further the following:

1. Newtonian fluid (μ¼ constant)

2. Incompressible flow (∇ · v¼ 0)

3. Steady flow (∂v/d∂t¼ 0)

4. Axial flow only (vr¼ vθ¼ 0)

5. Fully developed flow (∂v/∂z¼ 0)

6. Axisymmetric flow (∂v/∂θ¼ 0)

7. Negligible body forces (g¼ 0)

8. Laminar flow

Note that the flow tends to be fully developed when its distance from the

entrance of the tube is greater than

Le � 0:06
ρvD

μ

� �
D; ð9:32Þ

where v is the mean forward velocity and D is the diameter. This length Le is

called the entrance length. Moreover, the flow tends to remain laminar if

Re � ρvD

μ
< 2,100 ð9:33Þ

where this combination of terms is the aforementioned Reynolds’ number.

FIGURE 9.12 Sign

convention for fluid shear

stresses σrz for flow in a

rigid circular tube.
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Mass balance in cylindrical coordinates [Eq. (8.15)] requires that

1

r

∂ rvrð Þ
∂r

þ 1

r

∂vθ

∂θ
þ ∂vz

∂z
¼ 0; ð9:34Þ

which again is satisfied identically given this set of assumptions (i.e., vz is a

function of r alone). In cylindrical coordinates, linear momentum balance (i.e.,

the Navier–Stokes equation, �∇pþ μ∇
2vþ ρg ¼ ρa) requires [Eqs. (8.46),

(8.47), and (8.48)] the following:

ê r : � ∂ p

∂r
þ μ

∂

∂r

1

r

∂ rvrð Þ
∂r

� �
þ 1

r2
∂
2
vr

∂θ2
� 2

r2
∂vθ

∂θ
þ ∂

2
vr

∂z2

" #
þ ρgr

¼ ρ
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
� v2θ

r
þ vz

∂vr

∂z

� �
;

ð9:35Þ

ê θ : � 1

r

∂ p

∂θ
þ μ

∂

∂r

1

r

∂ rvθð Þ
∂r

� �
þ 1

r2
∂
2
vθ

∂θ2
þ 2

r2
∂vr

∂θ
þ ∂

2
vθ

∂z2

" #
þ ρgθ

¼ ρ
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ
þ vrvθ

r
þ vz

∂vθ

∂z

� �
;

ð9:36Þ

ê z : � ∂ p

∂z
þ μ

1

r

∂

∂r
r
∂vz

∂r

� �
þ 1

r2
∂
2
vz

∂θ2
þ ∂

2
vz

∂z2

" #
þ ρgz

¼ ρ
∂vz

∂t
þ vr

∂vz

∂r
þ vθ

r

∂vz

∂θ
þ vz

∂vz

∂z

� �
:

ð9:37Þ

After eliminating terms consistent with the above assumptions (do it using the

worksheet in Sect. 8.7), we are left with

�∂p

∂r
¼ 0, � ∂p

∂θ
¼ 0, � ∂ p

∂z
þ μ

1

r

∂

∂r
r
∂vz

∂r

� �� 

¼ 0: ð9:38Þ

The first two equations show that the pressure is a function of z at most. Noting

that the velocity is a function of r alone, the only way that a function of z (the

pressure gradient) can equal a function of r (the viscous term) for all (r, z) is for

both functions to be a constant. Thus, the pressure gradient is a constant, and so

too for the viscous term; hence,
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d p

dz
¼ μ

1

r

∂

∂r
r
∂vz

∂r

� �� 

ð9:39Þ

is the governing differential equation. Multiplying through by r and integrating

this equation with respect to r, we obtain

ð
∂

∂r
r
∂vz

∂r

� �
dr ¼

ð
1

μ

d p

dz
r dr; ð9:40Þ

or

r
∂vz

∂r
¼ 1

2μ

d p

dz
r2 þ c1: ð9:41Þ

Dividing through by r and integrating again, we have or

ð
∂

∂r
vzð Þdr ¼

ð
1

2μ

d p

dz
r þ c1

r

� �
dr; ð9:42Þ

or

vz rð Þ ¼
1

4μ

d p

dz
r2 þ c1 ln r þ c2: ð9:43Þ

In order for vz(r) to be finite at all r, including the centerline at r¼ 0, c1 must be

zero (because the natural logarithm is not finite at r¼ 0). Note that this condi-

tion is not a boundary condition; rather, it is an extra condition that requires that

the solution be physically reasonable. Similar “additional conditions” were used

in earlier chapters on biosolid mechanics, as, for example, the requirement that

the deflection be the same in a bone and prosthesis or in the left and right halves

of a transversely loaded beam. The identification of such conditions comes

primarily from intuition or experience. Next, applying the no-slip boundary

condition at the wall of the cylinder, vz(r¼ a)¼ 0, we find that

0 ¼ 1

4μ

d p

dz
a2 þ c2 ! c2 ¼ �

1

4μ

d p

dz
a2: ð9:44Þ

Thus, the (fully developed) velocity field is v ¼ vz rð Þê z; where

vz rð Þ ¼
1

4μ

d p

dz
r2 � a2
� �

¼ �a
2

4μ

d p

dz
1� r2

a2

� �
: ð9:45Þ
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Now, to calculate the maximum velocity in the flow field (Fig. 9.13), we must

first determine the value of r at which the maximum occurs. This value can be

calculated by taking the derivative of the velocity profile with respect to r and

setting it equal to zero as follows:

dvz

dr
¼ 1

2μ

d p

dz
r ¼ 0! r ¼ 0: ð9:46Þ

The maximum velocity, at r¼ 0, is thus

vz
�
max ¼ vz r ¼ 0ð Þ ¼ � a2

4μ

d p

dz

� �
; ð9:47Þ

again realizing that the pressure gradient is negative in order to drive the fluid in

the positive z direction; thus, the value of the maximum velocity is positive as it

should be. To calculate the volumetric flow rate Q, we have (with n¼ êz and

v¼ vzêz)

Q ¼
ð

A

vzdA ¼
ð2π

0

ð a

0

1

4μ

d p

dz
r2 � a2
� �

r

� 

drdθ; ð9:48Þ

where dA¼ rdθdr or

Q ¼ 2π

4μ

d p

dz

r4

4
� a2r2

2

� �����
a

0

¼ � πa4

8μ

d p

dz
: ð9:49Þ

The average velocity (speed) of the flow is given by

v ¼ Q

A
¼ � πa4

8μ

d p

dz

� �
1

πa2

� �
¼ � a2

8μ

d p

dz
: ð9:50Þ

FIGURE 9.13 Velocity profile for the steady, laminar, fully developed, incompressible

flow of a Newtonian fluid in a rigid circular tube. Like the flow between parallel plates,

this parabolic profile is also called a Poiseuille flow.
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To calculate the shear stress on the vessel wall τw, we need to calculate the

shear stress in the fluid σrz at all r and then at r¼ a. Recall that for Newtonian

fluids [Eqs. (7.64) and (7.58) of Chap. 7],

σrz ¼ 2μ
1

2

∂vz

∂r
þ ∂vr

∂z

� �� 

; ð9:51Þ

but given that vr� 0, we have

σrz ¼ μ
∂vz

∂r
¼ d p

dz

r

2
; ð9:52Þ

again noting that dp/dz is negative. Hence, the direction of σrz is opposite its

positive sign convention (Fig. 9.12) and the wall shear stress is

τw ¼
d p

dz

a

2

����
���� ð9:53Þ

in the positive z direction. From Eqs. (9.49) and (9.50), however, the pressure

gradient is

d p

dz
¼ � 8μQ

πa4
or

d p

dz
¼ � 8μv

a2
; ð9:54Þ

hence the wall shear stress can be written as

τw ¼
4μQ

πa3
or τw ¼

4μv

a
: ð9:55Þ

The former result is one of the most often cited equations in vascular biology

related to endothelial mechanotransduction [cf. Eq. (9.30)]. Nonetheless, we

must remember all of the assumptions embodied in its derivation, including the

assumptions of a rigid wall and steady flow.

Example 9.4 The so-called skin friction coefficient cf is defined as the wall

shear stress divided by the mean dynamic pressure. Find a formula for cf for a

steady flow in a rigid tube.

Solution: The dynamic pressure is defined as ρv2=2;where v is a scalar measure

of the mean velocity [i.e., the speed; see Bernoulli’s equation (8.80)]. For the

case of a tube flow, therefore, the mean dynamic pressure is
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Pdyn ¼
1

2
ρv2 ¼ 1

2
ρ � a2

8μ

d p

dz

� �2

;

where the mean velocity is given by Eq. (9.50). Hence, in this case (Fung 1993),

cf ¼ �
a

2

d p

dz

� �
ρ

2

a4

64μ2
d p

dz

� �2
" #( )�1

¼ �64μ2 ρa3
d p

dz

� �� 
�1
;

which, via Eq. (9.54), can be written as

cf ¼
�64μ2

ρa3 �8μv=a2ð Þ ¼
16

ρ 2að Þv=μ ¼
16

Re
;

where the Reynolds’ number is

Re ¼ ρvd

μ
;

with d¼ 2a the diameter of the tube. Re is a very important nondimensional

parameter in fluid mechanics; it will be discussed in greater depth in Chap. 10.

In summary, the wall shear stress in this tube flow can also be written as

τw ¼
1

2
ρv2cf ¼

1

2
ρv2

16

Re

� �
:

For example, in the human aorta,

v ¼ 0:15 m=s, d ¼ 0:03 m

ρ ¼ 1,060 kg=m3, μ ¼ 3:3� 10�3 Ns=m2;

hence,

Re ¼ 1,060kg=m3ð Þ 0:15m=sð Þ 0:03mð Þ
3:3� 10�3Ns=m2

¼ 1,445;

where 1 kg m/s2¼ 1 N. This value is less than that expected for turbulent flow

(Re> 2,100); hence, our laminar assumption applies. Note, too, that the asso-

ciated value of τw¼ 0.13 kg/m s2¼ 0.13 Pa, which is within the reported range

albeit lower than that which is usually reported (1.5 Pa).
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9.3 Circumferential Flow Between Concentric Cylinders

Let us next consider a general case that has two important applications

(Fig. 9.14): The steady, incompressible flow of a Newtonian fluid between

two rigid, impermeable, circular cylinders, each of which can rotate at a

different angular velocity. For example, such a problem describes the concen-

tric cylinder viscometer wherein one seeks to measure the viscosity of a fluid by

measuring the twisting moment (torque) T that is required to rotate the inner

cylinder at angular velocity ω while the outer cylinder is fixed. Another

application of this problem is the NASA bioreactor (Wolf and Schwarz, 1991).

9.3.1 Bioreactor Application

Atmospheric pressure near sea level is ~14.7 psi. If we estimate the surface area

of our skin via a cylinder ~60 in. high and 12 in. in diameter, then the surface

area is ~2π(6)(60)¼ 2,260 in2. At 14.7 psi, therefore, our bodies resist an

amazing ~33,250 lbs of total force. That we do not feel the “burden” of this

load is an example of adaptation; that is, it is as if our skin senses gauge

pressures, not absolute pressures, where Pabs¼Patm +Pgauge.

Likewise, our bodies are well accommodated to the normal gravitational pull

of 1 g. It should not be surprising, therefore, that when astronauts experience

microgravity in space, the cells in their bodies sense and seek to respond to this

change. Because we plan to extend a human’s duration in space via a voyage to

Mars or other extended journey, we must understand better the responses of

cells to a microgravity environment. Indeed, recall from Chap. 1 that the Apollo

program in the 1960s provided an important motivation for the development of

biomechanics.

fluid solid

solid

a
b

ωb

ωa

FIGURE 9.14 Steady flow of an incompressible Newtonian fluid between two concentric,

rigid, circular cylinders which may rotate at different angular velocities ωa and ωb.

In practice, the gap distance h¼ b� awould be small in comparison to a; thus, the gap is
exaggerated for illustrative purposes only.
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Space-based experimentation is clearly the most natural approach to study

the effects of microgravity, but it is also the most expensive. NASA scientists

and engineers have thus sought Earth-based experiments to simulate the effects

of microgravity; such tests should be both cost-effective and revealing. One

such experiment is the so-called hindlimb unloading of a rat. Note, therefore,

that any human activity on Earth that involves an upright posture (e.g., standing,

walking, running) induces a normal gradient on the hydrostatic blood pressure

from head to foot (cf. Example 8.3 of Chap. 8). Consequently, blood vessels in

the legs may constrict to prevent blood from pooling in the lower extremities. In

a microgravity environment, however, there is a loss of this normal head-to-foot

gradient in pressure and there is an associated shift in fluids from the lower to

the upper portions of the body. Such changes, if sustained over long periods,

trigger adaptations in the cardiovascular system that can cause problems when

the astronaut returns to Earth. For example, astronauts may become dizzy or

faint when standing upright soon after their return to Earth. One way to examine

the effects of such orthostatic intolerance is to induce similar head-to-foot fluid

shifts in laboratory animals and then to study changes in vascular structure and

function. In the hindlimb unloading experiment, a rat is suspended by its tail so

that the hindlimbs are elevated and not weight bearing. As noted by Delp

et al. (2000), this animal model “induces the cephalic fluid shift and postural

muscle unloading that occur in microgravity. Additionally, the hindlimb

unloaded animals manifest many of the adaptations that are characteristic of

exposure to microgravity, including postural muscle atrophy, hypovolemia, a

diminished capacity to elevate vascular resistance, orthostatic hypotension, and

a reduced aerobic capacity.” Of course, to understand fully such experiments,

one must understand the associated biosolid and biofluid mechanics.

Another experimental setup to study the effects of microgravity is the

so-called NASA bioreactor. Briefly, living cells are either allowed to float

freely within a culture media contained between two concentric rotating cylin-

ders or the cells are cultured on the walls of one of the cylinders. The basic idea

is to confuse the cells as to which “direction is up,” which is to say, to subject

them to a changing gravitational vector and thereby simulate microgravity via

the absence of a consistent gravitational field. More on these specific applica-

tions later. Here, let us formulate and solve the general problem (Fig. 9.14)

independent of the specific application.

9.3.2 Mathematical Formulation

Let the fluid flow be in the θ and possibly r directions, with no-slip boundary

conditions at r¼ a and r¼ b requiring vθ to vary with radius. Hence, let

v¼ vr(r)êr+ vθ(r)êθ consistent with the following assumptions:

1. Newtonian fluid (μ¼ constant)

2. Incompressible flow (∇ · v¼ 0)
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3. Steady flow (∂v/∂t¼ 0)

4. vz¼ 0

5. No change in the z direction (∂v/∂z¼ 0)

6. Axisymmetric flow (∂v/∂θ¼ 0)

7. Negligible body forces (g¼ 0)

8. Laminar flow

Recall that mass balance, in cylindrical coordinates, requires [Eq. (8.15)]

1

r

∂ rvrð Þ
∂r

þ 1

r

∂vθ

∂θ
þ ∂vz

∂z
¼ 0; ð9:56Þ

which, upon invoking the above assumptions, reduces to

1

r

∂ rvrð Þ
∂r

¼ 0: ð9:57Þ

Multiplying through by r and integrating, we obtain

ð
∂ rvrð Þ
∂r

dr ¼
ð
0dr ! rvr ¼ c1 or vr ¼

c1

r
: ð9:58Þ

Applying the no-slip condition at the inner (r¼ a) or outer (r¼ b) walls of the

cylinders, vr(r¼ a)¼ 0¼ vr(r¼ b), we get c1¼ 0. Thus, the velocity is zero in

the r direction (in this idealized case), and we again have a unidirectional 1-D

flow: v¼ vθ(r)êθ only. Recall, too, that the Navier–Stokes equation, �∇p

+ μ∇2v+ ρg¼ ρa), in cylindrical coordinates is [Eqs. (8.46)–(8.48)]

ê r : � ∂ p

∂r
þ μ

∂

∂r

1

r

∂ rvrð Þ
∂r

� �
þ 1

r2
∂
2
vr

∂θ2
� 2

r2
∂vθ

∂θ
þ ∂

2
vr

∂z2

" #
þ ρgr

¼ ρ
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
� v2θ

r
þ vz

∂vr

∂z

� �
;

ð9:59Þ

ê θ : � 1

r

∂ p

∂θ
þ μ

∂

∂r

1

r

∂ rvθð Þ
∂r

� �
þ 1

r2
∂
2
vθ

∂θ2
þ 2

r2
∂vr

∂θ
þ ∂

2
vθ

∂z2

" #
þ ρgθ

¼ ρ
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ
þ vrvθ

r
þ vz

∂vθ

∂z

� �
;

ð9:60Þ
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ê z : � ∂ p

∂z
þ μ

1

r

∂

∂r
r
∂vz

∂r

� �
þ 1

r2
∂
2
vz

∂θ2
þ ∂

2
vz

∂z2

" #
þ ρgz

¼ ρ
∂vz
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þ vr

∂vz

∂r
þ vθ

r

∂vz

∂θ
þ vz

∂vz

∂z

� �
:

ð9:61Þ

Canceling out terms using the above assumptions (do it, using the worksheet

from Sect. 8.7), we are left with

�∂ p

∂r
¼ �ρ v

2
θ

r
and μ

∂

∂r

1

r

∂ rvθð Þ
∂r

� �
¼ 0: ð9:62Þ

These two governing differential equations of motion are decoupled (i.e., we

can solve vθ from the second equation and then p from the first equation rather

than having to solve simultaneously two equations for two unknowns); hence,

let us solve them sequentially. Integrating the second equation and putting it in

the form of d(something)/dr as suggested in Appendix 8 of Chap. 8, we obtain

ð
∂

∂r

1

r

∂

∂r
rvθð Þ

� �
dr ¼

ð
0dr !1

r

∂

∂r
rvθð Þ ¼ c2: ð9:63Þ

Multiplying through by r and integrating again, we have

ð
∂

∂r
rvθð Þdr ¼

ð
rc2 dr !rvθ ¼

c2

2
r2 þ c3; ð9:64Þ

or

vθ rð Þ ¼ c2

2
r þ c3

r
: ð9:65Þ

The no-slip condition at the inner cylinder, which may rotate at angular velocity

ωa, is vθ(r¼ a)¼ aωa (remember, ω has units of inverse time); likewise, the

no-slip condition at the outer cylinder, which may rotate at angular velocity ωb,

is vθ(r¼ b)¼ bωb. Hence, we have

aωa ¼
c2

2
aþ c3

a
, bωb ¼

c2

2
bþ c3

b
; ð9:66Þ

which are simply two algebraic equations in terms of two unknowns. Solving

these two equations simultaneously, we find that
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c2 ¼
2 b2ωb � a2ωa

� �

b2 � a2
, c3 ¼

a2b2 ωa � ωbð Þ
b2 � a2

: ð9:67Þ

Thus, the velocity field is v¼ vθ(r)êθ, where

vθ rð Þ ¼ b2ωb � a2ωa

b2 � a2

� �
r þ a2b2 ωa � ωbð Þ

b2 � a2

� �
1

r
: ð9:68Þ

Again, check that the boundary conditions are enforced at r¼ a and r¼ b. Given

this “general” solution, it is useful to consider numerous special cases. For

example, if we rotate the cylinders at the same angular velocity (i.e., let

ωa¼ωb¼ω), then

vθ rð Þ ¼ rω; ð9:69Þ

that is, when the angular velocities are the same, in magnitude and direction, the

fluid moves like a rigid body. Question: What is the associated vorticity?

Recalling Eq. (7.43), ζ ¼∇� v¼ 2ωêz as we would expect. Hence, this flow

is not irrotational.

Recalling that many cells are very sensitive to imposed shear stresses, note

that NASA sought to minimize flow-induced shear in their aforementioned

bioreactor so that the effects of the simulated microgravity could be isolated

and studied separately. Recall, therefore, that for Newtonian fluids

[cf. Eqs. (7.64) and (7.58)],

σrθ ¼ μ r
∂

∂r

vθ

r

� �
þ 1

r

∂vr

∂θ

� 

; ð9:70Þ

where vr� 0 here and, thus,

σrθ ¼ μr
∂

∂r

vθ

r

� �
: ð9:71Þ

To find the shear stress at any point in the fluid, including at the walls, we know

from Eq. (9.69) that vθ¼ rω if the cylinders rotate at the same angular velocity.

In this case, then, the shear stress is

σrθ ¼ μr
∂

∂r
ωð Þ ¼ 0 ð9:72Þ

because ω is not a function of r. Hence, rotating the fluid as a rigid-body

results in a shearless flow as desired by NASA. Clearly, the design of both
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the device and the experimental protocol is possible only through a fluid

mechanical analysis.

Observation 9.2. Although our analysis of the NASA bioreactor gives us a good

“feel” for the fluid mechanics, actual research has been based on a more general

mathematical analysis. For example, Tsao et al. (1994) considered a bioreactor

having dimensions a¼ 2.86 cm, b¼ 4.0 cm, and length (height) h¼ 11 cm.

For a Newtonian fluid of mass density ρ¼ 1,020 kg/m3 and viscosity

μ¼ 0.97 cP¼ 0.97� 10�3Ns/m2, they showed that two secondary flows

(cf. Fig. 8.12) occur in addition to the primary circumferential flow; that is,

assuming only a steady, axisymmetric flow, the numerical solution of the mass

balance and Navier–Stokes equations reveals a counterclockwise circulation

and an opposing clockwise circulation pattern in the r-z plane; that is, both vr
and vz are nonzero, in general, in the actual bioreactor wherein h¼ 11 cm is

much larger than the gap b – a¼ 1.14 cm. They suggest that these countercir-

culation patterns facilitate good mixing, which enables oxygen and nutrient

transport to free-floating cells. The numerical details are beyond the present

scope, however, and the interested reader is referred to the original paper.

9.3.3 Viscometer Application

Recall that an incompressible, Newtonian fluid is characterized by a single

material parameter, the viscosity μ (Fig. 7.11). Fundamental to the solution of

Newtonian flows, therefore, is determination of the numerical value of μ for the

fluid of interest and under the conditions of interest. For example, the viscosity

of many Newtonian fluids varies strongly with temperature (e.g., motor oil is

much more viscous at low temperatures); indeed, this relationship is often

approximated via log μ¼ log A+ 0.434B/T, where A and B are material param-

eters and T is temperature (i.e., μ¼AeB/T).

There are numerous ways to determine the value of μ for a Newtonian fluid.

Devices designed specifically for such experimental determinations are called

viscous meters or viscometers. Common designs of viscometers are the capillary-

tube, the falling-sphere, the cone-and-plate, and the concentric-cylinder viscom-

eter. In a falling-sphere viscometer, one measures the time of descent of a solid

sphere in a column of fluid of interest. This situation can be modeled as the flow

of a fluid around a stationary sphere. Under conditions wherein the viscous

effects are much greater than the inertial effects, the Navier–Stokes equations

simplify and one obtains a solution (Slattery 1981) that allows the viscosity to be

inferred from the mass and diameter of the (smooth) sphere and the descent time
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over a prescribed length of travel (Fig. 9.15). This is discussed further in

Chap. 10 using a nondimensional approach.

In the cone-and-plate viscometer, one measures the torque T that is necessary

to rotate a small-angle cone at a specified angular velocity within a fluid of

interest (Fig. 7.16; see, e.g., Slattery, 1981). Such devices have been used

commonly to quantify the viscosity of blood as well as to subject cultured

monolayers of cells to known shear stresses. An approximate relation among

the torque, viscosity, and device parameters is given in Sect. 7.6. Let us now

consider an exact solution for the concentric-cylinder device based on the

general solution found in the previous section.

In the concentric-cylinder viscometer, one likewise measures the torque

needed to rotate the inner cylinder at a constant angular velocity. Specifically,

if we fix the outer cylinder (ωb¼ 0) and only rotate the inner cylinder at

(ωa�ω) then Eq. (9.68) reduces to

vθ rð Þ ¼ a2ω

b2 � a2
b2

r
� r

� �
: ð9:73Þ

Now, the torque (or twisting moment) T is, of course, a force acting at a

distance. In particular, for the inner cylinder, we have

X
Mz

�
0 ¼ 0! T�

ð

A

aτwdA ¼ 0; ð9:74Þ

where τwdA is the differential force acting at distance a from the centerline

(Fig. 9.16), the torque being balanced by all such differential torques. Clearly,

we need to compute the wall shear stress τw on the inner cylinder, which is equal

and opposite σrθ in the fluid at r¼ a. From Eq. (9.73) and the constitutive

relation for the fluid [Eq. (7.64)], we have

FIGURE 9.15 Schema of

two additional setups that

are used as viscometers

(cf. Fig. 7.16).
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σrθ ¼ μr
∂

∂r

vθ

r

� �
¼ μr

∂

∂r

a2ω

b2 � a2
b2

r2
� 1

� �� 

: ð9:75Þ

Thus, the shear stress at any point r is

σrθ ¼ μr
a2ω

b2 � a2
� 2b2

r3

� �� 

! σrθ ¼ �

2μb2a2ω

b2 � a2
1

r2

� �
; ð9:76Þ

the negative sign reveals a direction opposite that for a positive sign convention.

To find the shear stress on the wall, we need to calculate σrθ at r¼ a, which is

σrθ r ¼ að Þ ¼ � 2μb2ω

b2 � a2
: ð9:77Þ

Because b> a, the shear stress σrθ is negative on an inner (negative) face of the

fluid, and the free-body diagram for the inner cylinder in terms of τw is as shown

in Fig. 9.16. The shear stress on the wall is thus

τw ¼ σrθ r ¼ að Þj j ¼ 2μb2ω

b2 � a2
; ð9:78Þ

in the direction shown.

FIGURE 9.16 Detail of the

wall shear stresses τw that

act on the inner cylinder

of the concentric-cylinder

viscometer. The applied

torque T must balance

these stresses in a steady-

state situation.
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With the differential area dA¼ dz adθ (where r¼ a), Eq. (9.74) becomes

T ¼
ð h

0

ð2π

0

a2τwdθdz ¼
2μb2ω

b2 � a2
a2
� �ð h

0

ð2π

0

dθdz; ð9:79Þ

or

T ¼ 4πμa2b2ωh

b2 � a2
: ð9:80Þ

Hence, the viscosity μ can be “measured” (actually inferred) by measuring the

geometry (a, b, h), angular speed (ω), and applied torque T, namely

μ ¼ T b2 � a2
� �

4πa2b2hω
: ð9:81Þ

Again, therefore, we see that analysis allows one to design an experiment

(i.e., to determine what to measure, why, and to what resolution).

It should be noted that many concentric cylinder viscometers have a small gap

distance (b – a) relative to the inner radius a. Although Eq. (9.81) should be used

to compute μ, it is interesting to note that when b – a� a, we can think of the

problem locally as a “flat” (inner) plate moving relative to an “outer” stationary

one. In this case, we can exploit the solution in Example 9.2 for the Couette

flow. In that case, U0¼ aω and h¼ b – a, and the associated shear stress is

σxy ¼
μaω

b� a
! τw ¼

μaω

b� a

���
���: ð9:82Þ

The associated torque is thus

T ¼
ð ð

τwadA ¼
μa2ω

b� a
2πahð Þ ! μ ¼ T b� að Þ

2πa3ωh
: ð9:83Þ

Calling this solution for the viscosity μapprox and Eq. (9.81) μexact, note that the

error due to the flat plate assumption is

error ¼
μapprox � μexact

μexact
¼ 2b2 � abþ a2ð Þ

abþ a2
: ð9:84Þ

Note: Viscosity has units of N s/m2 in the SI system, but values are sometimes

reported as Poise (P) or centiPoise (cP). The conversion is 1 P¼ 0.1 N s/m2 or

1 cP¼ 1� 10�3 N s/m2; alternatively, 1 P¼ 1 dyn s/cm2¼ 1 g/cm s.
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Example 9.5 In an experiment, one has

a ¼ 9mm, b ¼ 9:2mm, ω ¼ 1,200rpm,

h ¼ 60mm, T ¼ 0:0036N m:

Compute the error in “measuring” μ based on the flat plate assumption.

Solution: Based on the exact solution

μexact ¼
0:0036ð Þ 0:00922 � 0:0092

� �

4π 0:009ð Þ2 0:0092ð Þ2 0:06ð Þ 125:66ð Þ
¼ 0:02017

N s

m2
;

where ω¼ (1,200 rpm)(1 min/60 s)(2 πrad/rev)¼ 125.66 rad/s, whereas, based

on the approximate solution,

μapprox ¼
T b� að Þ
2πa3ωh

¼ 0:0036 0:0002ð Þ
2π 0:009ð Þ3 125:66ð Þ 0:06ð Þ

¼ 0:02085
N s

m2

Hence, our error is only

error ¼
μapprox � μexact

μexact
¼ 0:02085� 0:02017

0:02017
¼ 3:37%:

Indeed, from our general formula [Eq. (9.84)],

error ¼
2 0:0092ð Þ2 � 0:009ð Þ 0:0092ð Þ þ 0:009ð Þ2

� �

0:009ð Þ 0:0092ð Þ þ 0:009ð Þ2
¼ 3:35%;

the difference being due to numerical round-off errors.

9.4 Steady Flow in an Elliptical Cross Section

9.4.1 Biological Motivation

Many blood vessels are embedded within a particular soft tissue. Examples

include the arteries within muscular organs such as the diaphragm, heart, uterus,

and skeletal muscle. It is easy to imagine, therefore, that as the surrounding

tissue deforms, the cross section of the embedded vessel can likewise change

(Fig. 9.17). For example, blood vessels in the heart are compressed by the
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FIGURE 9.17 Illustration (upper) that many blood vessels are contained within surround-

ing soft tissue and that the deformation of the tissue can alter the cross-sectional shape

of the vessel. Shown, too, is a scanning electron micrograph of heart tissue (lower):
The many small holes are capillaries and the large hole is an artery. Note the contiguous

endothelial cell layer inside the artery and the remnant red blood cells (biconcave disks

about 8 μm in diameter) around the opening of the artery. It is easy to imagine that the

cross sections of each of these vessels can be altered significantly by the finite strains

experienced by the wall of the heart (recall Fig. 2.19).
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contracting muscle; indeed, vessels in the left heart are compressed closed

during systole, which is why the left heart is perfused during diastole. There

is a need, therefore, to consider flows in noncircular geometries. Here, let us

consider a steady flow within a tube of elliptical cross section, defined by major

and minor radii a and b, respectively.

9.4.2 Mathematical Formulation

Let the z axis go through the center of the elliptical cross section with a

boundary given by x2/a2+y2/b2¼ 1. Moreover, similar to our analysis of flow

through the cylindrical tube, let us assume the following:

1. Newtonian fluid (μ¼ constant)

2. Incompressible flow (∇ · v¼ 0)

3. Steady flow (∂v/∂t¼ 0)

4. Axial flow (vx¼ vy¼ 0)

5. Negligible body forces (g¼ 0)

6. Fully developed flow (∂v/∂z¼ 0)

7. Laminar flow

To solve this problem using the Navier–Stokes equation, we have two choices:

use elliptical coordinates or use Cartesian coordinates. We choose the latter

here. Because of the no-slip boundary condition, the velocity v¼ vz(x, y)êz must

be zero at all x and y around the inner surface of the ellipse. This will play a key

role in our solution. First, however, recall that mass balance requires

∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z
¼ 0; ð9:85Þ

which is satisfied identically given our assumptions. Linear momentum balance

(i.e., the Navier–Stokes equation) requires [cf. Eqs. (8.36), (8.40), and (8.42)]

î : � ∂ p

∂x
þ μ

∂
2
vx

∂x2
þ ∂

2
vx

∂y2
þ ∂

2
vx

∂z2

 !
þ ρgx

¼ ρ
∂vx

∂t
þ vx

∂vx

∂x
þ vy

∂vx

∂y
þ vz

∂vx

∂z

� �
;

ð9:86Þ

ĵ : � ∂ p

∂y
þ μ

∂
2
vy

∂x2
þ ∂

2
vy

∂y2
þ ∂

2
vy

∂z2

 !
þ ρgy

¼ ρ
∂vy

∂t
þ vx

∂vy

∂x
þ vy

∂vy

∂y
þ vz

∂vy

∂z

� �
;

ð9:87Þ

494 9. Some Exact Solutions

http://dx.doi.org/10.1007/978-1-4939-2623-7_8#Equ42
http://dx.doi.org/10.1007/978-1-4939-2623-7_8#Equ40
http://dx.doi.org/10.1007/978-1-4939-2623-7_8#Equ36


k̂ : � ∂ p

∂z
þ μ

∂
2
vz

∂x2
þ ∂

2
vz

∂y2
þ ∂

2
vz

∂z2

 !
þ ρgz

¼ ρ
∂vz

∂t
þ vx

∂vz

∂x
þ vy

∂vz

∂y
þ vz

∂vz

∂z

� �
:

ð9:88Þ

After canceling out terms consistent with the above assumptions (do it using the

worksheets in Sect. 8.7), we are left with

�∂ p

∂x
¼ 0, � ∂ p

∂y
¼ 0, � ∂ p

∂z
þ μ

∂
2
vz

∂x2
þ ∂

2
vz

∂y2

 !
¼ 0: ð9:89Þ

The first and second of these equations show that the pressure is a function of

z at most, similar to the solution for a cylindrical tube. Because the velocity is a

function of x and y at most, both the pressure gradient and the viscous term must

equal a constant. Thus, our governing differential equation is

1

μ

d p

dz
¼ ∂

2
vz

∂x2
þ ∂

2
vz

∂y2
: ð9:90Þ

To solve this problem, one could first seek a solution to the homogenous

differential equation of the form1

∂
2
vz

∂x2
þ ∂

2
vz

∂y2
¼ 0: ð9:91Þ

Although there are many different approaches to solve this linear partial

differential equation, here we shall consider a very simple, yet powerful

approach to solve the full nonhomogeneous equation. Note that the full solution

vz must satisfy the no-slip boundary condition around the inner perimeter.

Consequently, let us consider a function g(x,y) that is zero over the entire

boundary of the flow, which for the elliptical boundary is x2/a2+y2/b2 – 1¼ 0.

Hence, as a trial solution (i.e., guess), let

vz x; yð Þ ¼ cg x; yð Þ ¼ c
x2

a2
þ y2

b2
� 1

� �
; ð9:92Þ

where c is a yet unknown parameter. Taking the partial derivatives with respect

to x, we get

1 One may recognize that this is a 2-D Laplace equation, written as ∇2vz¼ 0, which
appears widely in physics.
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∂vz

∂x
¼ c

2x

a2
and

∂
2
vz

∂x2
¼ c

2

a2
; ð9:93Þ

and similarly taking the partial derivatives with respect to y, we get

∂vz

∂y
¼ c

2y

b2
and

∂
2
vz

∂y2
¼ c

2

b2
: ð9:94Þ

Substituting these relations into the governing differential equation and solving

for c, we obtain

c
2

a2

� �
þ c

2

b2

� �
¼ 1

μ

d p

dz
! c ¼ 1

2μ

d p

dz

a2b2

a2 þ b2

� �
: ð9:95Þ

Substituting this expression into Eq. (9.92), we get the following solution for the

velocity field:

vz x; yð Þ ¼ 1

2μ

d p

dz

a2b2

a2 þ b2

� �
x2

a2
þ y2

b2
� 1

� �
; ð9:96Þ

which satisfies both the differential equation and the boundary conditions.

Because the governing equations are linear, this trial solution is THE solution

(i.e., mathematicians have proved uniqueness theorems for such linear differ-

ential equations). Note, too, that if b¼ a, with x2+y2¼ r2, we recover the

solution for the circular tube [cf. Eq. (9.45)], as we should. Such checks provide

added confidence in the formulation and solution of the problem. Finally, given

solutions for the pressure and velocity fields, other quantities of interest are

calculated easily as in prior sections. This is left as an exercise.

9.5 Pulsatile Flow

Of the assumptions invoked in Sect. 9.2, the most suspect for many biological

problems is that of steady flow. Here, therefore, let us consider an analysis of

pulsatile flows based on a solution by J. R. Womersley in the 1950s. Because of

the additional complexity due to the pulsatility, this shall return us to the

Navier–Stokes solution for flow in a cylindrical rigid tube.

9.5.1 Some Biological Motivation

The cardiac cycle consists of four primary phases: diastolic filling, isovolumetric

contraction, ejection, and isovolumetric relaxation (Fig. 9.18, top), which
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corresponds to the primary electrical events in the heart as revealed by an

electrocardiogram (Fig. 9.18, bottom). As a result, the heart is a “pulsatile

pump” and the associated flow within the arterial tree is pulsatile. Figure 9.19

shows, for example, the pressure P history in a typical artery (see Fig. 8.14 for

data on the flow); each can be described well by a Fourier series (Milnor, 1989).

For example, the pressure waveform for an aortic flow can be described by

p tð Þ ¼ pm þ
XN

n¼1
An cos nωtþ Bn sin nωtð Þ; ð9:97Þ

where pm is the mean pressure, ω is the fundamental (circular) frequency, and

An and Bn are the Fourier coefficients for N harmonics. Table 9.1 lists typical

values.

9.5.2 Mathematical Formulation

Womersley suggested that the pulsatile axial flow of an incompressible

Newtonian fluid in a rigid tube could be studied by assuming that the pressure

FIGURE 9.18 Schematic illustration of the four phases of the cardiac cycle: diastolic

filling, isovolumic contraction (which builds up the ventricular pressure), ejection, and

isovolumic relaxation. These mechanical phases are controlled by the electrical activity

of the heart, which is monitored easily with an electrocardiogram (or EKG). This

reminds us that coupled effects such as electromechanics are very important, as noted

in Sect. 11.6.
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gradient ∂p/∂z could likewise be described by multiple harmonics.

Consequently, he suggested that we let

∂ p

∂z
¼ ϕ0 þ

XN

n¼1
ϕn cos nωtþ ψn sin nωtð Þ; ð9:98Þ

where ϕ0 is the mean (steady) portion of the pressure gradient and ϕn and ψn are

Fourier coefficients for the nth harmonic. For analytical expediency, however,

note that if Ψ¼ϕ – iψ , where i ¼
ffiffiffiffiffiffiffi
�1
p

; then

Ψeiωt ¼ ϕ� iψð Þ cosωtþ i sinωtð Þ
¼ ϕ cosωtþ ψ sinωtþ i ϕ sinωt� ψ cosωtð Þ: ð9:99Þ

FIGURE 9.19 Typical variations in arterial pressures over the cardiac cycle, which can be

described well via a Fourier series representation.

TABLE 9.1 Values of the Fourier coefficients for a Fourier series representation of an

aortic pressure.

n¼ 1 n¼ 2 n¼ 3 n¼ 4 n¼ 5 n¼ 6 n¼ 7

Pressure Cn 18.6 8.6 5.1 2.9 1.3 1.4 1.2

Pressure Фn �1.67 �2.25 �2.61 �3.12 �2.91 �2.81 2.93

Flow Cn 202 157 103 62 47 42 31

Flow Фn �0.78 �1.50 �2.11 �2.46 �2.59 �2.91 2.92

Note. The modulus Cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
n þ B2

n

q
; in mmHg or mL/s, whereas the phase Фn¼ tan�1(Bn/An), in

radians, for each harmonic n. The mean values are Pm¼ 85 mmHg and Qm¼ 110 mL/s, with a

fundamental frequency of 1.25 Hz

Source. From Milnor (1989)

498 9. Some Exact Solutions



Hence, if we take the real part

Re Ψeiωt
� �

¼ ϕ cosωtþ ψ sinωt; ð9:100Þ

we obtain terms that appear in the Fourier representation of Eq. (9.98). (Note:

Do not confuse the real part of a complex function Re() with the Reynolds’

number Re). In particular, we can now let

∂ p

∂z
¼ ϕ0 þ

XN

n¼1
Re Ψne

inωt
� �

; ð9:101Þ

which is simply a compact way to represent the assumed variation in the

pressure gradient.

Recall from Eq. (9.38), therefore, that for steady flow in a circular tube, the

Navier–Stokes equation reduces to

d p

dz
¼ μ

1

r

∂

∂r
r
∂vz

∂r

� �� 

: ð9:102Þ

The assumptions under which this flow takes place are essentially the same for

the pulsatile flow that we are considering, with the exception that the assump-

tion of steady flow does not apply. Again, therefore, mass balance [Eq. (9.34)] is

satisfied identically for a v¼ vz(r,t)êz, and the Navier–Stokes equations

[Eqs. (9.35)–(9.37)] reduce to

�∂ p

∂r
¼ 0, � ∂ p

∂θ
¼ 0, � ∂ p

∂z
þ μ

1

r

∂

∂r
r
∂vz

∂r

� �� 

¼ ρ

∂vz

∂t
: ð9:103Þ

The first two equations show that the pressure must be a function of z and time at

most: p¼ p(z, t). Hence, the single governing differential equation is

ρ
∂vz r; tð Þ

∂t
þ ∂ p z; tð Þ

∂z
¼ μ

1

r

∂

∂r
r
∂vz r; tð Þ

∂r

� �� 

: ð9:104Þ

Note that Eq. (9.104) is linear in both the pressure p(z, t) and velocity vz(r, t)

and, therefore, solutions of this linear differential equation can be

superimposed. Let us deal with the steady and unsteady parts of the flow

independently. This is a very important observation because the steady part of

the flow has already been solved in Sect. 9.2. Thus, here we simply need to

consider the unsteady part.

To look at the steady and unsteady parts of the flow separately, let the

subscripts s and u denote steady flow and unsteady flow, respectively. Thus,

we can write the unknown pressure and velocity fields as
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p z; tð Þ ¼ ps zð Þ þ pu z; tð Þ and vz r; tð Þ ¼ vs rð Þ þ vu r; tð Þ: ð9:105Þ

Substituting these into Eq. (9.104), we obtain

∂ ps zð Þ
∂z

� μ
1

r

∂

∂r
r
∂vs rð Þ
∂r

� �� 
� �
þ ρ

∂vu r; tð Þ
∂t

þ ∂ pu z; tð Þ
∂z

�

�μ 1

r

∂

∂r
r
∂vu r; tð Þ

∂r

� �� 
�
¼ 0

ð9:106Þ

wherein we grouped terms that depend on time separate from those that do not.

Because of the differences between the two groups of terms, each group must

equal zero separately. The former is simply that which was solved in Sect. 9.2;

hence, vs is known. Let us focus our attention on the governing equation for the

unsteady part of the flow, namely

ρ
∂vu

∂t
þ ∂ pu

∂z
� μ

1

r

∂

∂r
r
∂vu

∂r

� �� 

¼ 0: ð9:107Þ

Similar to the steady-flow solution, let us assume that the pressure gradient does

not depend on z in a fully developed flow. Hence, the pulsatile pressure gradient

depends on time t only, as given by Eq. 9.101.

Moreover, because of the linearity of the governing equation, let us solve

Eq. (9.107) separately for each harmonic n (¼1,2, . . ., N). Our governing

equation for unsteady flow thus becomes

μ
1

r

∂

∂r
r
∂vu

∂r

� �� 

� ρ

∂vu

∂t
¼ Ψne

inωt ð9:108Þ

for each n. Using separation of variables, we can separate the equation for

vu(r, t) into one part that depends on r only and another that depends on t only;

that is, let

vu r; tð Þ ¼ Vn rð Þeinωt ð9:109Þ

for each n. Substituting this equation into Eq. (9.108), we obtain

μ
1

r

∂

∂r
r
∂

∂r
Vn rð Þeinωt

 �� �� 


� ρ
∂

∂t
Vn rð Þeinωt

 �

¼ Ψne
inωt ð9:110Þ

The common term einωt cancels throughout, leaving the ordinary differential

equation
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d2Vn

dr2
þ 1

r

dVn

dr
� ρ

μ
inωð ÞVn ¼

1

μ
Ψn ð9:111Þ

for each harmonic n. Thus, our governing ordinary differential equation for each

n (now suppressed notationally) becomes

d2V

dr2
þ 1

r

dV

dr
þ λ2V ¼ Ψ

μ
; ð9:112Þ

where λ2� i3nωρ/μ. This governing differential equation has the form of a

standard Bessel’s equation

d2y

dx2
þ 1

x

dy

dx
þ y ¼ 0; ð9:113Þ

which has a solution of the form

y xð Þ ¼ c1J0 xð Þ þ c2Y0 xð Þ; ð9:114Þ

where J0(x) and Y0(x) are Bessel functions of order zero and the first and second

kinds, respectively. For example,

J0 xð Þ ¼ 1� x2

22
þ x4

2242
� x6

224262
þ . . . ; ð9:115Þ

Y0 xð Þ ¼ J0 xð Þlog xð Þ þ x2

4
� 3x4

128
þ . . . : ð9:116Þ

Now, if we consider a change of variables, x� λz, then

d

dx
¼ d

dz

� �
dz

dx

� �
¼ 1

λ

d

dz
and

d2

dx2
¼ 1

λ

d

dz

1

λ

d

dz

� �
¼ 1

λ2
d2

dz2
; ð9:117Þ

thus, an equation of the form

d2y

dz2
þ 1

z

dy

dz
þ λ2y ¼ 0 ð9:118Þ

admits a solution of the form (cf. Eq. 9.112)

y zð Þ ¼ c1J0 λzð Þ þ c2Y0 λzð Þ: ð9:119Þ
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The homogeneous solution of our governing equation (9.112) is thus

VH rð Þ ¼ c1J0 λrð Þ þ c2Y0 λrð Þ; ð9:120Þ

where c2 must be zero to maintain V(r) finite at the centerline r¼ 0 (a similar

restriction was used in the steady-flow solution). For the particular solution, we

let Vp(r)¼ c3 and find that c3¼Ψ/μλ2 for each harmonic. Hence,

V rð Þ ¼ VH rð Þ þ V p rð Þ ¼ c1J0 λrð Þ þ Ψ

μλ2
ð9:121Þ

for each harmonic n. Now, this solution must satisfy the no-slip boundary

condition vz(r¼ a, t)¼ 0 for all time and, thus, V(r¼ a)¼ 0. Hence,

c1J0 λað Þ ¼ � Ψ

μλ2
! c1 ¼ �

Ψ

μλ2
1

J0 λað Þ

� �
ð9:122Þ

and

V rð Þ ¼ Ψ

μλ2
1� J0 λrð Þ

J0 λað Þ

� �
ð9:123Þ

for each harmonic n. Our final solution, therefore, for the assumed pressure

gradient

∂ p

∂z
tð Þ ¼ ∂ p

∂z
steadyð Þ þ

XN

n¼1
Re Ψne

inωt
� �

ð9:124Þ

is

v r; tð Þ ¼ vs rð Þ þ Re
XN

n¼1

Ψn

μλ2n
1� J0 λnrð Þ

J0 λnað Þ

� �
einωt

" #( )
; ð9:125Þ

where the number of harmonics n¼ 1,2,. . ., N is dictated by the Fourier series fit

to the pressure gradient data [cf. Eq. (9.98)]. The wall shear stress can thus be

computed in the normal way, where

σrz r; tð Þ ¼ μ
∂vz

∂r
: ð9:126Þ
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Note, therefore, that

d

dx
J0 kxð Þ½ 	 ¼ �kJ1 kxð Þ; ð9:127Þ

where J1 is a first-order Bessel function of the first kind.

In particular, for each harmonic n, the unsteady contribution is

τw
�
u ¼ Re

Ψnj j
λn

J1 λnað Þ
J0 λnað Þ

� �
einωt

� �
: ð9:128Þ

Likewise, the unsteady contribution to the volumetric flow rate is

Qu tð Þ ¼ Re
πa4Ψne

inωt

μ λnað Þ2
1� 2J1 λnað Þ

λnaJ0 λnað Þ

� �( )
: ð9:129Þ

Observation 9.3. Computations based on Womersley’s results are clearly com-

plex, and the interested reader is referred to Zamir (2000) for more details.

Nonetheless, Fig. 9.20 shows velocity profiles (fully developed) at five different

times in the cardiac cycle. In particular, note the near-parabolic profiles in the

second and fourth panels, but the more blunted profiles in the first, middle, and

fifth panels (the first and fifth are the same because the pressure gradient is

periodic). Note, too, that we see a flow reversal in the third and fourth panels.

Because wall shear stress is proportional to the slope of the velocity profile at

the wall (i.e., the velocity gradient), we see that the wall shear stress is

oscillatory. There has been considerable attention in the literature on delineat-

ing the effects of the oscillatory versus mean wall shear stress on atherogenesis

and other pathologies. The interested reader should research this.

Indeed, because of the potential importance of the unsteadiness, a

nondimensional parameter called the Womersley number α is defined as

α ¼ a

ffiffiffiffiffiffi
ωρ

μ

r
:

Typical values in man are α¼ 22.2 in the aorta and α¼ 4.0 in the femoral artery;

in comparison, α¼ 4.3 in the rat aorta and α¼ 1.5 in the rat femoral artery.

Localization of disease is also correlated with α in someworks (seeMilnor 1989).

Finally, pulsatility raises important issues with regard to the generation and

reflection of waves in distensible tubes. Again, however, the reader is referred to

Fung (1984) or Zamir (2000) for more on this advanced topic.
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9.6 Non-Newtonian Flow in a Circular Tube

Whereas the flow of air in the airways, the flow of urine in the ureters, and the

flow of blood in large arteries at sufficiently high shear rates can all be modeled

assuming a Newtonian response, non-Newtonian behavior can be important in

the vasculature. Hence, let us consider a brief introduction to an analysis of a

relevant non-Newtonian flow.

9.6.1 Motivation

Figure 7.11 shows that blood, among other biological fluids, exhibits a

non-Newtonian (pseudoplastic) behavior under certain circumstances (e.g.,

low shear rates). Whereas quantification of linear (e.g., Newtonian) material

FIGURE 9.20 Pulsatile velocity profiles computed for low frequencies (1 Hz). Results are

shown for different phase angles ωt, values being 0
 at the top and increasing by 90
 for
subsequent panels. Note that the flow “develops” over time at a single location similar to

its development with distance in an entrance length. [From Zamir (2000), with permis-

sion from Springer].
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behavior is simplified by the uniqueness of linear relations, quantification of

nonlinear behavior remains an area of active research. The interested reader is

reminded of Eq. (7.68), but referred to texts on nonlinear rheology (e.g., Tanner,

1985). Here, we shall restrict our attention to the simplest nonlinear behavior—

a 1-D power-law model, which is not without mathematical limitations, but

does serve to illustrate some nonlinear effects. That is, whereas a 1-D consti-

tutive relation for a Newtonian fluid can be written as

σrz ¼ 2μDrz ¼ μ
∂vz

∂r
ð9:130Þ

for an axial flow in a circular tube characterized by v¼ vz(r)êz [cf. Eq. (9.45)], a

generalization of this relation has been proposed of the form

σrz ¼ k
dvz

dr

����
����
n�1

|fflfflfflfflffl{zfflfflfflfflffl}
μa

dvz

dr
¼ k

dvz

dr

� �n

; ð9:131Þ

where μa is an “apparent” viscosity, k an empirical parameter, and n a

nonintegral material parameter. Of course, when μa� μ and n¼ 1, we recover

the Newtonian result. When n> 1, we have a dilatant behavior, and when n< 1,

we have a pseudoplastic behavior (cf. Fig. 7.11). In the special case that n¼ 0,

we have σrz¼ constant, independent of deformation. Such a model is called

perfectly plastic in solid mechanics, hence the name pseudoplastic for

n approaching zero.

9.6.2 Mathematical Formulation

Consider a differential annulus as shown in Fig. 9.21. The sum of the z compo-

nents of force acting on the full annulus must be zero in the case of a steady flow

(i.e., no local acceleration) and without a convective acceleration. Enforcing

equilibrium, we have

p2πrΔr � pþ ∂ p

∂z
Δz

� �
2πrΔr þ σrz þ

∂σrz

∂r
Δr

� �
2π r þ Δrð ÞΔz

� σrz2πrΔz ¼ 0:

ð9:132Þ
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Simplifying, we have

�∂ p

∂z
rΔrΔzþ ∂σrz

∂r
rΔrΔzþ σrzΔrΔzþ

∂σrz

∂r
Δr2Δz ¼ 0: ð9:133Þ

Dividing this equation by rΔrΔz and letting Δr! 0 and Δz! 0, the pressure

gradient is found to be [cf. Eq. (8.26)]

∂ p

∂z
¼ ∂σrz

∂r
þ σrz

r
¼ 1

r

∂

∂r
rσrzð Þ: ð9:134Þ

Assuming p varies with z alone and integrating with respect to r yields

ð
d

dr
rσrzð Þdr ¼

ð
d p

dz
r dr; ð9:135Þ

or

rσrz ¼
d p

dz

r2

2
þ c1 ! σrz ¼

d p

dz

r

2
þ c1

r
: ð9:136Þ

Now, we can apply a constitutive equation for a Newtonian fluid or a

non-Newtonian fluid (because this derivation thus far has been independent of

the material). For example, substituting the expression for a power-law fluid

[Eq. (9.131)] into Eq. (9.136), we obtain

k
dvz

dr

� �n

¼ d p

dz

r

2
þ c1

r
: ð9:137Þ

Applying the symmetry condition that dvz/dr¼ 0 at the centerline (r¼ 0),

c1¼ 0. Therefore,

FIGURE 9.21 Free-body diagram of half a differential annulus of fluid and associated

shear stresses for purposes of deriving a general equation of motion. Compare to Fig. 8.1

for a cuboidal fluid element.
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dvz

dr

� �n

¼ 1

2k

d p

dz
r ! dvz

dr
¼ 1

2k

d p

dz

� �1=n

r1=n: ð9:138Þ

Integrating with respect to r again,

ð
d

dr
vzð Þdr ¼

1

2k

d p

dz

� �1=nð
r1=ndr; ð9:139Þ

we obtain

vz rð Þ ¼
1

2k

d p

dz

� �1=n
r1þ1=n

1þ 1=n
þ c2

or

vz rð Þ ¼
1

2k

d p

dz

� �1=n
n

1þ n
r 1þnð Þ=n þ c2:

ð9:140Þ

Applying the no-slip boundary condition at the wall, vz(r¼ a)¼ 0, we find that

0 ¼ 1

2k

d p

dz

� �1=n
n

1þ n
a 1þnð Þ=n þ c2

thus

c2 ¼ �
1

2k

d p

dz

� �1=n
n

1þ n
a 1þnð Þ=n:

ð9:141Þ

Therefore,

vz rð Þ ¼
1

2k

d p

dz

� �1=n
n

1þ n
r 1þnð Þ=n � a 1þnð Þ=n
� �

: ð9:142Þ

For n¼ 1, we recover the result for Newtonian flows [Eq. (9.45)], as we should.

Clearly, the volumetric flow rate Q can be computed and, hence, so too the wall

shear stress in terms of Q.

For example,

Q ¼ πn

1þ 3n

a1þ3n

2k
� d p

dz

� �� 
1=n
: ð9:143Þ

Noting that Eq. (9.142) can be written as

vz rð Þ ¼ �
n

1þ n

a1þn

2k

d p

dz

� �1=n

1� r

a

� � 1þnð Þ=n
� �

; ð9:144Þ
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the maximum velocity is

vz
�
max ¼ vz r ¼ 0ð Þ ¼ � n

1þ n

a1þn

2k

d p

dz

� �1=n

; ð9:145Þ

hence, we can write

vz rð Þ
vz
�
max

¼ 1� r

a

� � 1þnð Þ=n
; ð9:146Þ

which facilitates plotting the velocity profile. Figure 9.22 shows, for example, a

profile for n< 1, which differs from the parabolic profile for n¼ 1. In particular,

note the blunted profile for the pseudoplastic response, remembering from

Chap. 7 that blood exhibits a pseudoplastic character.

Chapter Summary

The Navier–Stokes equations are arguably the most important equations in fluid

mechanics and they find wide usage in biofluid mechanics as well. Although

one must resort to the numerical solution (often via finite element methods; see

Humphrey and Taylor 2008) of these coupled, nonlinear partial differential

equations in many cases, there are a number of exact analytical solutions that

are both useful and instructive. We thus strongly encourage the reader to

understand well the solutions presented in Sects. 9.1–9.5.

In particular, solution of the velocity, pressure, and shear stress fields for a

pressure-driven flow of a Newtonian fluid (e.g., standard culture media)

between rigid parallel plates (Sect. 9.1) is especially important in endothelial

cell mechanobiology, in which one seeks to correlate altered gene expression or

signal pathway activity with shear stress. Similar solutions for pressure-driven

FIGURE 9.22 Non-

Newtonian velocity

profiles; note the more

blunted profile than for

the Newtonian case

(cf. Fig. 9.13).
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steady (Sects. 9.2 and 9.4) and unsteady (Sect. 9.5) flows of a Newtonian fluid

in a tube are especially important in studying problems in cardiology,

pulmonology, and urology, to name a few medical specialties, and so too for

the one solution of a non-Newtonian flow (Sect. 9.6) in a circular tube.

We emphasize, therefore, that such closed-form solutions are useful for

understanding the biomechanics (e.g., in vivo situations) and for designing

rigorously interpretable experiments (e.g., both for the mechanics and the

mechanobiology), including the devices to be used. Moreover, understanding

fluid responses in diverse “simple” situations as discussed in this chapter helps

the reader to build considerable intuition that will prove useful when later trying

to interpret results stemming from finite element solutions of the Navier–Stokes

equations for complex domains.

Appendix 9: Biological Parameters

Fundamental to computations in mechanics is knowledge of geometry, material

properties, and applied loads for the system of interest. Here, we list information

of importance to hemodynamics and airflow mechanics.

TABLE A9.1 Values for blood pressure in humans in health and hypertension.

Diastolic Systolic

Normotensive <85 <130

High 85–89 130–139

Hypertensive

Stage 1 90–99 149–159

Stage 2 100–109 169–179

Stage 3 110–119 180–209

Stage 4 >120 >210

Source: From J. H. Laragh and B. M. Brener (1995) Hypertension, Pathophysiology, Diagnosis,

and Management. Raven Press, New York

TABLE A9.2 Mean blood vessel characteristics (man).

Vessel Lumen radius Wall thickness Pressure (mmHg) CSA (cm2)

Aorta 1.25 cm 2 mm 120/80 4.5

Artery 0.4 cm 1 mm 112/79 20

Arteriole 15 mm 20 μm 45/35 400

Capillary 6 μm 1 μm 30 4500

Venule 10 μm 2 μm 20 4000

Vein 0.25 cm 0.5 mm 15 40

Vena cava 1.5 cm 1.5 mm 10 18

Note: Pressure is given as systolic/diastolic if pulsatile; CSA is the accumulative cross-sectional

area. Vena cava pressures fluctuate with pulmonary inspiration and expiration but are given as

representative

Source: From Johnson (1991)
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TABLE A9.3 Hemodynamic characteristics (man).

α v cm=sð Þ Mean Re Max Re

Ascending aorta 21 18 1,500 9,400

Abdominal aorta 12 14 640 3,600

Renal artery 4 40 700 1,300

Femoral artery 4 12 200 860

Inferior vena cava 17 21 1,400 3,000

Source: From Milnor (1989), p. 148

TABLE A9.4 Mean airway characteristics (man).

Generation Number Diameter

(mm)

Length

(mm)

CSA

(cm2)

v

cm=sð Þ
Re

Trachea 0 1 18 120 2.6 393 4,350

Main bronchus 1 2 12.2 47.6 2.3 427 3,210

Lobar bronchus 2 4 8.3 19.0 2.2 462 2,390

Lobar bronchus 3 8 5.6 7.6 2.0 507 1,720

Segmental

Bronchus

4 16 4.5 12.7 2.6 392 1,110

Terminal

Bronchus

11 2,050 1.09 3.9 19 52.3 34

Alveoli Last 300� 106 0.28 0.28 — — —

Note: CSA is the accumulative cross-sectional area

Source: From Weibel (1963)

TABLE A9.5 Ventilation–perfusion ratios.

% Lung volume Alveolar Q (cm3/s) Perfusion Q (cm3/s) Ventilation/perfusion ratio

Top 7 4 1.2 3.3

8 5.5 3.2 1.8

10 7.0 5.5 1.3

11 8.7 8.3 1.0

12 9.8 11.0 0.9

13 11.2 13.8 0.8

13 12.0 16.3 0.73

13 13.0 19.2 0.68

Bottom 13 13.7 21.5 0.63

Total 100 %

Source: From Johnson (1991), p. 178
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TABLE A9.6 Density and viscosity for common fluids.

Material Density (kg/m3) Viscosity (Ns/m2)

20 
C 37 
C 20 
C 37 
C

Air 1.208 1.142 1.8� 10�5 2.0� 10�5

Water 998 995 1.0� 10�3 7.5� 10�4

Plasma - 1020 1.9� 10�3 1.2� 10�3

Glycerin 1,260 - 1.6 0.45

Notes: The density of water @ 4 
C is 1,000 kg/m3, which is used to compute specific gravities:

SG ¼ ρ=ρH2O
at 4 
C. 1P¼ 0.1 N s/m2 and thus 1 cP¼ 1� 10�3Ns/m2. Finally, the viscosity tends

to vary as μ ~AeB/T for fluids, where A and B are material parameters, and T is temperature.

Exercises

9.1 Design (sketch) an experimental setup that ensures a constant steady

flow within a parallel-plate device. Discuss various options with regard

to how to generate the requisite constant pressure gradient.

9.2 The velocity profile in Eq. (9.15) represents a flow between parallel

plates relative to an (o; x, y) coordinate system with the origin at the

bottom plate. Show that the solution can alternatively be written as

vx yð Þ ¼ � 1

2μ

d p

dx

� �
h2

4
� y2

� �

if the origin of the coordinate system is at the centerline (i.e., y 2 [�h/2,
h/2]). Show, too, that regardless of the particular coordinate system used,

the values of Q and τw are the same for this Poiseuille flow.

9.3 To facilitate access to the cells, some researchers use a parallel flow

setup in an incubator wherein the bottom plate is stationary but the top

surface of the fluid is exposed to an air/CO2 environment (i.e., a free

surface). Assuming a steady, incompressible, fully developed, 1-D flow,

show that

Q ¼ � h3w

3μ

d p

dx

� �
and τw ¼

3μQ

wh2
:

9.4 A constant-pressure gradient dp/dx¼ 0.2 kPa/m is used to drive glycerin

through a parallel-plate device with gap h ~ 0.2 m. Find the maximum

velocity and volumetric flow rate per unit width. Compare these values to

those for water. Assume that the temperature is ~20 
C. Values for the
viscosities are in Appendix 9.
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9.5 Is the flow field in Example 9.2 irrotational?

9.6 Assuming a steady flow with no gravity, find the velocity in the

x direction for the problem in Fig. 9.23, where U is constant and the

fluid is at a constant pressure.

9.7 Solve for the flow between parallel plates (cf. Example 9.2) with both

dp/dx 6¼ 0 (i.e., p1> p2) andU0 6¼ 0. CalculateQ and vx)max, as well as σxy
and τw in terms of Q.

9.8 For the problem in Example 9.3, show that

Q ¼ ρg sin θh3

3μ
:

Furthermore, plot the velocity distribution vx/vx)max on the abscissa

versus the depth of the fluid (y/h) on the ordinate. Note that both vari-

ables are nondimensional and that they will vary from 0 to 1 regardless of

the specific values in the problem. Finally, plot a normalized shear stress

σxy/σxy)max versus y/h and discuss based on the shape of the velocity

distribution curve.

9.9 A biomedical device is thrombogenic and thus must be coated with a thin

biocompatible film as in Fig. 9.24. Assume that the fluid adheres to the

device (no slip) as the device is pulled through it. Assume a constant film

thickness h, and that the fluid behaves as Newtonian and incompressible.

By solving Navier–Stokes, show that

h ¼
ffiffiffiffiffiffiffiffiffi
2μU

ρgx

s
:

Hint: Assume vx(y¼ h)¼ 0 in addition to the free-surface boundary

condition ∂vx/∂y (y¼ h)¼ 0. What is implied by the latter condition?

FIGURE 9.23
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9.10 A plate with area A and mass M is sliding down an incline covered by a

fluid film of constant thickness h (Fig. 9.25). (a) Determine the velocity

profile in the fluid. (b) Determine the velocity of the plate U. Hint:

Assume that the pressure gradient in the x direction is zero. Draw a

free-body diagram of the plate and sum the forces to find an expression

for the shear stress acting on the plate in terms of M, A, and g.

9.11 A rigid membrane with negligible thickness is located between two belts

and is free to move (Fig. 9.26). The top belt is moving to the right with

velocity 2 U. The bottom belt is moving to the left with velocity U. The

fluid in section 1 (lower-half) has viscosity μ1 and the fluid in section

2 (upper-half) has viscosity μ2, with μ1¼ 3 μ2. (a) Determine the velocity

field in sections 1 and 2. (b) Determine the velocity of the membrane

using the given coordinate system. Hint: Draw a free-body diagram of

the membrane to find the boundary condition at y¼ h.

FIGURE 9.25

FIGURE 9.24
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9.12 A fluid film of constant thickness h is sliding down a vertical wall

(Fig. 9.27). Show that the velocity field is given by

vy ¼
ρgh2

μ

x

h
� 1

2

x

h

� �2� 


for x 2 [0, h]. Hint: Assume no-slip at the wall (x¼ 0) and assume that

the shear stress due to the airflow over the fluid is negligible (i.e., ∂vy/

∂x|x¼h¼ 0). Show that the velocity field is equivalent to that obtained in

Example 9.3 if θ¼ 90
.

9.13 Show that the governing differential equation [Eq. (9.39)] for a steady

flow of a Newtonian fluid in a rigid circular tube can be written as

1

μ

d p

dz
¼ d2v2

dr2
þ 1

r

dvz

dr
:

Consequently, the equation can be solved by assuming a solution of the

form vz / rn. Show that the solution is the same as that in Eq. (9.45).

FIGURE 9.27

FIGURE 9.26
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9.14 Ex vivo perfusion systems are becoming more common in vascular

research. Assuming a fully developed laminar flow, the wall shear stress

in the perfused vessel is estimated by

τw ¼
4μQ

πr3i
:

If ri ~ 2.2 mm (porcine carotid) and μ¼ 4 cP (Han and Ku 2001) find the

value of Q necessary to produce a physiologic wall shear stress ~1.5 Pa.

9.15 Estimate the value of the Reynolds’ number in the vena cava in a human.

For comparison, note that for the vena cava of a dog, the diameter is

~1.25 cm, the mean velocity ~33 cm/s, the wall shear rate ~211 s�1, the
viscosity ~3 cP, and, thus, τw ~0.63 Pa. What is the associated value of

the skin friction coefficient cf?

9.16 Both in vivo and in vitro experiments show that the erythrocytes in blood

vessels do not distribute themselves evenly across the cross section of a

large blood vessel. Instead, they tend to accumulate along the centerline,

thereby allowing, in a statistical sense, a thin cell-free layer to form along

thewall of the vessel called the plasma layer (Fig. 9.28). Let the central core

region containing cells have a viscosity μc and the cell-free plasma layer

have a viscosity μp and thickness δ. In each region, assume that the flow is

Newtonian. Use the Navier–Stokes equation to find (a) the velocity profile

in the core region vcz(r), (b) the velocity profile in the plasma layer vpz (r),

(c) the core volumetric flow rate Qc, and (d) the plasma layer volumetric

flow rate Qp. Hint: Assume steady, unidirectional flow with a pressure

gradient in the z direction to drive the flow. The velocity and shear stress in

each region must be the same at the interface r¼ a – δ.

9.17 For a pressure-driven axial flow between long concentric cylinders

(similar to that in Fig. 9.14 but for an axial flow; see Fig. 9.29), find

the expression for the velocity profile in the z direction if the inner

cylinder is of radius b and outer cylinder is of radius a. This problem

relates to flow in an airway or blood vessel in which a central catheter has

been placed. In particular, show that (Slattery 1981)

FIGURE 9.28
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vz rð Þ ¼
�a2
4μ

d p

dz

� �
1� r2

a2
þ 1� β2

ln 1=βð Þ ln
r

a

� �
;

where b¼ βa and β< 1. In addition, find an expression for the volumet-

ric flow rate Q. Note that b¼ 0 recovers Eq. (9.45).

9.18 The viscosity in a concentric cylinder viscometer was shown to be

calculated via

μ ¼ T b2 � a2
� �

4πωha2b2
;

where T is the applied torque, a and b are the inner and outer radii,

respectively, h is the height, and ω is the angular velocity. In contrast, a

so-called capillary viscometer allows one to measure viscosity according to

μ ¼ �πa
4

8Q

d p

dz

� �
;

where dp/dz is the applied pressure gradient, a is the radius of the

capillary (i.e., straight tube), and Q is the volumetric flow rate. Show

that this equation is correct and state the associated restrictions that

govern the experimental setup.

9.19 We have seen that there are many different types of viscometers, includ-

ing the concentric-cylinder (Sect. 9.3) and the cone-and-plate (Sect. 7.6)

devices. Explain how the results of Sect. 9.2 can be used to design a

“capillary viscometer.” Also discuss why, in contrast to the cone-and-

plate viscometer, the capillary viscometer would not be useful for

non-Newtonian fluids.

solid

Q

b

a

fluid

domain

FIGURE 9.29
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9.20 Similar to the previous exercise, explain how the results of Sect. 9.1 can

be used to design a parallel-plate flowmeter to measure Q.

9.21 Synthecon, Inc. is a company that produces rotary cell culture systems,

or bioreactors. According to literature on their website, a bioreactor is

any device that monitors and controls the environment of a population of

cells so as to promote normal metabolic and other activities. They write

further that “the fluid-filled rotating wall vessel (RWV) bioreactor is a

recently developed cell culture device that is able to successfully inte-

grate cell–cell and cell–matrix co-localization and three-dimensional

interaction with excellent low-shear mass-transfer of nutrients and

wastes, without sacrificing one parameter for the other. Designed by

Ray Schwarz, David Wolf, and Tinh Trinh at the Johnson Manned

Spaceflight Center, the RWV bioreactor consists of a cylindrical growth

chamber that contains an inner co-rotating cylinder with a gas exchange

membrane.” Write a three-page summary and critique of the NASA

RWV bioreactor with particular emphasis on the fluid mechanics.

9.22 The velocity field for the NASA bioreactor (rotating cylinders) was

assumed to be v¼ vθ(r)êθ, with vθ¼ rω. This flow was shown to be

“shearless” but not irrotational. How would the situation change if the

angular velocity was a function of time [i.e., ω¼ω(t), with both cylin-

ders still moving together]? Why? Is it possible to construct a

Womersley-type solution for an oscillating case?

9.23 Confirm the result in Eq. (9.84) for the error in the inferred torques based

on the exact versus flat plate approximations.

9.24 Let b¼ a+ h in Eq. (9.84). Show numerically how the error increases as

the gap h increases. Hint: Consider different values of h as a percentage

of a and plot the error versus h/a.

9.25 In some cases, the pressure gradient in a tube flow is computed as –∂p/

∂z¼Δp/L, where Δp is called the pressure drop (Δp¼ pi – po, where

subscripts i and o denote inlet and outlet) and L is the distance between

the locations at which pi and po are measured. If the straight tube is

angled upward at angle α, show that the results from Sect. 9.2 hold

provided that the pressure gradient is taken to be (Slattery 1981, p. 73)

�∂ p

∂z
¼ pi � po � ρgL sinα

L
:

9.26 A catheter is to be coated by a nonthrombogenic film. A schema of the

manufacturing setup is shown in Fig. 9.30. Assume that the flow is

steady, laminar, and fully developed in the section L and that the coating

fluid is Newtonian. Find the volumetric flow rate Q of the fluid through

this section. Assuming the coating (film) thickness δ is uniform, find an

expression for δ.
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9.27 In Sect. 9.4, we found the solution to the flow in an elliptical cross

section by assuming a form of vz(x, y) that satisfies the no-slip boundary

condition exactly. Rederive the solution for steady, incompressible, fully

developed, Newtonian flow in a rigid, straight, circular tube using this

same idea. Hint: Let vz(r)¼ c(x2+ y2 – a2)¼ c(r2 – a2).

9.28 We found that the velocity in an elliptical cross section is given by

vz x; yð Þ ¼ � 1

2μ

d p

dz

� �
a2b2

a2 þ b2
1� x2

a2
� y2

b2

� �
:

Show that, as reported by Zamir (2000), the volumetric flow rate and

wall shear stress are given by

Q ¼ � πa3b3

4μ a2 þ b2
� � d p

dz

� �

and

τw ¼
d p

dz

a2b2

a2 þ b2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21
a4
þ y21
b4

s

;

where (x1, y1), are points on the elliptical boundary.

9.29 The Fourier series representation for pressure in Eq. (9.97) can be written

alternatively as

p tð Þ ¼ pm þ
XN

n¼1
Cn cos

2πnt

T
þΦn

� �
;

where T is the period (not temperature) andФn is a phase shift. Prove that

this is the case, and in so doing, relate the Fourier coefficients An and Bn

to the amplitude Cn and the phase Фn. See Table 9.1.

atmosphere

atmosphere

coating

catheter

die

film

U

pressure gaugeL
21

FIGURE 9.30

518 9. Some Exact Solutions



9.30 Plot the function

f tð Þ ¼
XN

n¼1
Cn cos

2πnt

T
þΦn

� �

given

Cn 7.5803 5.4124 1.5210 0.5217 0.8311

Фn �173.9200 88.9220 �21.7046 �33.5370 �126.8100

Pick a constant value of 2π/T for a typical cardiac cycle.

9.31 Nagel et al. (J Clin Invest 94: 885–891, 1994) used a cone-and-plate

device to subject cultured endothelial cells to various shear stresses.

They showed that cultured human umbilical vein endothelial cells

(HUVEC) exhibit time-dependent changes in the production of adhesion

molecules for wall shear stresses τw from 0.25 to 4.6 Pa. They report that

τw was given by

τw ¼
μω

α
1� 0:4743

r2ωα2ρ

12μ

� �2
" #

;

where μ is the viscosity of the culture media, ρ is its mass density, ω is

the angular velocity of the cone, α is its inclination angle, and r is a radial

distance from the symmetry axis. Show that the formula is approxi-

mately “correct.”

9.32 Usami et al. (Ann Biomed Eng 21: 77–83, 1993) reported that a multidir-

ectional steady-flow solution between parallel flat plates is given by

vx ¼
6

h2
z h� zð Þvx x; yð Þ, vy ¼

6

h2
z h� zð Þvy x; yð Þ;

where h is the gap distance, z is the out-of-plane direction, and vx and vy
are mean values over the gap at any (x, y). Show that in the case of vx
¼ c; a constant, and vy ¼ 0; one recovers the simple Poiseuille flow. Find

the “value” of c. Show, too, that these results for vx(xy y, z) and vy(x, y, z)

are solutions to the incompressible Navier–Stokes equation and that

τwn ¼ τ13ê 1 þ τ23ê 2 ¼
6μ

h
v:

Finally, note that this formulation allowed the design of a unique flow

chamber, with particular advantages over the standard parallel-plate

device.
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9.33 Repeat the analysis in Sect. 9.6 for the flow of a power-law fluid between

parallel plates. Let the gap distance be h and the width w and assume a

fully developed, steady flow. If y 2 [�h/2, h/2], find the velocity

distribution vx(y).

9.34 Plot the velocity distribution vx/vx)max in Exercise 9.33 versus depths y/h

(ordinate) for n¼ 0.8, n¼ 1, and n¼ 1.5.

9.35 Plot Q(non-Newtonian)/Q(Newtonian) on the ordinate versus the power-

law exponent n on the abscissa for n from 0.5 to 1.5 for the parallel-

plate flow.

9.36 Given the following data for water

Temperature (
C) Density (kg/m3) Viscosity (Ns/m2)

4 1,000.00 1.568� 10�3

15 999.13 1.145� 10�3

20 998.00 1.009� 10�3

30 996.00 0.800� 10�3

40 992.00 0.653� 10�3

Use interpolation methods to find precisely ρ(37 
C) and μ(37 
C). Given
that μ¼AeB/T (where T is the absolute temperature), find A and B for

water.

9.37 A power-law (Ostwald-deWalle) model is given in Eq. (9.131) as

σrz ¼ κ
∂vz

∂r

� �n

;

where n is a parameter (n> 1 for dilatant and n< 1 for pseudoplastic)

and κ is related to the “apparent” viscosity. Actually, it was proposed that

the viscosity varied with the shear rate, namely

σrz ¼ μ shear rateð Þ∂vz
∂r

;

where the viscosity was found from experiments to be given by

μ shear rateð Þ � μa
∂vz

∂r

� �n�1
;

which recovers a Newtonian behavior if n¼ 1. A similar but different

model (Hermes and Fredrickson) is of the form (Slattery 1981, p. 53)

μ � mμ0

mþ μ0 ∂vz=∂rð Þ1�n
;

where m, n, and μ0 are parameters. Repeat the analysis in Sect. 9.6 using

this model.
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9.38 If we denote an arbitrary shear rate (e.g., ∂vz/∂r or ∂vθ/∂r) via the

symbol γ then the viscosity for the power-law model is

μ ¼ μaγ
n�1:

Hence,

lnμ ¼ lnμa þ n� 1ð Þln γ

can be interpreted as a straight line y¼ b+mx. Use a linear regression

method to compute μa and n for the data in Exercise 7.27 of Chap. 7.

9.39 The cross-sectional area A of an artery tends to taper exponentially as a

function of distance from the heart. In particular, it has been shown in

canines that

A ¼ πa0e
�Bx=a0ð Þ

where a0 is the radius at an upstream site, x is a distance along the aorta

from that site, and B ~ 0.02–0.05. Plot the change in cross-sectional area

for different values of B over a length of 20 cm.

9.40 For the solution of a flow down an inclined surface (Example 9.3), show

that the maximum velocity occurs at the free surface, where

vx
�
max ¼

ρg sin θh2

2μ

and the volumetric flow rate is

Q ¼ ρg sin θh3w

3μ
:

Also find the wall shear stress τw (at y¼ 0).

9.41 We have used the no-slip boundary condition at all solid–fluid interfaces

(i.e., the fluid has the same velocity as the solid it contacts). This is

clearly an approximation. Consider therefore, a slip boundary condition

whereby

vsurface ¼ γτw;

where γ is an empirical coefficient (γ¼ 0 for no-slip and a stationary

surface). In the case of parallel-plate flow, with the coordinate system at

the centerline,
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vsurface� vx y ¼ �h
2

� �
¼ γ �σyx

h

2

� �� 

¼ �γ ∂vx

∂y

h

2

� �
:

Show that, in this case,

vx yð Þ ¼ c 1� y2

h2=4� γμh

� �
;

where c can be written in terms of the volumetric flow rate or the

pressure gradient. Hint: Use the condition that the velocity field is

symmetric, ∂vx/∂y¼ 0 at y¼ 0. Note that if γ¼ 0, then we should

recover our previous answer.

9.42 Equation (9.49) provides a relationship between the volumetric flow rate

Q and the pressure gradient dp/dz for a rigid circular tube. The ratio of

|dp/dz| to Q provides a measure of the resistance to flow, which for the

circular tube is 8 μ/πa4, which is to say, the resistance decreases as the

luminal radius increases (to the fourth power). Similarly, find the ratio of

|dp/dz| to Q for flow in an elliptical tube [cf. Eq. (9.96)]. Compare the

resistance to flow for these two geometries given the same cross-

sectional area A.

9.43 Show that the velocity profile for a power-law fluid flowing between two

parallel flat plates is given by (with the coordinate system centered

between the plates with no-slip boundary conditions at y¼�h/2)

vx yð Þ ¼ n

1þ n

1

k

d p

dx

� �1=n

y1þ1=n � h

2

� �1þ1=n
 !

and, consequently, that

Q ¼ � 2nw

2nþ 1

� �
1

k

d p

dx

� �1=n
h

2

� �2þ1=n
:

9.44 For Exercise 9.43, show that

vx yð Þ ¼ vx
�
max 1� 2y

h

� �1þ1=n
" #

:

Plot the velocity profile, normalized by vx)max, for various values of n.

9.45 Solve Exercise 3.8 in Ethier and Simmons (2007), namely: “The binding

strength of a single αIIbβ3 integrin complex to fibrinogen has been

measured to be 60 to 150 pN. Suppose that a value of 100 pN is typical
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for all integrins. How many integrin complexes would be required to

maintain adherence of a vascular endothelial cell to the wall of a 8 mm

diameter artery carrying 1.4 l/min of blood. You may treat the blood flow

as steady, take blood viscosity to be 3.5 cP, and assume that the apical

surface area of a single endothelial cell is 550 μm2.

9.46 We close this chapter by emphasizing that the continuum assumption is

expected to hold when δ/L<<1, with δ a characteristic length scale of

the microstructure and L a characteristic length scale of the physical

problem. Hence, one would expect (cf. Table 9.1) the continuum

assumption to hold for blood flow in the human aorta (dia ~ 2.5 cm,

thus L on the order of centimeters) but not a capillary (dia ~ 10 μm, thus

L on the order of microns), each relative to a red blood cell diameter

of ~ 8 μm (and thus δ on the order of microns). Fahraeus and Lindqvist

observed in 1931, however, that one must be thoughtful when using a

continuum approach for blood vessels up to 1 mm in diameter. That is,

they reported that the “effective viscosity” of blood in a continuum sense

decreases as the diameter of the tube decreases. Discuss this “Fahraeus-

Lindqvist” effect in a 2-page report in terms of “plasma skimming” as

well as differential hydrodynamic forces that exist on deformable parti-

cles in a flow field. Both of these effects remind us of the need for diverse

continuum theories, including the need for materially non-uniform (e.g.,

mixture) theories. Hint: also see Exercise 9.16.
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10
Control Volume and Semi-empirical
Methods

Chapters 7–9 focus on the formulation and solution of governing differential

equations (one for mass balance and three for linear momentum balance) to

determine the pressure and velocity fields in fluids under various conditions of

interest. Solutions of these differential equations allow us to compute values

of many important quantities of interest at each point in the flow field at each

time. Such detail is often necessary, as, for example, to compute wall shear

stress from velocity gradients, which, in turn, can be correlated with

mechanosensitive responses of various cells.

Nevertheless, we do not always need such detail to analyze a problem of

clinical or industrial importance or to design a revealing experiment. In some

cases, average rather than pointwise information is sufficient. Toward this end,

let us consider a fundamentally different approach based on the concept of a

control volume.

10.1 Fundamental Equations

Before deriving the governing control volume equations, however, let us con-

sider an organ system wherein such equations are very useful clinically. Indeed,

as we will see, there are many situations in vivo and ex vivo for which average

or global information suffices.

Observation 10.1. The primary function of the lungs is to facilitate gas

exchange—oxygen from the atmosphere to the blood and carbon dioxide

from the blood to the atmosphere. In addition, however, the lungs also filter

some toxic materials from the blood and metabolize others. The human has a

© Springer Science+Business Media New York 2015
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right lung, consisting of three lobes and 55 % of the total lung volume, and a left

lung, consisting of two lobes and 45 % of the volume (Fig. 10.1). Obviously, the

left lung is a little smaller to accommodate the heart, which lies below and

slightly to the left of the sternum.

Air communicates with the lungs via a complex system of branching airways

that become shorter and smaller in diameter as they penetrate deeper into the

lungs (Table A9.4 of Chap. 9). The largest airway, which is about 12 cm long

and 2 cm in diameter, is called the trachea. It is a flexible tube composed

primarily of cartilage, smooth muscle, and elastic fibers, its inner surface being

lined with mucosa and a monolayer of ciliated epithelial cells. The mucosa

helps to trap inhaled particulate matter, which the cilia then transport to the

throat. Consistent exposure to irritants such as cigarette smoke leads to an

increase in the submucous glands.

From a biosolid mechanics perspective, the distinguishing feature of the

trachea is its supporting framework of 15–20 C-shaped cartilaginous rings,

which are separated vertically by fibromuscular tissue and bounded on the

posterior surface by smooth muscle. This structure protects the trachea from

collapsing while affording considerable flexibility.

The trachea divides prior to entering the lungs, thus forming the two primary

bronchi that “enter” the right and left lungs at the hilum. These bronchi then

divide into five lobar bronchi (~0.9 cm in diameter), one per lobe. The larger

bronchi also contain plates of cartilage, which reduce in size and number until

they disappear in bronchi of ~1 mm in diameter. Smooth muscle thus becomes

more prominent in the smaller bronchi. The continuously branching bronchi

transition to the bronchioles, which are ~0.3–0.5 mm in diameter; there are no

mucosal glands or cartilage in the bronchioles and the smooth muscle forms in

discrete bundles rather than in a continuous circumferential layer.

FIGURE 10.1 Schema of

the lungs, which consists

of two lungs (right and

left), each of which are

subdivided into lobes:

three on the right and

two on the left. The lungs

are covered by a thin

collagenous membrane

called the visceral pleura;

the inner, functional,

tissue is a spongelike

material consisting of

air sacs called alveoli.
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Collectively, the trachea, bronchi, and bronchioles represent a system of

16 generations of over 75,000 branching tubes; this is the so-called conducting

portion of the airways, which is to say, the main function of this network is to

conduct air from (to) the atmosphere to (from) the parenchymal tissue of the

lung, where gas exchange occurs via diffusion. The remaining millions of

respiratory airways terminate in over 300 million polyhedral-shaped air sacs

called alveoli, which have a collective surface area of ~140 m2 for gas

exchange. Question: How does this value compare to the surface area of our

skin? Scanning electron micrographs of the lung parenchyma reveal a sponge-

like appearance due to the alveoli (Fig. 10.2), which have a diameter on the

order of 300 μm and a wall thickness of only ~11 μm. More importantly,

however, Fick’s law of diffusion states that the transport of a substance (gas)

across a sheet of material (tissue) is proportional to the area of the sheet and

inversely proportional to the thickness. The distance from the air to the red

blood cells in the alveolar capillaries is only ~0.2–0.5 μm, which is due to a

pulmonary epithelium (if present), a basal layer, interstitial space, basal lamina

of the capillary, and its endothelium (Fig. 10.3). The presence of elastin (highly

compliant) and surfactant (which reduces the surface tension) enables the lung

to be distended easily. For example, a normal breath of ~500 mL of air is

accomplished via a distending pressure of only 0.3 kPa (West 1979). Total

alveolar air volume is ~3 L.

Of primary importance in gas exchange is the so-called ventilation–perfusion

ratio (i.e., the ratio of fresh air that is brought into the lungs per unit time versus

the deoxygenated blood that perfuses the pulmonary capillaries per unit time).

Some typical numbers for a healthy person are Qlung ~7.5 L/min (at a frequency

of 15 breaths per minute or 0.25 Hz), but Qalveoli ~5.25 L/min and Qblood

~5 L/min. This yields a ventilation–perfusion ratio of about 1. Mismatching

of the air and blood flow is responsible for most of the poor gas exchange in

FIGURE 10.2 Scanning

electron micrograph

of the parenchyma

(air sacs) of the lungs.

[From Fawcett (1986),

with permission].
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many pulmonary diseases. We see, therefore, that this aspect of pulmonary

mechanics requires only average, not pointwise, descriptors of the flow field;

this is also true for many other issues of pulmonary physiology (West 1979).

10.1.1 Theoretical Framework

Recall from Chap. 8 that the five fundamental “postulates” of mechanics are the

balance of mass, linear momentum, and energy as well as the balance of angular

momentum and the entropy inequality. These postulates are defined most

naturally in terms of a system (i.e., a fixed identifiable mass). Examples of

FIGURE 10.3 Schema of the alveolar walls in the lung. Note that the flow of blood in the

alveolar capillaries appears to occur in sheets rather than in tubes. This organization

increases the surface area available for diffusion of O2 and CO2 into and out of the

blood. The thin-walled alveoli also minimize the diffusion pathway, with the red blood

cells being only ~0.2–0.5 μm from the alveolar air.

528 10. Control Volume and Semi-empirical Methods

http://dx.doi.org/10.1007/978-1-4939-2623-7_8


systems are differential masses Δm, mass particles, and continuum bodies (i.e.,

collections of particles). In contrast to a fixed identifiable mass, one can also

define a fixed identifiable volume, called a control volume. A control volume is,

therefore, a fictitious volume in space that is convenient for study; mass can

enter or leave a control volume, taking momentum and energy with it.

The first goal of this chapter is to derive equations that enforce the balance of

mass, linear momentum, and energy in a control volume. Although these

equations can be derived in different ways, it can be shown that this is best

accomplished by exploiting known results for a system, which is to say to

identify consequences of prior results for a system in terms of a control volume.

Hence, note that the three balance relations of interest here can be written as

dM

dt

����
sys

¼ 0,
dP

dt

����
sys

¼ ΣF,
dE

dt

����
sys

¼ _Q þ _W ; ð10:1Þ

whereM, P, and E represent respectively the total mass, linear momentum, and

energy in the system, whereas F are the applied forces, _Q is the rate at which

heat is added to the system, and Ẇ is the rate at which work is done on the

system.1 It will prove convenient later to let N represent the total (extensive)

quantity of interest (mass, linear momentum, energy) in a system and, likewise,

to let η represent these quantities (intensive) defined per unit mass. Below, we

will let N representM, P, or E and similarly η represent 1, v, or e for mass, linear

momentum, and energy, respectively; hence, dM/dt, dP/dt, and dE/dt for a

system can each be represented simply as dN/dt.

Now, to relate what happens in a system to what happens in a control volume,

consider the following. First, recall the differential massΔm that we defined and

used in Chap. 8. We assumed that Δm occupied a cube in space at time t¼ 0,

with Δm¼ ρΔXΔYΔZ, and that it deformed into various shapes at other times

t> 0; we assumed, however, that at some time t, this Δmwas once again shaped

as a cube—this is a useful simplification, for it says that current and original

positions are related by extensions alone,

x ¼ x Xð Þ, y ¼ y Yð Þ, z ¼ z Zð Þ; ð10:2Þ

rather than a more general relation x¼ x(X,Y,Z) and so forth which describes

extensions and shears. Thus, for a cube deforming into another cube,

dx ¼ ∂x

∂X
dX, dy ¼ ∂y

∂Y
dY, dz ¼ ∂z

∂Z
dZ ð10:3Þ

1 In some texts, the rate at which heat is taken from the system or the rate at which work
is done by the system is of interest. This simply affects the signs of the right-hand sides
of the equations, of which one must be mindful.
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rather than the more general expression in Eq. (8.3) of Chap. 8. Here, we will

further assume that at time t, the differential mass Δm occupies fully and

precisely a control volume Δ�v of interest; that is, at time t, Δm¼ ρΔxΔyΔz

occupies fully the control volume Δ�v¼ΔxΔyΔz. Hence, at time t, the system

results and control volume results shall correspond exactly.

Recalling from Chap. 8 that when a cube deforms into another cube

[cf. Eq. (8.5)],

dxdydz ¼ ∂x

∂X

∂y

∂Y

∂z

∂Z
dXdYdZ; ð10:4Þ

then for any extensive quantity N (where N can represent M, P, or E),

dN

dt

����
sys

� d

dt

ð

sys

ηρd�v ¼ d

dt

ð

sys

ρη
∂x

∂X

∂y

∂Y

∂z

∂Z
d�V: ð10:5Þ

Because d�V is the original volume, and thus independent of time t, we can now

interchange the order of the differentiation and integration. By the product rule,

we have

dN

dt

����
sys

¼
ð

sys

d

dt
ρη

∂x

∂X

∂y

∂Y

∂z

∂Z

� �
d�V

¼
ð

sys

d

dt
ρηð Þ ∂x

∂X

∂y

∂Y

∂z

∂Z
þ ρη

d

dt

∂x

∂X

∂y

∂Y

∂z

∂Z

� �� 

d�V

¼
ð

sys

d

dt
ρηð Þ ∂x

∂X

∂y

∂Y

∂z

∂Z

� 

þ ρη

d

dt

∂x

∂X

� �
∂y

∂Y

∂z

∂Z

þ ρη
∂x

∂X

d

dt

∂y

∂Y

� �
∂z

∂Z
þ ρη

∂x

∂X

∂y

∂Y

d

dt

∂z

∂Z

� �
d�V;

ð10:6Þ

where we can also interchange the order of the time and space derivatives

because X, Y, and Z relate to the original configuration and thus do not change

with time. For example,

d

dt

∂x

∂X

� �
¼ ∂

∂X

dx

dt

� �
¼ ∂vx

∂X
ð10:7Þ

and so forth, from which we recognize the velocity component vx [cf. Eq. (7.7)

of Chap. 7]. Using the chain rule as we did in Chap. 8,

∂vx

∂X
¼ ∂vx

∂x

∂x

∂X
ð10:8Þ
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and so forth, thus it can be shown (do it) that

ρη
∂vx

∂X

� �
∂y

∂Y

∂z

∂Z
þ ρη

∂x

∂X

∂vy

∂Y

� �
∂z

∂Z
þ ρη

∂x

∂X

∂y

∂Y

∂vz

∂Z

� �

¼ ρη ∇ � vð Þ ∂x
∂X

∂y

∂Y

∂z

∂Z
;

ð10:9Þ

where ∇ · v in Cartesians is given by Eq. (8.14). Substituting this result into

Eq. (10.6), we obtain

dN

dt

����
sys

�
ð

sys

d

dt
ρηð Þ þ ρη∇ � v

� �
∂x

∂X

∂y

∂Y

∂z

∂Z
d�V

¼
ð

sys

d

dt
ρηð Þ þ ρη∇ � v

� �
d�v;

ð10:10Þ

with

d�v ¼ ∂x

∂X

∂y

∂Y

∂z

∂Z
d�V:

Because ρη can change with time and position (x, y, z), and vx¼ dx/dt and so

forth, this equation can be written as

dN

dt

����
sys

�
ð

sys

∂

∂t
ρηð Þ dt

dt
þ ∂

∂x
ρηð Þ dx

dt
þ ∂

∂y
ρηð Þdy

dt
þ ∂

∂z
ρηð Þ dz

dt

�

þρη ∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z

� �

d�v;

ð10:11Þ

or

dN

dt

����
sys

¼
ð

sys

∂

∂t
ρηð Þ þ ∂

∂x
ρηð Þvx þ

∂

∂y
ρηð Þvy þ

∂

∂z
ρηð Þvz

�

þρη ∂vx

∂x
þ ∂vy

∂y
þ ∂vz

∂z

� �

d�v

ð10:12Þ

and, therefore, if we use the product rule and split the integral into two parts, we

have

dN

dt

����
sys

¼
ð

sys

∂

∂t
ρηð Þ þ∇ � ρηvð Þ

� �
d�v ¼

ð

sys

∂

∂t
ρηð Þd�v

þ
ð

sys

∇ � ρηvð Þd�v: ð10:13Þ
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Recalling the divergence theorem [Eq. (A7.31)],

ððð

�V

∇ � Bd�v ¼
ðð

Area

B � n̂ da;

where, in this case, the arbitrary vector B¼ ρηv, we obtain our final result:

dN

dt

����
sys

¼
ð

sys

∂

∂t
ρηð Þd�vþ

ð

sys

ρηv � nda; ð10:14Þ

which is valid for all time t� 0 with n� n̂ . Because this relation is good at that

time t when the system and control volume coincide, we have

dN

dt

����
sys

¼
ð

C�V

∂

∂t
ρηð Þd�vþ

ð

CS

ρηv � nda; ð10:15Þ

whereC�V and CS denote “control volume” and “control surfaces,” respectively.

Note that the term dN
dt

��
sys

describes the rate of change of any extensive property

N of the system, the term

ð

C�V
∂ ρηð Þ=∂td�v describes the rate of change of the

arbitrary property within the control volume, where η is the intensive property

corresponding to N, and the term
Ð
CSρηv · n da describes the net flux of the

property through a control surface, where n is an outward unit normal vector to

the control surface CS.

Here, it is important to note that because our control volume is fixed, it does

not change in time. This allows us to write Eq. (10.15) as

dN

dt

����
sys

¼ ∂

∂t

ð

C�V
ρηð Þd�Vþ

ð

CS

ρηv � ndA; ð10:16Þ

wherein we use �V and A to emphasize that the C�V and CS are fixed (i.e., the

current control volume and the original control volume coincide). This is the

fundamental equation in this chapter; commit it to memory.

10.1.2 Special Cases for Mass and Momentum

It is useful to recognize two potentially useful simplifications. First, for time-

independent processes,
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∂

∂t

ð
ρηð Þd�V ¼ 0 ð10:17Þ

and, second, for incompressible flow, the density ρ of the fluid is constant and

thus it can come out of the integrals. Let us now consider the specific balance

relations for the case of a fixed identifiable control volume.

Conservation of mass states that the total mass M of a system is constant;

hence with N�M and η� 1, Eq. (10.16) becomes

dM

dt

����
sys

¼ 0 ¼ ∂

∂t

ð

C�V
ρd�V þ

ð

CS

ρ v � nð ÞdA: ð10:18Þ

Thus, conservation of mass for a steady, incompressible flow requires

dM

dt

����
sys

¼ 0 ¼
ð

CS

v � ndA; ð10:19Þ

which is to say, the flow into the C�V through its control surfaces CS must

balance the flow out. This is certainly not surprising, but it is a useful result to

remember that for a steady, incompressible flow into a fixed identifiable vol-

ume, Qin¼Qout, where Q is the volumetric flow rate.

Balance of linear momentum, or Newton’s second law of motion for a

system, states that the rate of change of the linear momentum must balance

the applied forces. Hence, letting N�P and η� v, Eq. (10.16) becomes

dP

dt

����
sys

¼ ΣF ¼ ∂

∂t

ð

C�V
ρvd�V þ

ð

CS

ρv v � nð ÞdA: ð10:20Þ

Again, considerable simplification occurs for steady and incompressible flows,

namely

ΣF ¼ ρ

ð

CS

v v � nð ÞdA: ð10:21Þ

10.1.3 The Energy Equation

Conservation of energy, otherwise known as the first law of thermodynamics,

states that the rate of change of energy in a system must balance the rate at

which work is done on the system plus the rate at which heat is added to the

system. Letting N�E and η� e, where e includes internal, potential, and

kinetic energy contributions, Eq. (10.16) becomes
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dE

dt

����
sys

¼ _Q þ _W ¼ ∂

∂t

ð

C�V
ρed�V þ

ð

CS

ρe v � nð ÞdA: ð10:22Þ

Balance of energy is very important, but will not be considered until Sect. 10.6.

In the next three sections, we will focus on isothermal problems and, thus, the

balance of mass and linear momentum alone.

In closing, it is important to recognize that the general C�V (i.e., control

volume) formulation was achieved without specifying a particular class of

fluids (Newtonian, non-Newtonian, ideal, or otherwise). Hence, the associated

statements for the balance of mass, momentum, and energy are general even

though they provide only averaged (global) information, not pointwise (local)

information that results from differential equations like the Navier–Stokes and

Euler equations. As such, control volume analyses are generally mathematically

much simpler than the analyses found in Chap. 9. The key things for the student

to master, therefore, are (1) to determine when a control volume formulation is

sufficient and (2) how to pick a useful C�V. These are best learned via experi-

ence; hence, let us consider the following examples.

10.2 Control Volume Analyses in Rigid Conduits

10.2.1 Clinical Motivation

Albeit taken for granted today, open-heart surgery is heralded as one of the most

important advances in health care delivery during the period 1945–1975

(Comroe and Dripps 1977). Whereas we must be quick to acknowledge the

advanced skills and self-confidence of the surgeons in making this advance a

reality, the procedure would not have been possible without the biomedical

engineering development of the so-called heart–lung machine; that is, to enable

precise surgical manipulation of the heart, the surgeon needed a quiescent,

nonbeating heart on which to work. The design criteria for the assist technology

thus included the need to pump and oxygenate the blood, to maintain body

temperature at a prescribed level, to minimize clotting, and to do so without

damaging the cells within the blood. As we now know, this can be accomplished

by shunting blood outside the body via roller pumps and through membranes that

allow the requisite gas exchange. Although detailed solutions of the governing

differential equations provide important information on the effects of the artifi-

cial flow field on the cells and, in particular, on minimizing the hemolysis, a

more global analysis of the flow can also provide important information on the

requisite design of the pumps needed to maintain a desired volumetric flow

rateQ. Toward this end, a control volume analysis can be very helpful. Although

we will not consider the complexities of the heart–lung machine, let us now

illustrate the use of Eqs. (10.18) and (10.20) via a few simple examples.

534 10. Control Volume and Semi-empirical Methods

http://dx.doi.org/10.1007/978-1-4939-2623-7_9


10.2.2 Illustrative Examples

Consider a control volume analysis of the bifurcation in Fig. 10.4, wherein an

atherosclerotic plaque occludes a vessel distal to a bifurcation. We seek to

determine the reduction in flow distal to the obstruction as a function of the

extent of the disease (i.e., stenosis), given the simplifying assumptions of a

steady, incompressible flow within a rigid section. A reasonable control volume

in this case is simply one that coincides with the fluid in the fluid domain of

interest. Let us also consider steady flowwith a fully developed entrance velocity

[cf. Eq. (9.45)] v1¼ c(1 – r2/a2)êz with mean outlet velocities of v2 ¼ v2ê
0
z and

v3 ¼ v3ê
00
z . For large vessels, we can assume that the density ρ is constant, which

is to say that we neglect effects like plasma skimming. Thus, ρ can be taken

outside the integral and then deleted as we divide each side of the mass balance

equation by ρ. We have

0 ¼ ρ

ð

CS

v � nð ÞdA!
ð

A1

v1 � n1ð ÞdAþ
ð

A2

v2 � n2ð ÞdA

þ
ð

A3

v3 � n3ð ÞdAþ
ð

CS

v � nð ÞdA
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
all other surfaces

¼ 0:
ð10:23Þ

Note that the velocity is zero through all control surfaces except CS1, CS2, and

CS3, which are defined by outward unit normal vectors n1¼�êz, n2¼ ê0z,
n3¼ ê00z. Hence,

FIGURE 10.4 Possible control volume for the analysis of mean flows in an arterial

bifurcation. Control surfaces 1, 2, and 3 represent cross sections; the remaining control

surface along the length of the vessel is not shown because there is no flux through this

surface.
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0 ¼
ð

A1

c 1� r2

a2

� �
êz � �êzð ÞdAþ

ð

A2

v2 ê
0

z � ê
0

z

� �
dA

þ
ð

A3

v3 ê
00

z � ê
00

z

� �
dA: ð10:24Þ

Because the mean velocities at CS2 and CS3 do not vary over the cross section

by definition, we have

0 ¼ �c
ð a

0

ð2π

0

1� r2

a2

� �
rdθdr þ v2

ð

A2

dAþ v3

ð

A3

dA: ð10:25Þ

Integrating and simplifying, we get

v2A2 þ v3A3 ¼
πa2c

2
; ð10:26Þ

which simply states that the net flow out equals the flow in. Because we have but

one equation, we must know the inlet velocity (i.e., c and a) as well as A2 and v2
to calculateQ3 � v3A3 as desired, where c contains information on the proximal

pressure gradient that drives the flow.

Because we may need to bypass or replace the diseased vessel with a vascular

graft (e.g., Fig. 10.5), we may also like to know the net forces borne by the

sutures that hold the graft in place. To solve this problem, which is a solid

mechanics problem, we first need to construct a free-body diagram of the graft

(Fig. 10.6). The proximal suture forces will arise primarily from two sources:

FIGURE 10.5 Photograph of a synthetic vascular graft (artificial artery) produced by

Meadox Medicals in New Jersey. This is a large vessel graft (aorta), which has had good

clinical success. The current challenge in vascular grafts is to develop robust small-

diameter grafts that will not develop a thrombosis, significant neointima hyperplasia, or

an immune rejection. Tissue engineering has great promise in this regard.
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first, the axial load on the graft due to the surgeon’s attempt to restore homeo-

static axial stresses in the native vessel (recall Sect. 3.4 of Chap. 3) and, second,

the forces due to the flow-induced shear stresses. That is, it is well known that

arteries experience significant axial loads in vivo. A prime example is the

carotid artery in the neck; it will retract ~20 to 50 % when cut (i.e., when the

in vivo force is released), depending on age and disease. Although it is not clear

how these loads develop, they likely do so during normal development. In cases

of “adaptation,” these axial loads can change. For example, arteries in patients

with hypertension retract less when cut; this is thought to be due to the addition

of tissue in the axial direction (which unloads the vessel) that arises as a natural

consequence of the vessel adding material in the radial direction to better resist

the increased distension pressure (recall discussion in Chap. 3). However, let us

focus on the flow-induced shear stresses.

To find the wall shear stress τw on the wall of the graft, one could find all of

the shear stresses σrz in the fluid, and then evaluate those at the wall. This would

require solving for the velocity field vz(r, z); because the flow may not be fully

developed throughout this region (we assume fully developed at CS2 only), this

would likely require a numerical solution of the 3-D Navier–Stokes equations,

which would be very time-consuming. Alternatively, one could use the control

volume approach to estimate the net effect of the shear stress. Hence, consider

the C�V in Fig. 10.6. Assuming a steady flow and a constant mass density, mass

balance requires

0 ¼
ð

CS

v � ndA! 0 ¼
ð

A1

v1 � n1dAþ
ð

A2

v2 � n2dAþ
ð

A3

v3 � n3dA; ð10:27Þ

FIGURE 10.6 Free-body diagram and associated control volume for a combined solid

mechanics/fluid mechanics analysis of stresses in an in-line arterial graft.
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where for CS1, v1 ¼ v1ê z and n1¼�êz, for CS2, v2¼ c(1 – r2/a2)êz and n2¼ êz,

and for CS3, v3¼ 0 (by no slip) and n3¼ êr. Hence,

0 ¼
ð

A1

v1 ê z � �ê zð ÞdAþ
ð

A2

c 1� r2

a2

� �
ê z � ê zð ÞdA: ð10:28Þ

Considering a mean velocity through CS1, we have

0 ¼ �v1
ð

A1

dAþ c

ð a

0

ð2π

0

1� r2

a2

� �
rdθdr: ð10:29Þ

Integrating and simplifying, we get

0 ¼ �v1A1 þ c 2πð Þ a2

4

� �
! v1 ¼

πa2c

2A1

: ð10:30Þ

To solve for the force that the proximal sutures must withstand, we need to

know the net force applied to the graft due to the fluid flow. We use linear

momentum balance for steady, incompressible flow [Eq. (10.21)]. Summing

forces and expanding for this particular C�V, we obtain

p1A1êz þ p2A2 �êzð Þ þ fτêz ¼ ρ

ð

A1

v1 v1 � n1ð ÞdAþ ρ

ð

A2

v2 v2 � n2ð ÞdAþ 0;

ð10:31Þ

where p1 and p2 are the mean pressures at CS1 and CS2, respectively, and fτ is

the total force due to all the shear stresses that act on the fluid volume (it is equal

and opposite that which acts on the wall), or

p1A1êz þ p2A2 �êzð Þ þ fτê z ¼ ρ

ð

A1

v1êz v1 êz � �êzð Þ½ 	dA

þ ρ

ð

A2

c 1� r2

a2

� �
êz c 1� r2

a2

� �
êz � êzð Þ

� 

dA;

ð10:32Þ

where dA¼ rdθdr.With v1 the mean value, integration over the entire CS1 cross

section yields, in the z direction,
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p1A1 � p2A2 þ fτ ¼ �ρv21A1 þ ρ2πc2
ð a

0

1� r2

a2

� �2

rdr; ð10:33Þ

where

ð a

0

1� r2

a2

� �2

rdr ¼
ð a

0

r � 2
r3

a2
þ r5

a4

� �
dr ¼ a2

6
; ð10:34Þ

thus, substituting the value for v1 obtained from mass balance into this equation,

we get

f τ ¼ p2A2 � p1A1 � ρA1

πa2c

2A1

� �2

þ ρπc2a2

3
; ð10:35Þ

which is the total shear force experienced by the fluid due to the graft. That

experienced by the graft is equal and opposite this value. This allows the solid

mechanics problem to be addressed given the axial forces that are borne by the

wall in vivo.

Example 10.1 To illustrate further a C�V formulation, consider flow through a

nozzle (Fig. 10.7). Examples include needles on syringes and nozzles on

laboratory sinks. Many needles have Luer connections to ensure that the needle

does not “fly off’ when the fluid is pressurized. Likewise, laboratory nozzles are

threaded. With regard to the latter, one may be interested, for example, in

ensuring that the threads will be sufficient to withstand the loads on the nozzle,

which will result from the solid–fluid interaction as well as the weight of the

nozzle. Let us find the net fluid induced shear force on a nozzle through which

the fluid flows.

Solution: To find the net shear force exerted on the solid by the flow of the

fluid, consider aC�V to determine the forces that act on the fluid and then invoke

Newton’s third law. For a steady, incompressible flow within a (fixed) control

volume, mass balance again requires that

0 ¼
ð

CS

v � ndA;

whereas for linear momentum balance, we have
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X
F ¼ ρ

ð

CS

v v � nð ÞdA:

For CS1, v1 ¼ v1 � ĵ
� �

and n1 ¼ ĵ , for CS2, v2 ¼ v2 � ĵ
� �

and n2 ¼ � ĵ , and for

CS3, v3¼ 0 by no slip or v3 ┴ n3. Hence, for mass balance,

0 ¼
ð

A1

v1 � n1dAþ
ð

A2

v2 � n2dA! 0

¼
ð

A1

v1 � ĵ � ĵ
� �

dAþ
ð

A2

v2 � ĵ � � ĵ
� �

dA:

Considering only average values of the velocity,

0 ¼ �v1
ð

A1

dAþ v2

ð

A2

dA! v2A2 ¼ v1A1;

which is what we expect for mass to be conserved; that is, the flow in must equal

the flow out, where v2A2 ¼ v1A1 ¼ Q. For linear momentum balance, summing

forces and expanding for this C�V, we have

FIGURE 10.7 Possible

control volume for the

analysis of flow through

a vertical nozzle

(e.g., needle).
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p1A1 � ĵ
� �

þ p2A2 ĵ
� �
þW f ld � ĵ

� �
þ f τ � ĵ

� �

¼ ρ

ð

A1

v1 � ĵ
� �

v1 � ĵ � ĵ
� �h i

dAþ ρ

ð

A2

v2 � ĵ
� �

v2 � ĵ � � ĵ
� �h i

dA

or, for mean velocities,

p1A1 � ĵ
� �

þ p2A2 ĵ
� �
þW f ld � ĵ

� �
þ fτ � ĵ

� �

¼ ρv21 ĵ
� �ð

A1

dAþ ρv22 � ĵ
� �ð

A2

dA:

Integrating and considering the effects in ĵ alone,

� p1A1 �W f ld � fτ ¼ ρv21A1 � ρv22A2;

where the gauge pressure acting on CS2 is approximately zero if we discharge to

atmosphere (i.e., p2¼ 0). Thus, summing forces in the y direction yields

fτ ¼ ρ v22A2 � v21A1

� �
� p1A1 �W f ld;

where v1 and Wfld are measured easily and p1 potentially, and the solid

mechanics problem for the stresses on the threads can now be formulated and

solved.

Example 10.2 We have noted various times throughout this book that the

vascular endothelium responds to an altered wall shear stress τw by increasing

its production of, among other molecules, vasodilators and vasoconstrictors that

induce a dilatation or constriction that restores τw to its baseline value. Clearly,

however, the endothelium cannot sustain arbitrarily large increases in wall

shear stress; there must be a value at which the endothelium becomes damaged.

Well before the discovery of endothelial mechanotransduction, D. L. Fry, a

scientist at the National Institutes of Health at Bethesda, MD, showed in 1968

that aortic endothelial cells are damaged at values of τw of 40 Pa and above

(recall that normal values are ~1.5 Pa in arteries). This finding led to additional

questions, such as whether a jet flow from a needle may likewise be able to

damage, literally erode, the endothelium. (Note: The term used in the literature

is denude, which means to lay bare.) A logical question, therefore, is: How do

we design and interpret an experiment to quantify an “erosion” stress? Toward
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this end, consider the stress on the wall of the vessel created by the injection of a

fluid through a needle. Find the erosion stress σxx on the endothelium by

assuming a steady, incompressible flow with a volumetric flow rate of Q.

Neglect gravity.

Solution: Consider a C�V for the fluid as well as a free-body diagram for the

arterial wall (Fig. 10.8). To calculate the erosion stress on the arterial wall, we

need to calculate the reaction force R that the artery exerts on the fluid and the

oriented area over which R acts. To calculate R, we can appeal to Newton’s

third law and use the C�V equation for the balance of linear momentum for a

steady, incompressible flow [Eq. (10.21)],

ΣF ¼ ρ

ð

CS

v v � nð ÞdA:

For CS1, v1 ¼ v1 î
� �

and n1 ¼ �î , for CS2, v2 ¼ v2 ĵ
� �

and n2 ¼ ĵ , for CS3,

v3 ¼ v3 � ĵ
� �

and n3 ¼ � ĵ , and for CS4, v4¼ 0 due to impenetrability. Sum-

ming the forces and expanding for this C�V, we obtain

FIGURE 10.8 Experimental setup to determine the erosion stress for endothelial cells.

Shown are a possible control volume for the fluid and a free-body diagram for the

arterial segment. Although the fluid will exert shear stresses on the cells, we are

interested primarily in the normal force R in this experiment.

542 10. Control Volume and Semi-empirical Methods



p1A1 î
� �
þ p2A2 � ĵ

� �
þ p3A3 ĵ

� �
þ R �î

� �

¼ ρ

ð

A1

v1 î
� �

v1 î � �î
� �h i

dAþ ρ

ð

A2

v2 ĵ
� �

v2 ĵ � ĵ
� �h i

dA

þ ρ

ð

A3

v3 � ĵ
� �

v3 � ĵ � � ĵ
� �h i

dA:

Assuming average values for velocities yields

p1A1 î
� �
� p2A2 ĵ

� �
þ p3A3 ĵ

� �
þ R �î

� �

¼ �ρv21 î
� �ð

A1

dAþ ρv22 ĵ
� �ð

A2

dAþ ρv23 � ĵ
� �ð

A3

dA:

By summing the forces in the x direction, assuming that all pressures are gauge

pressures, and then integrating, we obtain

R �î
� �

¼ �ρv21A1 î
� �
! R ¼ ρv21A1:

Therefore, from the free body-diagram of the artery wall,

R ¼
ð

A

σxxdA ¼ ρv21A1;

thus allowing us to address the solid mechanics problem. Again, we see that an

analysis helps us to design an experiment for we now know what needs to be

measured and why.

Example 10.3 For a steady incompressible flow of water through the reducing

elbow in Fig. 10.9, the entrance area A1 is 30 cm
2 and the exit area A2 is

1
2
A1. The

mean velocity v1 entering the elbow is 5 m/s with an inlet pressure of 5 Pa and

outlet pressure equal to atmospheric. Find the total force required to hold the

bend in place.
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Solution: We are given the following:

A1 ¼ 30cm2 ¼ 0:003m2,

A2 ¼
1

2
A1 ¼ 15cm2 ¼ 0:0015m2

v1 ¼ 5m=s,

P1 ¼ 5Pa ¼ 5N=m2,

P2 ¼ 0 gaugeð Þ,
ρH2O

¼ 1000kg=m3

We first need to solve for the velocity v2 leaving the elbow. From the mass

balance equation for a steady, incompressible flow,

0 ¼
ð

A1

v1 � n1dAþ
ð

A2

v2 � n2dA;

where we have for CS1, v1 ¼ v1 î
� �

and n1 ¼ �î , and for CS2, v2 ¼ v2 ĵ
� �

and

n2 ¼ ĵ . Hence, mass balance requires

FIGURE 10.9 Academic

experiment to determine

the support reactions due

to a fluid flowing through

an elbow. Shown, too, is

a possible control volume

that ignores possible

effects of the fluid-

induced shear stresses.
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0 ¼
ð

A1

v1 î � �î
� �

dAþ
ð

A2

v2 ĵ � ĵ
� �

dA:

Using mean velocities, we have

0 ¼ �v1
ð

A1

dAþ v2

ð

A2

dA! v1A1 ¼ v2A2

or, with A2¼A1/2,

v1A1 ¼ v2
1

2
A1

� �
! v2 ¼ 2v1:

From Newton’s third law we know that for every action, there is an equal and

opposite reaction. To determine the total force required to hold the elbow in

place, we need to use the balance of linear momentum equation for a steady,

incompressible flow. Summing the forces for this C�V, we obtain

p1A1 î
� �
þ p2A2 � ĵ

� �
þ R ¼ ρ

ð

A1

v1 î
� �

v1 î � �î
� �h i

dA

þ ρ

ð

A2

v2 ĵ
� �

v2 ĵ � ĵ
� �h i

dA;

where R is the reaction force, or with p2¼Patm¼ 0 (gauge), integration yields

p1A1 îþR ¼ �ρv21A1 îþρv22A2 ĵ :

Collecting terms, we have

R ¼ � p1A1 þ ρv21A1

� �
îþ ρv22A2

� �
ĵ :

By substituting the numerical values into this equation, we obtain

R ¼ � 5N

m2

� �
0:003m2ð Þ þ 1000kg

m3

� �
5m=sð Þ2 0:003m2ð Þ

� 

î

þ 1000kg

m3

� �
10m=sð Þ2 0:0015m2ð Þ

� 

ĵ¼þ 75Nð Þî þ 150Nð Þ ĵ :

This force, which acts on the fluid is equal and opposite that exerted by the

flow on the support. We could now solve the solid mechanics problem and
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determine the reactions at the base of the support and the stresses due to axial

and bending loads.

10.3 Control Volume Analyses in Deforming Containers

Whereas it is very natural to employ a fixed identifiable volume in space (i.e., a

control volume) in problems wherein the flow goes through a rigid conduit,

there are cases wherein we must compute mean values associated with flows in

organs or devices that deform. The approach must be the same, but it deserves

some special attention.

10.3.1 Clinical Motivation

The manufacture of easily used, disposable, low-profile catheters has given rise

to whole new fields in medicine, including interventional cardiology and inter-

ventional radiology. Briefly, such catheters can be placed percutaneously into a

blood vessel of choice and advanced under fluoroscopic guidance to a target

organ or lesion. The catheter can then be used to inject contrast agents for

visualization, to deploy intravascular stents or coils, to biopsy tissue, to deliver

thermal energy to treat a pathology, to inflate a balloon to dilate an atheroscle-

rotic plaque or temporarily obstruct/prevent blood flow, or to measure local

flows or pressures.

Here, let us consider but one simple example: the inflation of a silicone-based

balloon to temporarily obstruct blood flow (Fig. 10.10). Such a device could be

used in cardiology, for example, to determine how the preload (venous pres-

sure) affects function in the right ventricle. One could block the venous return to

the right heart by inflating occluding balloons in the superior and inferior vena

cava (i.e., via caval occlusion). In addition to the biomedical engineer designing

and manufacturing an appropriate device (including biocompatibility issues in

materials selection and understanding the mechanics of the balloon), one may

desire to know the rate at which the balloon expands based on the rate at which

the inflating syringe is operated.

10.3.2 Mathematical Formulation

Let us consider the syringe and the balloon separately, assuming that the

catheter connecting them does not distend or extend due to the driving pressure

(Fig. 10.11). Moreover, let us assume that the syringe plunger is advanced

steadily, thus giving rise to a steady flow. First, for the balloon: We could
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define a fixed control volume to be a spherical volume in space. At time t, we

could further let the balloon radius r(t) match exactly that of the control volume

at that instant. Hence, with a steady flow and fixed control volume, we have

∂

∂t

ð

C�V
ρd�V þ

ð

CS

ρ v � nð ÞdA ¼ 0; ð10:36Þ

FIGURE 10.10 Experimental

situation wherein an

occluding balloon is used

to reduce caval blood flow

to the heart and thereby

alter the preload on the

heart.

FIGURE 10.11 Inflation of a balloon via a syringe. Shown are separate control volumes

for the syringe and the balloon.
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which reduces to

ð

CS1

v � nð ÞdAþ
ð

CS2

vr � nrð ÞdA ¼ 0; ð10:37Þ

where CS1 can be taken to be the inlet where the fluid enters the balloon; CS2,

therefore, is the surface area of the fixed control volume, ~4πr2 at time t. As the

balloon distends, the velocity of the fluid at CS2 will equal that of the expanding

balloon. If the displacement of the balloon is ur¼ r(t) –R, where R is the

original radius at time t¼ 0, then vr¼ dur/dt¼ dr/dt. Hence, we have

v �nð Þ � n½ 	A1 þ
dr

dt
nr � nr

� �ð

CS2

dA ¼ 0; ð10:38Þ

or

�vAþ dr

dt
4πr2
� �

¼ 0! dr

dt
¼ vA

4πr2
: ð10:39Þ

Now, for the syringe: Its mass balance relation

∂

∂t

ð

C�V
ρd�V þ

ð

CS

ρ v � nð ÞdA ¼ 0 ð10:40Þ

reduces to

ð

CS1

v � nð ÞdAþ
ð

CS2

v � nð ÞdA ¼ 0; ð10:41Þ

wherein we have assumed that there is no flux through the side of the syringe. If

the syringe is of radius a, then

vsπa
2 ¼ vA! v ¼ vsπa

2

A
; ð10:42Þ

where vA is the same quantity that enters the balloon. Hence, from Eqs. (10.39)

and (10.42), we have

4πr2
dr

dt
¼ vsπa

2; ð10:43Þ

where the velocity of the syringe is assumed to be known, as is the radius a of

the syringe. Hence, we see that the rate at which the balloon expands depends

strongly on its current diameter. The larger the balloon, the more slowly it
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expands given a constant inflow; that is, there is but one physical answer

(assuming uniqueness), which must be obtained regardless of the particular

formulation.

Example 10.4 Given the result of Eq. (10.43), find the relation for the balloon

radius given a constant vs.

Solution: Equation (10.43) can be written as

r tð Þ½ 	2 dr
dt
¼ vsa

2

4
:

Hence, integrating from time t¼ 0 to time t, we have

ð t

0

r tð Þ½ 	2 dr
dt

dt ¼
ð t

0

vsa
2

4
dt;

or

r tð Þ½ 	3
3
� r 0ð Þ½ 	3

3
¼ vsa

2

4
t

and, thus,

r tð Þ ¼ r 0ð Þ½ 	3 þ 3vsa
2

4
t

� �1=3

:

10.4 Murray’s Law and Optimal Design

In 1926, C. D. Murray suggested that the inner radius a of a blood vessel arises

as an outcome of a “compromise” between the advantage of increasing the

lumen, which decreases the resistance to flow, and the disadvantage of increas-

ing overall blood volume, which increases the metabolic demand to maintain

the blood (remember that the red blood cells must be produced continuously by

the bone marrow to replace cells as they die after ~120 days). Murray postulated

an associated “cost” function C and suggested that the optimal radius is

determined by minimizing this cost with respect to the radius. Specifically, he

assumed that C consisted of two terms: one representing the mechanical power
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associated with the flowing blood and another that is proportional to the volume

of blood that had to be maintained metabolically.

Mechanical power is defined as the rate at which work is done; work on the

other hand, can be computed as a force acting through a distance (e.g., fx). If the

force is constant, then the associated rate is computed as the force times the rate

of change of the distance, or force times velocity (f · v). It can be shown that, in

terms of stress, the mechanical power per unit volume is given by the sum of all

stresses acting at a point multiplied by their associated rates of deformation, as,

for example (Humphrey 2002),

σrrDrr þ σrθDrθ þ σrzDrz þ � � � þ σzrDzr þ σzθDzθ þ σzzDzz: ð10:44Þ

10.4.1 Straight Segment

To investigate one consequence of Murray’s postulate, let us consider a steady,

fully developed, unidirectional, incompressible, Newtonian flow in a straight

rigid circular tube. From Sect. 9.2 of Chap. 9, we recall that the only nonzero

component of stress is σrz, which equals σzr by the balance of angular momen-

tum. Specifically,

σrz ¼ 2μDrz ¼ μ
∂vz

∂r

� �
ð10:45Þ

where

∂vz

∂r
¼ r

2μ

d p

dz

� �
;

as seen in Eq. (9.46). Recall, too, that [Eq. (9.54)]

d p

dz
¼ � 8μQ

πa4
; ð10:46Þ

hence, the total mechanical power associated with the flowing blood is

ð

�v
σrzDrz þ σzrDzrð Þd�v ¼

ð L

0

ð2π

0

ð a

0

2μ
∂vz

∂r

� �
1

2

∂vz

∂r

� �
rdrdθdz; ð10:47Þ

where L is the length of the tube. Hence,

2πL

ð a

0

μ
r

2μ
� 8μQ

πa4

� �� 
2
rdr ¼ 2πL

ð a

0

16μQ2r2

π2a8
rdr

¼ 32μLQ2

πa8
a4

4

� �
¼ 8μLQ2

πa4
:

ð10:48Þ
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Murray assumed that the metabolic cost of maintaining the blood was propor-

tional to its volume (πa2L), with γ a material parameter. Hence, he let the

overall, or global, cost be

C ¼ 8μLQ2

πa4
þ γπa2L ð10:49Þ

whereby a minimum requires that

dC

da
¼ 0,

d2C

da2
> 0: ð10:50Þ

Clearly, the first condition requires

0 ¼ �4 8μLQ2

π

� �
a�5 þ 2γπaL! a6 ¼ 16μQ2

γπ2
; ð10:51Þ

or

Q ¼ γ

μ

� �1=2
πa3

4
! γμð Þ1=2 πa

3

4μ
¼ Q: ð10:52Þ

It can be shown that the second derivative is positive; thus, Murray’s simple

analysis suggests that the volumetric flow rate is related to the optimal radius

cubed. This conclusion led Zamir to suggest in 1977 that, because the wall shear

stress is related inversely to the radius cubed [i.e., τw¼ 4μQ/πa3 from

Eq. (9.55)], a consequence of Murray’s minimum postulate is that the vascula-

ture seeks to maintain τw constant because
ffiffiffiffiffi
γμ
p

is just a constant (see Zamir

2000). This conclusion has been supported by most data, with the exception that

the mean wall shear stress is very different in veins (0.1–0.6 Pa) than it is in most

arteries (1.2–1.8 Pa). To explain such differences, Pries et al. (1995) proposed a

“pressure-shear” hypothesis stating that “vascular systems grow and adapt in

response to hemodynamic conditions so as to maintain local wall shear stress at

a set point that is a function of the local transmural pressure.” See Humphrey

(2002) for a discussion of how this hypothesis can be addressed mathematically

via an extension of Murray’s law that was put forth by L. A. Taber.

10.4.2 Bifurcation Areas

One of the most conspicuous characteristics of the vasculature is that it divides

into smaller and smaller vessels down to the level of capillaries. Moreover,

these divisions occur as bifurcations (i.e., a single parent vessel gives rise to a
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pair of daughter vessels). Within the context of Murray’s optimization postu-

late, it is interesting to ask if such bifurcations are also optimized.

Let the inner radius of the parent vessel be a0 and that of the daughter vessels

be a1 and a2. If we use the convention that a1� a2 then useful indices of a

bifurcation are

α ¼ a2

a1
, β ¼ a21 þ a22

a20
; ð10:53Þ

the latter of which is a measure of the ratio of the net cross-sectional area of the

daughter branches to that of the parent vessel. Regardless of the value of this

ratio, balance of mass requires that Q0¼Q1+Q2. If we assume that the

viscosity μ and the metabolic parameter γ are constant throughout the bifurca-

tion, then “Murray’s law” Q¼ ka3 from Eq. (10.52), where k is a constant,

requires from mass balance that

a30 ¼ a31 þ a32 ¼ 1þ α3
� �

a31; ð10:54Þ

or

a1

a0
¼ 1

1þ α3ð Þ1=3
,

a2

a0
¼ α

1þ α3ð Þ1=3
ð10:55Þ

and, thus,

β ¼ 1þ α2

1þ α3ð Þ2=3
: ð10:56Þ

For a “symmetric bifurcation,” therefore, α¼ 1, a1/a0¼ a2/a0 ~ 0.794 and

β ~1.26; that is, each symmetrical bifurcation that obeys Murray’s law would

increase the net cross-sectional area by ~26 % and thereby decrease the mean

velocity by the same (recall, Q ¼ vA).

Fung (1993) noted that n generations of symmetrical bifurcations would yield

a1
(n)¼ (0.794)na0

(1). He suggests, therefore, that if a capillary has a radius of

5 μm and the mean radius of the aorta is ~1.5 cm, then the number of

generations n would be about 30 (actually n ~35, which can be found by taking

logarithms). Fung notes that if each bifurcation multiplies the number of vessels

by 2, then the total number of vessels would be 2n¼ 230 ~ 1� 109 (or, actually

235 ~ 3.4� 1010). Fung emphasizes that these numbers are merely rough esti-

mates for the vasculature, which, unlike the airways, does not branch symmet-

rically (cf. Fig. 7.5 of Chap. 7). Nevertheless, it is interesting to note that Milnor

(1989) reports that a 20-kg dog has 1 aorta + 116,540 arteries + 2.8� 106

arterioles + 2.7� 109 capillaries ~2.7� 109 vessels. Given Milnor’s report that
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the maximum radius of the aorta is 1.0 cm and the capillary diameter is 8 μm,

Murray’s law would predict (for symmetric bifurcations) n ~ 31, and, thus

231 ~ 2.15� 109 vessels, which is remarkably close (20 %) to the reported

number given the gross assumption.

10.4.3 Bifurcation Patterns

Whereas we have considered the cross-sectional areas of daughter vessels in a

bifurcation relative to that of the parent vessel, let us now consider the bifur-

cation angles (Fig. 10.12). One way to address the optimal geometry of a

bifurcation is to simply ask if it is better to deliver fluid from point A to points

C and D (Fig. 10.12) through two tubes of equal diameter, one from A to C and

the other from A to D, or if it is better to deliver fluid from A to C and D via a

tube that bifurcates. If the distances between B to C and B to D are small in

comparison to L0, this question can be answered approximately by comparing

the mechanical power for one vessel of length L0 and radius a0 to that for two

vessels, one of radius a1 and one of radius a2, each of approximate length L0;

that is, from Eq. (10.48), we compare

8μL0Q
2
0

πa40
to

8μL0

π

Q2
1

a41
þ Q2

2

a42

� �
: ð10:57Þ

If Murray’s (cube) law holds, then Q1 ¼ ka31, Q2 ¼ ka32, and Q0 ¼ ka30 from

Eq. (10.52); hence, the fractional difference between the power required for two

versus one supply vessel is

8μL0

π

k2a61
a41
þ k2a62

a42

� �
� 8μL0

π

k2a60
a40

� �� 

8μL0

π

k2a60
a40

� �� 
�1

¼ a21 þ a22 � a20
a20

¼ β � 1

ð10:58Þ

from Eq. (10.53). Because β is generally greater than 1, the power requirement

for two supply vessels is generally higher. For example, for a symmetrical

bifurcation, β ~1.26, and thus there is a 26 % lower power requirement for one

supply vessel over two identical “parallel” vessels. Hence, the vessel wants to

bifurcate.

To address the optimal bifurcation angle, first note from Eqs. (10.49) and

(10.52) that the minimum cost function with respect to radius is

C min on að Þ ¼ 1

2
γπa2Lþ γπa2L ¼ 3

2
γπa2L: ð10:59Þ
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The total cost for a bifurcation shown in Fig. 10.12 with optimal radii is thus

C ¼ 3

2
γπ a20L0 þ a21L1 þ a22L2
� �

: ð10:60Þ

It can be shown (Fung 1993; Zamir 2000) that minimization of this cost function

yields the optimal branch angles

FIGURE 10.12 (a) Bifurcation angles and Murray’s law. Bifurcations are one of the basic

structural units of the vasculature; they are likely dictated by genetic programming but

also functional adaptations (recall Fig. 8.20 of Chap. 8). A basic question, therefore, is

whether such angles are optimized in each case, (b) Photomicrograph of an actual

vascular bed (from the retina), which reveals the many generations of branches and

different branch angles. [From Fawcett (1986), with permission].
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cos θ1 ¼
a40 þ a41 � a42

2a20a
2
1

, cos θ2 ¼
a40 � a41 þ a42

2a20a
2
1

: ð10:61Þ

10.5 Buckingham Pi and Experimental Design

Experimental methods are essential to three distinct areas of continuum biome-

chanics. As noted in Chaps. 2 and 7, quantification of constitutive behaviors can

be accomplished only via the performance of (theoretically motivated) exper-

iments. Experiments are likewise essential for the evaluation of theoretical or

computational findings. Finally, in some cases, we cannot solve a problem

analytically or numerically without approximations based on experimental

data. In this section, therefore, let us first explore a tool that supports experi-

mental work in mechanics, with particular application to biofluid mechanics.

We will then consider some measurement techniques and, finally, we will

consider a combination of theoretical and experimental results that enables us

to solve many problems that arise daily in the research laboratory or clinical

setting.

10.5.1 Motivation

Consider the “simple” problem of determining the pressure gradient (or drop)

that is required to move fluid through a long tube that has a significant

roughness of the luminal surface. Even if the fluid is Newtonian and the flow

is steady and incompressible, the solution may be complicated by the possibility

that the flow is not laminar or fully developed. Assuming that one must resort to

the determination of the requisite pressure drop Δp¼ p1 – p2 from experiments,

the question thus becomes: How do we best design the experiment? The first

need, of course, is to identify the parameters on which the pressure drop may

depend. For example, we expect that Δp will, for each desired flow rate Q,

depend on the diameter of the tubing D, its length L, and the surface roughness

e (Fig. 10.13). Likewise, even in an isothermal test, the pressure–flow relation

will likely depend on the choice of the infused fluid and, thus, its viscosity μ and

density ρ. At the minimum, therefore, we must experimentally determine a

functional relation of the form

Δp ¼ f D, L, e, μ, ρ, vð Þ; ð10:62Þ

where v ¼ Q=A ¼ 4Q=πD2; thus we can use the mean velocity v rather than the

volumetric flow rate Q in our desired functional relationship. To determine how

Δp varies as a function of the tube diameter D, we must perform multiple tests

(say n¼ 5 for repeatability) using tubes of different diameters while all the other
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parameters are held fixed. Assuming one uses only 5 different diameters, with

n¼ 5 each, this requires 25 experiments with L, e, μ, ρ, and v fixed. If tests are

then repeated for, say, five different lengths, five different surface roughnesses,

five different fluids, and five different flow rates, it is easy to see that the number

of necessary experiments can become very large. An obvious question, there-

fore, is whether we can reduce the number of requisite tests. Fortunately, the

answer is yes. Let us now consider the so-called Buckingham Pi Theorem,

which enables this reduction in experimental complexity.

10.5.2 Recipe

The goal of the Buckingham Pi Theorem is to identify nondimensional groups

of parameters from physical parameters in the experiment of interest that allow

the experiments to be performed more efficiently. The two key ideas are, first,

the difference between fundamental and derived “dimensions” and, second, the

importance of “scales” to measure the fundamental dimensions (or units). To

appreciate what a fundamental quantity is, note that we typically think of

velocity as a derived quantity—it is the rate of change of a position; that is,

whereas length and time may be taken as “fundamental,” velocity is derived

from these. In general, we usually take length, time, mass, and temperature as

FIGURE 10.13 Magnified view of the inner surface of a tube (or pipe) through which

fluid flows. Although we often assume a smooth surface, all surfaces have an inherent

roughness; in a blood vessel, this roughness arises from the cobblestone-type arrange-

ment of the endothelial cells. Surface roughness is quantified here via a mean height e.
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fundamental2 in continuum mechanics. Herein we shall denote these funda-

mental dimensions, as L, T, M, and Θ, respectively.

The concept of “scales” may require a change in mindset. For example, if

asked how we should measure length, time, mass, and temperature, many would

respond “in terms of meters, seconds, kilograms, and Kelvins.” Here, however,

we wish to introduce a different approach. If you look around a classroom, for

example, you could measure it in length-dimensions of meters (or feet), but you

could also measure it in terms of floor tiles (if present), ceiling tiles (if present),

chalk boards (if present), and so forth; that is, a room that is 40 ft wide could

also be said to be, for example, 40 floor tiles, 13.3 ceiling tiles, or perhaps

2 chalkboards wide, provided standard sized floor tiles of 1 ft2, ceiling tiles 3 ft

long, and a 20-ft-long chalkboard. In other words, there are multiple, convenient

scales, or rulers, available. Indeed, it is interesting to review the historical

development of standard weights and measures that led to the introduction of

the metric system in 1799 (following the French Revolution, which encouraged

change in many areas). For example, older “scales” include the Biblical cubit

(distance from the elbow to the tip of the middle finger) and the fathom

(distance between outstretched arms), each of which were useful but not

precise, for they differ from person-to-person (see Boorstin 1985, Chap. 51).

Alternatively, one could pick a scale that is well defined in a particular problem

and precise. For example, a tube could be said to be 1 in. in diameter and 5 in.

long or simply 1 diameter in diameter and 5 diameters long. The utility of using

such intrinsic scales becomes apparent primarily via illustration in particular

examples. To generate such examples, let us now simply list the five requisite

steps (i.e., a recipe) for employing the Buckingham Pi Theorem:

1. Specify the functional relationship of interest: x1¼ f(x2, x3,. . ., xn).

2. Consider appropriate fundamental dimensions relevant to the problem, like

L, T, M, and Θ, and identify the associated dimensions of each variable in

step 1: [xi]¼ LaiTbiMciΘdi
.

3. Assign scales for each fundamental dimension: Ls, Ts, Ms, and Θs.

4. List the computed Pi groups: πi¼ xi/(Ls)
ai(Ts)

bi(Ms)
ci(Θs)

di.

5. Express the basic equation in terms of Pi groups: π1¼ g(π2, π3,. . .,πn).

The acrostic SCALE may aid in remembering these five steps.

Just as in CV analyses, the Buckingham Pi Theorem can be executed without

much mathematical difficulty. Rather, the most challenging aspect is learning

how to pick reasonable scales, which is best accomplished via experience.

Hence, let us now consider a few examples to begin to build up the necessary

intuition.

2 These are not unique; many prefer entropy instead of temperature, for example.
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Example 10.5 Find a general nondimensional relation for the fluid velocity

induced by a moving plate in a Couette flow (cf. Fig. 9.7 of Chap. 9).

Solution: Following the five-step recipe, SCALE, let us first specify a general

functional relationship for the velocity in terms of variables that we expect to

influence it. For example, the velocity vx in the fluid may depend on the position

y between the plates as well as the velocity U0 of the moving plate and the gap

distance h. Although we would also expect the fluid properties, viscosity and

density, to likewise play a role, for simplicity let us consider only the following:

Step 1: vx¼ f(U0, h, y).

Step 2: Next, we must consider appropriate fundamental dimensions, which, in

general, are L, T,M, and Θ, but for this isothermal problem, length, time, and

mass will suffice. Moreover, we must identify dimensions of each variable,

namely3

vx½ 	 ¼
L

T
¼ L1T�1M0, h½ 	 ¼ L ¼ L1T0M0,

U0½ 	 ¼
L

T
¼ L1T�1M0, y½ 	 ¼ L ¼ L1T0M0:

Step 3: This is the most important and indeed the most challenging step: assign

appropriate scales. Because each variable in the basic equation depends only

on length and time, we only need two scales. Clearly, a convenient and

natural intrinsic length scale is the separation distance h between the plates.

Picking a timescale is much different. Generally, one tries to find a quantity

having dimensions of time based on variables in the list. In this case, we see

that dividing a length by a velocity will yield a time. Hence, let

Ls ¼ h and Ts ¼
h

U0

� �
:

Step 4: Following the formula in the above recipe, we now list the computed

non-dimensional Pi variables for each of our four variables in the original

function:

3 Note that we use [x] to denote the dimension of x; this is not to be confused with the
use of brackets to denote a matrix.
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π1 ¼
vx

hð Þ1 h=U0ð Þ�1 1ð Þ0 1ð Þ0
¼ vx

U0

, π3 ¼
h

hð Þ1 h=U0ð Þ0
¼ h

h
¼ 1,

π2 ¼
U0

hð Þ1 h=U0ð Þ�1
¼ U0

U0

¼ 1, π4 ¼
y

hð Þ1 h=U0ð Þ0
¼ y

h
:

Step 5: Therefore, the final step is to express our relation of interest,

x1 ¼ f x2, x3, x4ð Þ , vx ¼ f U0, h, yð Þ

in terms of Pi-groups:

π1 ¼ g π2, π3, π4ð Þ , vx

U0

¼ g 1, 1,
y

h

� �
:

Hence, according to the Buckingham Pi Theorem, we merely need to relate two

nondimensional parameters functionally, not four dimensional parameters:

vx

U0

¼ g
y

h

� �
:

Note: The values of unity in the function [e.g., g(1, 1)] simply imply constants

in the general function and thus do not need to be written explicitly. This clearly

reduces the experimental need. Rather than performing experiments wherein we

measure velocities for multiple combinations of U0 and h at multiple values of

y, we merely need to relate two nondimensional quantities for any y. This is yet

another example where theory tells us what to measure and why (i.e., how to

interpret the data). Indeed, if we look back to Example 9.2, we find that a

Navier–Stokes solution revealed that vx¼U0(y/h), which is recovered by the

Buckingham Pi result if the function g is simply linear in y/h Clearly, this

theorem can aid in the experimental identification of various functional rela-

tions of interest.

Example 10.6 Recall from Chap. 8 that the exit velocity from a simple

reservoir is v ¼ ffiffiffiffiffiffiffiffi
2gh
p

;which is the same result that one obtains for the velocity

of a mass particle that is dropped from a resting position at height h above the

surface. If one wishes to determine the latter result (for the first time) experi-

mentally given the general relation

v ¼ f m, g, hð Þ
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for a particle of massm, and neglecting air resistance, one might seek to perform

multiple experiments for different masses m and heights h. Let us see what

Buckingham Pi would suggest, however.

Solution:

Step 1: Specify the desired functional relationship, v¼ f(m, g, h).

Step 2: Consider fundamental units such as L, T, and M and identify the unit

equations for each variable:

v½ 	 ¼ L1T�1M0, g½ 	 ¼ L1T�2M0,

m½ 	 ¼ L0T0M1, h½ 	 ¼ L1T0M0:

Step 3: Assign scales. Selections of intrinsic scales are obvious for length and

mass. For time, however, we could pick a length divided by the impact

velocity or, because gravity is key to the problem and it has a time dimension

within, we could also consider the square root of h divided by g; that is, we

could let

Ls ¼ h, Ts ¼
ffiffiffiffiffi
h

g
,

s
Ms ¼ m:

Step 4: List the computed Pi groups:

π1 ¼
v

hð Þ1
ffiffiffiffiffiffiffiffi
h=g

p� ��1
mð Þ0
¼ vffiffiffiffiffi

gh
p , π3 ¼

g

hð Þ1
ffiffiffiffiffiffiffiffi
h=g

p� ��2 � 1,

π2 ¼
m

mð Þ1
� 1, π4 ¼

h

hð Þ1
� 1:

Step 5: Express our original equation in terms of Pi groups, that is

vffiffiffiffiffi
gh
p ¼ f 1; 1; 1ð Þ or

vffiffiffiffiffi
gh
p ¼ c:

Thus, Buckingham Pi reveals that v=
ffiffiffiffiffi
gh
p

is a constant and all we need to do is to

measure multiple values of v for multiple values of h and find the constant,

which, of course, we know is
ffiffiffi
2
p

.
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Example 10.7 Recall that we began this section by considering experiments

to determine the pressure drop Δp associated with flow through a potentially

rough circular pipe, which we expect to depend on several factors. The pressure

drop may be affected, for example, by the diameter D of the pipe, the length

L of the pipe, the roughness height e of the inner surface of the pipe, the

viscosity μ of the fluid, the density ρ of the fluid, and the mean velocity v of

the fluid. Use the Buckingham Pi Theorem to determine a set of dimensionless

groups that can be used to design appropriate experiments and to correlate the

associated data.

Solution: Follow the recipe:

Step 1: Specify the relation of interest, namely Δp ¼ f D; L; e; μ; ρ; vð Þ:
Step 2: Consider fundamental units that are appropriate: L, T, and M. Then, for

each variable, we have4

Δp½ 	 ¼ Force

Area
¼ ML=T2

L2
¼ L�1T�2M1, μ½ 	 ¼ Force=Area

1=Time
¼ ML=T2

L2=T

¼ L�1T�1M1,

D½ 	 ¼ L1 T0M0, ρ½ 	 ¼ Mass

Volume
¼ L�3T0M1,

L½ 	 ¼ L1 T0M0, v½ 	 ¼ L1T�1M0:

e½ 	 ¼ L1 T0M0;

Step 3: Assign scales. It is reasonable to let the diameter be the length scale and

likewise the ratio of diameter to the mean velocity be the timescale. For

mass, it is reasonable to take the density times a volume. Although πD2L/4 is

the fluid volume over the entire length of the pipe, selectingD3 as a volume is

similarly acceptable. Hence, let

Ls ¼ D, Ts ¼
v

D

� ��1
¼ D

v
, Ms ¼ ρD3:

4 In some cases, we may not know the dimensions of a parameter directly, such as the
viscosity. In such cases, we recall a simple relation that relates the parameter to those
having known dimensions (e.g., σxy¼ 2μDxy)
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Step 4: List the computed Pi groups, namely

π1 ¼
Δ p

Dð Þ�1 D=vð Þ�2 ρD3
� �1 ¼

Δp

ρv2
, π5 ¼

μ

Dð Þ�1 D=vð Þ�1 ρD3
� �1 ¼

μ

ρvD
¼ 1

Re
,

π2 ¼
D

Dð Þ1 D=vð Þ0 ρD3
� �0 ¼

D

D
¼ 1, π6 ¼

ρ

Dð Þ�3 D=vð Þ0 ρD3
� �1 ¼

ρ

ρ
¼ 1,

π3 ¼
L

Dð Þ1 D=vð Þ0 ρD3
� �0 ¼

L

D
, π7 ¼

v

Dð Þ1 D=vð Þ�1 ρD3
� �0 ¼

v

v
¼ 1:

π4 ¼
e

Dð Þ1 D=vð Þ0 ρD3
� �0 ¼

e

D
;

In particular, note that the combination of terms ρvD=μ appears so com-

monly in fluid mechanics that it is given a special symbol Re and is called the

Reynolds’ number. It has been mentioned earlier, but its utility will be seen in

more detail in Sect. 10.6.

Step 5: Express the governing functional equation

x1 ¼ f x2; x3; x4; x5; x6; x7ð Þ , Δp ¼ f D;L; e; μ; ρ; vð Þ

in terms of Pi-groups, namely

π1 ¼ g π2; π3; π4; π5; π6; π7ð Þ , Δp

ρv2
¼ g 1,

L

D
,
e

D
,
1

Re
, 1, 1

� �
:

Hence, according to the Buckingham Pi Theorem,

Δp

ρv2
¼ g

L

D
;
e

D
;
1

Re

� �
¼ eg L

D
,
e

D
, Re

� �
:

Note: If we have an equation y¼ ax2, then we say y¼ f(x). Similarly, if we have

an equation y¼ a/x2, then we again say y¼ g(x). The key here is the functional

dependency. As it turns out, extensive experiments have revealed that π1
depends linearly on L/D and, thus,

Δp
1
2
ρv2
¼ L

D
f Re,

e

D

� �
;

where the function f is called a friction factor. (Note: The functioneg is arbitrary;
hence, we can multiply or divide it by a constant such as 1

2
, which we do so as to
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have a kinetic-energy-type term.) This relation will play a key role in Sect. 10.6.

First, however, let us consider a specific example from the lung mechanics

literature.

Example 10.8 As noted earlier in this chapter, the primary function of the

lungs is to facilitate gas exchange between the atmosphere and the blood.

Toward this end, the capillary system in the lungs is very different than that

found elsewhere. Conforming to the alveolar geometry (Fig. 10.3), capillary

blood flow in the lungs is better described as a sheet flow rather than a tube flow;

that is, the blood flows within the thin planar walls of the alveoli, which appear

as parallel membranes separated by hexagonally positioned posts. Fung and his

colleagues sought to quantify the pressure–flow relation in this sheet flow and

began with a nondimensionalization. Here, let us perform a similar procedure

and compare to that reported by Fung (1993).

Solution: Fung considered the pressure drop Δp within a pulmonary capillary

to depend on the density and viscosity of the blood (ρ, μ), mean velocity U,

circular frequency of oscillation ω, sheet thickness h and width w, post diameter

ε and separation distance a, angle between the mean flow and post alignment θ,

the hematocrit H and red blood cell diameter Dc, the elastic modulus of the red

blood cell Ec, and a ratio between the vascular space and tissue volume (VSTR).

Consistent with Step 1 in our Buckingham Pi approach, we specify

Δp ¼ g ρ; μ;U;ω; h;w; ε; a; θ;H;Dc;Ec;VSTRð Þ:

It is easy to see that appropriate fundamental units are L, T, andM, where (Step 2)

Δp½ 	 ¼ L�1T�2M1, ω½ 	 ¼ L0T�1M0, a½ 	 ¼ L1T0M0,

ρ½ 	 ¼ L�3T0M1, h½ 	 ¼ L1T0M0, Dc½ 	 ¼ L1T0M0,

μ½ 	 ¼ L�1T�1M1, w½ 	 ¼ L1T0M0, Ec½ 	 ¼ L�1T�2M1,

U½ 	 ¼ L1T�1M0, ε½ 	 ¼ L1T0M0,

and, of course, [θ]¼ [H]¼ [VSTR]¼ 1. If we assign length, time, and mass

scales (Step 3) as

Ls ¼ h, Ts ¼
h

U
, Ms ¼ ρhwð Þh;
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then (Step 4) we can list the computed Pi groups:

π p ¼
Δp

ρU2

h

w

� �
, πw ¼

w

h
,

πρ ¼
h

w
, πε ¼

ε

h
,

πμ ¼
μ

ρUw
¼ μ

ρUh

h

w

� �
, πa ¼

a

h
¼ a

ε

ε

h

� �
,

πU ¼ 1, πDc
¼ Dc

h
,

πω ¼
ω

U
h, πEc

¼ Ec

ρU2

h

ω

� �
,

πh � 1,

and, thus (Step 5), we can express the original equation as

Δp

ρU2

h

w

� �
¼ eg h

w
, Re,

w

h
,
ε

h
,
a

h
,
Dc

h
,
ω

U
h,

Ec

ρU2

h

ω

� �
, θ,H, VSTR

� �
;

where the Reynolds’ number is Re¼ ρUh/μ. Hence, Buckingham Pi reduced the

number of independent variables from 13 to 10, a slight improvement. Fung

(1993) actually chose a few different, equivalent nondimensional parameters;

they are related to the present ones via (by multiplying by unity appropriately)

∇ph2

μU
¼ Δp=hð Þh2

μU
¼ Δph

μU

ρUw

ρUw

� �
¼ Δ p

ρU2

h

w

� �
ρUw

μ

� �
,

μU

Ech
¼ μU

Ech

ρU2

ρU2

� �
w

w

� �
¼ μ

ρUw

ρU2

Ec

� �
w

h

� �
,

ffiffiffiffiffiffiffiffiffiffi
h2ωρ

4μ

s

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω

U
h

� � ρUw

μ

� �
h

w

� �s
;

which is to say, our current Pi groups differ from Fung’s only through the

Reynolds’ number ρUh/μ and the term h/w. It is interesting that experiments

revealed that the Reynolds’ number Re and Womersley’s number
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h

2

ffiffiffiffiffiffi
ωρ

μ

r

are both less than unity and thus negligible in this sheet flow. Note, too, that

Fung’s parameter μU/Ech is essentially the ratio of the shear stress in a Couette

flow between parallel plates (cf. Example 9.2 of Chap. 9) to the modulus of the

red blood cell (RBC), which was interpreted as a RBC membrane shear strain

despite the flow not being Couette.

Experiments suggested further that, with a minus sign accounting for the

pressure gradient being opposite the pressure drop,

∇ph2

μU
¼ �G1

Dc

h
;
μ0U

Ech
;H

� �
G2

w

h

� �
f

h

ε
;
ε

a
; θ;VSTR

� �
;

where

μG1

Dc

h
;
μ0U

Ech
;H

� �
�μa

was taken to be the apparent viscosity, with the form

μa ¼ μ 1þ c1
Dc

h

� �
H þ c2

Dc

h

� �
H2

� 

;

the effect of μ0U/Ech being yet unexplored. The function G2 was found to be

G2

w

h

� �
¼ 12

1� 0:63 h=wð Þ � 12;

whereas the function f was called a geometric friction factor It was found

experimentally to vary nearly linearly with h/ε with values of f from 1.5 to

5 for h/ε from 1 to 5, with values of VSTR~ 91, h~ 7.4 μm, ε ~ 4 μm, and

a ~ 12 μm, f would equal 1 in the absence of posts. Hence, the semi-empirical

relation reduced to

∇p ffi � 12μaU

h2
f

h

ε
;
ε

a
; θ;VSTR

� �
:

Because shear flow is two-dimensional, in general, Fung and colleagues thus

considered
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∂ p

∂x
¼ � 12μaU

h2
f x

h

ε
;
ε

a
; θ;VSTR

� �
¼ � 12μaU

h2
f x,

∂ p

∂y
¼ � 12μaV

h2
f y

h

ε
;
ε

a
; θ;VSTR

� �
¼ � 12μaV

h2
f y;

where U and V are mean velocities in the x and y directions, respectively, and

fx ~ fy ~ 2.5. In general, the mean values of 2-D velocities within the capillaries

are

U ¼ � h2

12μa f x

∂ p

∂x

� �
, V ¼ � h2

12μa f y

∂ p

∂y

� �
:

Finally, Fung and colleagues suggested that

h ¼ h0 þ αΔp

based on morphometric data, with h0¼ 4.28 μm in cat lung and 3.5 μm in

human lung, α¼ 0.219 μm/cm H2O in cat lung for a Δp ~ 10 cm H2O, and

α¼ 0.127 μm/cm H2O in human lung for a Δp ~ 10 cm H2O. For more details,

see Fung (1984, 1993). The take-home message here is simply that Buckingham

Pi can often be used advantageously to guide empirical studies, particularly

those associated with complex flows as in the pulmonary capillaries.

10.6 Pipe Flow

Recall from our general control volume analysis that the balance of some total

quantity of interest N is given by

dN

dt

����
sys

¼ ∂

∂t

ð

C�V

ρηd�V þ
ð

CS

ρη v � nð ÞdA; ð10:63Þ

where η is defined as the quantity per unit mass. For the first law of thermody-

namics, or balance of energy, let N�E and η¼ e¼ u+ gz + 1
2
v2 where E is the

total energy in a system, with u, gz, and 1
2
v2 the internal, potential, and kinetic

energies per unit mass, respectively. Recall, too, that for energy balance in a

system [Eq. (10.1)],
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dE

dt

����
sys

¼ _Q þ _W ; ð10:64Þ

where _Q is the rate at which heat is added to the system and Ẇ is the rate at

which work is done on the system. The control volume formulation for the first

law is thus [Eq. (10.22)]

_Q þ _W ¼ ∂

∂t

ð
ρ uþ gzþ 1

2
v2

� �
d�V þ

ð
ρ uþ gzþ 1

2
v2

� �
v � nð ÞdA: ð10:65Þ

Mechanical work is a force f multiplied by some displacement u¼ x – X. The

rate at which work done is thus given by

dW

dt
¼ _W ¼ d

dt
f � uð Þ: ð10:66Þ

Assuming a constant force f at the point of interest, the rate of work becomes

_W ¼ f � du
dt
¼ f � v: ð10:67Þ

Let us now focus specifically on the balance of energy in a pressurized “pipe

system” and, in particular, with inlet and outlet control surfaces 1 and

2 (Fig. 10.14). The rate at which work is done on a differential area of CS1 is

given by

dW1

dt
¼ p1dAð Þê x � v1ê x ¼ p1v1dA; ð10:68Þ

FIGURE 10.14 Flow of

fluid through an inclined

tube, which may contain

intermediate valves,

bends, or other geometric

discontinuities. This

diagram is simply to

illustrate the possible

need to include minor

losses in a pipe-flow

analysis.
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and the rate of work done on a part of CS2 is similarly given by

dW2

dt
¼ p2dAð Þ �ê xð Þ � v2ê x ¼ � p2v2dA: ð10:69Þ

The rate of work done on a part of CS3 is given by, at each point,

dW3

dt
¼ p xð ÞdA½ 	ê r � vþ σrxdAð Þê x � v: ð10:70Þ

If v is assumed to be zero on CS3 the no-slip boundary condition, then

dW3

dt
¼ 0: ð10:71Þ

Hence, from the first law of thermodynamics, we have for a steady flow,

_Q þ _W ¼
ð
ρe v � nð ÞdA; ð10:72Þ

which can be written as

_Q þ
ð

A1

ρ

ρ
p1v1dA�

ð

A2

ρ

ρ
p2v2dA ¼

ð

CS

ρe v � nð ÞdA; ð10:73Þ

wherein

_W ¼
ð

CS1

dW1

dt

� �
dAþ

ð

CS2

dW2

dt

� �
dAþ

ð

CS3

dW3

dt

� �
dA; ð10:74Þ

and we have multiplied each working term by unity (i.e., ρ/ρ) for reasons to be

seen in Eq. 10.78. Assuming that the density is constant at each control surface,

_Q ¼ ρ

ð

CS

uþ gzþ 1

2
v2

� �
v � nð ÞdA� ρ

ð

A1

1

ρ
p1v1dAþ ρ

ð

A2

1

ρ
p2v2dA; ð10:75Þ

or, because –v1¼ v1 · –n1 and v2¼ v2 · n2,

_Q ¼ ρ

ð

CS

uþ gzþ 1

2
v2

� �
v � nð ÞdAþ ρ

ð

CS

p

ρ

� �
v � nð ÞdA; ð10:76Þ

or, finally, for our inlet and outlet control surfaces,
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_Q ¼ ρ

ð

CS

uþ gzþ 1

2
v2 þ P

ρ

� �
v � nð ÞdA: ð10:77Þ

Thus, assuming that the pressure, gravity, mass density, and internal energy are

each well represented by their mean values defined over each cross section,

_Q ¼ p2
ρ2
� p1

ρ1

� �ð
ρ v � nj jdAþ g z2 � z1ð Þ

ð
ρ v � nj jdA

þ
ð
1

2
v2ρ v � nj jdAþ u2 � u1ð Þ

ð
ρ v � nj jdA;

ð10:78Þ

where the mass flux is defined as _m ¼
Ð
ρ vj � n dAj . Hence, we obtain

_Q ¼ p2
ρ2
� p1

ρ1

� �
_m þ g z2 � z1ð Þ _m þ

ð
1

2
ρv2 v � nj jdAþ u2 � u1ð Þ _m: ð10:79Þ

Here, note that the scalar v is the velocity at each point, which may vary from

point to point across the control surface (e.g., parabolically for an incompress-

ible, fully developed, Newtonian flow, as seen in Chap. 9). To address the

associated integral, let us introduce a kinetic energy coefficient α defined as

α ¼

ð

CS

1

2
v2ρ v � nð ÞdA

ð

CS

1

2
v2ρ v � nð ÞdA

! α

ð

CS

1

2
v2ρ v � nð ÞdA ¼

ð

CS

1

2
v2ρ v � nð ÞdA; ð10:80Þ

where v is the mean value of the velocity (actually speed) v. Because the mean

value does not vary with position, note that

ð

CS

1

2
v2ρ v � nð ÞdA ¼ 1

2
α2v

2
2 �

1

2
α1v

2
1

� �ð
ρ v � nj jdA; ð10:81Þ

or

ð

CS

1

2
v2ρ v � nð ÞdA ¼ 1

2
α2v

2
2 �

1

2
α1v

2
1

� �
_m: ð10:82Þ

Substituting this result into Eq. (10.79), we thus have
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_Q ¼ p2
ρ2
� p1

ρ1

� �
_m þ g z2 � z1ð Þ _m þ 1

2
α2v

2
2 �

1

2
α1v

2
1

� �
_m

þ u2 � u1ð Þ _m ð10:83Þ

or, by rearranging,

p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
� p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �
¼ u2 � u1ð Þ �

_Q

_m
; ð10:84Þ

where (u2 – u1) – _Q= _m represents the “unwanted” conversion of mechanical

energy to thermal energy (e.g., heat due to frictional effects). Although it can be

useful to quantify these terms in many engineering problems (e.g., in the design

of heating devices), here we shall simply consider the thermal terms to represent

major losses, hM, and minor losses, hm. For pipe flow, therefore, we have, via a

control volume analysis,

p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
� p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �
¼ hM þ hm: ð10:85Þ

Extensive experimentation has revealed that the major losses are due to viscous

(frictional) losses over significant lengths of the pipe (or tube); conversely,

experience has revealed that the minor losses arise due to the fluid flowing

through complex geometries such as bends, sudden contractions or expansions,

valves, and diffusers. Note, too, that we must respect the many assumptions

employed when deriving this equation (e.g., steady flow and constant p, ρ, and

g over a cross section).

Let us now design an experiment that would allow us to quantify the major

loss hM. Clearly, data reduction would be simplified if there were no minor

losses with which to contend. This can be accomplished by simply collecting

data within a straight pipe. From Eq. (10.85), it is also clear that our data

analysis will be simpler if we eliminate the effect of gravity (e.g., collect data

in a horizontal pipe) and if we likewise focus on an incompressible flow

(ρ¼ constant). Given these experimental conditions, Eq. (10.85) reduces to

p1 � p2
ρ

þ 1

2
α1v

2
1 � α2v

2
2

� �
¼ hM: ð10:86Þ

If we have a constant-diameter pipe, then mass balance requires that v1 ¼ v2
(i.e.,Q ¼ v1A1 ¼ v2A2); hence, if α1¼ α2, as it would in a fully developed flow,

then we merely have
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Δp

ρ
¼ hM; ð10:87Þ

which allows us to determine hM by knowing how the pressure drop depends on

the relevant parameters that define our experiment: pipe diameter and length,

fluid viscosity and density, surface roughness, and mean flow. Recall Example

10.7 in Sect. 10.5 on the Buckingham Pi Theorem in which we did just that;

namely from Buckingham Pi, for the proposed experiment,

Δp

ρv2
¼ g

L

D
, Re,

e

D

� �
ð10:88Þ

or, as we noted earlier based on such experiments,

Δp
1
2
ρv2
¼ L

D
f Re,

e

D

� �
: ð10:89Þ

Hence, from Eqs. (10.87) and (10.89),

Δp

ρ
¼ f Re,

e

D

� � L

D

� �
v2

2
¼ hM; ð10:90Þ

where f is the friction factor, Re is the Reynolds’ number, L is the length of the

pipe, D is the diameter of the pipe, and v is the mean velocity through a cross

section. It will prove convenient, therefore, to write the total additive major

losses in multiple connected tubes as

hM ¼
X

f Re,
e

D

� � L

D

� �
v2

2
: ð10:91Þ

Recall that the Reynolds’ number is defined as

Re ¼ ρvD

μ
: ð10:92Þ

Experiments have revealed that if Re< 2,100, then the flow will be laminar

(i.e., the fluid will flow as if layers slide one relative to the other) in a pipe.

Furthermore, if the flow is laminar, it is easy to show (Exercise 10.35) that the

friction factor f¼ 64/Re. If Re> 2,100, however, then the flow is turbulent (i.e.,

random) and we must use the Moody diagram to find the friction factor f

(Fig. 10.15); this diagram represents a wealth of experimental data.
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Finally, experience has revealed that it is convenient to write the minor losses as

hm ¼
X

K
v2

2

� �
; ð10:93Þ

where K is a minor loss coefficient. Values of K are listed in Table 10.1, in

which it is noted that in some cases, investigators prefer to write K in terms of an

“equivalent” length. In other words, a minor loss in a geometric irregularity

could be shown to equal a major loss over a particular length. Consequently,

some let K¼ f(Re, e/D)(Le/D), whereby the value of K can be computed given

the value of the friction factor f and the equivalent length Le/D.

In summary, the final form of the balance of energy equation for a control

volume analysis of flow in a pipe from point 1 to point 2 is

p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
¼ p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �

¼
X

f Re,
e

D

� � L

D

� �
þ K

� 

v2

2
: ð10:94Þ

It is important to note that the derivation of this relation did not specify a

particular class of fluids (e.g., inviscid or Newtonian); thus, it is very general,

notwithstanding the restrictions needed to evaluate some of the integrals.

Observation 10.2. Recall from Chap. 8 that the Bernoulli equation is often

misused in both fluid mechanics and biofluid mechanics, most often because of

the temptation to solve an easier (algebraic) rather than a more general (partial

differential) equation of motion such as Navier-Stokes. An infamous example in

biofluid mechanics is the use of Bernoulli to compute the pressure drop across a

stenosis, which is inappropriate because of the adverse pressure gradient that

develops distal to the stenosis and the associated viscous losses. Here, however,

let us estimate the pressure drop using Eq. (10.94), which accounts for such

losses.

First, assume a simple situation wherein the vessel is horizontal and the

gravitational effects are negligible. Second, assume that the blood is incom-

pressible and consequently that the mass density is constant. Third, assume

that the vascular diameter just proximal and distal to the stenosis is the same

(i.e., before development of a post-stenotic dilatation), which implies that the

mean proximal and distal velocities are the same by mass balance. Hence,

assuming the kinetic energy coefficients are of similar magnitude proximal
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TABLE 10.1 Minor loss coefficients for some common geometrical discontinuities in

pipe systems. After Fox and McDonald (1992).

Type Loss

Entrances

Reentrant K¼ 0.78

Square K¼ 0.5

Rounded r/D 0.02 0.06 �0.15
K 0.28 0.15 0.04

Gradual Contractions
K for angle θ (deg)

A2/A1 10 15–40 50–60 90 120 180

0.50 0.05 0.05 0.06 0.12 0.18 0.26

0.25 0.05 0.04 0.07 0.17 0.27 0.41

0.10 0.05 0.05 0.08 0.19 0.29 0.43

Valves K¼ ( f )(Le/D)

Gate valve (open) Le/D¼ 8

Globe valve (open) Le/D¼ 340

Ball valve (open) Le/D¼ 3

Standard Elbows

45
 Le/D¼ 16

90
 Le/D¼ 30

Return Bend

180
 Le/D¼ 50

Standard Tee

Through run Le/D¼ 20

Through branch Le/D¼ 60

574 10. Control Volume and Semi-empirical Methods



and distal to the stenosis and restricting our attention just proximal and distal to

the stenosis (i.e., over a negligible length L), Eq. (10.4) reduces to

p1 � p2 ¼ Δp � 0:5ρv2 Kinlet þ Koutletð Þ

Recalling that ρ ~ 1,050 kg/m3 for blood and K ~ 0.5 for both a severe inlet

contraction and outlet expansion (cf. Table 10.1), and that blood pressure is

typically measured in mmHg (where 7.5 mmHg~ 1 kPa, 1 Pa¼ 1 N/m2 and

1 N¼ 1 kg m/s2), we have Δp ~ 4v2 when the maximal axial velocity within the

stenosis v is measured in m/s. This equation is sometimes referred to as a

modified Bernoulli equation, though it results from a control volume energy

balance that accounts for viscous losses.

Let us now consider the kinetic energy coefficient α for a few special cases.

First, if the fluid is ideal (i.e., inviscid and incompressible), then μ¼ 0 and there

are no losses due to internal friction (viscous or geometric) and ρ1¼ ρ2. Hence,

the pipe flow equation reduces to

p1
ρ
þ gz1 þ

1

2
α1v

2
1 ¼

p2
ρ
þ gz2 þ

1

2
α1v

2
2; ð10:95Þ

which we recognize to be similar to the Bernoulli equation (linear momentum

balance for steady flow along a streamline for an ideal fluid [Eq. (8.81)]. Indeed,

Bernoulli must hold for the ideal fluid along any streamline s or in an irrota-

tional flow; hence, the kinetic energy coefficient α1¼ 1¼ α2 (prove using

Eq. (10.80)) for an ideal fluid and the pipe flow (energy) equation recovers

the Bernoulli (momentum) equation. For this reason, some refer to Bernoulli as

an energy equation, but we do not.

Experiments reveal that the kinetic energy coefficient α ~ 1.08 for the case of

a turbulent flow; hence, this value should be used whenever Re> 2,100. Let us

now consider the case of a laminar, fully developed, steady, incompressible

flow of a Newtonian fluid. Recall from the Navier–Stokes solution that for a

rigid circular tube, the velocity profile is [Eq. (9.45)]

vz rð Þ ¼
1

4μ

d p

dz

� �
r2 � a2
� �

: ð10:96Þ

Hence, the mean velocity is given by v ¼ Q=A, where [Eq. (9.50)]

Q ¼ � πa4

8μ

d p

dz

� �
; ð10:97Þ

that is,
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v ¼ � a2

8μ

d p

dz

� �
�� a2

2
c; ð10:98Þ

where we let c� (1/4 μ)dp/dz for convenience. For fully developed laminar

flow of a Newtonian fluid in a circular tube, the kinetic energy coefficient

[Eq. (10.80)] thus becomes

α ¼

ð2π

0

ð a

0

1

2
ρ c r2 � a2
� �
 �2

c r2 � a2
� �

ê z � ê zð Þ

 �

rdrdθ

ð2π

0

ð a

0

1

2
ρ �a2=2
� �

c

 �2

c r2 � a2
� �

ê z � ê zð Þ

 �

rdrdθ

: ð10:99Þ

Although the kinetic energy coefficient is introduced because the velocity is

difficult to integrate in general, we can evaluate these integrals exactly in this

case. The numerator is

2πð Þ 1

2
ρc3

� �ð a

0

r2 � a2
� �3

rdr ¼ πρc3
ð a

0

r7 � 3a2r5 þ 3a4r3 � a6r
� �

dr

¼ πρc3
1

8
a8 � 3

6
a8 þ 3

4
a8 � 1

2
a8

� �

¼ πρc3 �1
8
a8

� �
:

ð10:100Þ

Integrating the denominator, we obtain

2πð Þ 1

2

� �
ρ � a2c

2

� �2

c

ð a

0

r2 � a2
� �

rdr ¼ πρc3a4

4

ð a

0

r3 � a2r
� �

dr

¼ πρc3a4

4

1

4
a4 � 1

2
a4

� �

¼ πρc3 � 1

16
a8

� �
:

ð10:101Þ

Hence, we have for a fully developed, steady, incompressible, laminar flow of a

Newtonian fluid

α ¼
πρc3 �1

8
a8

� �

πρc3 � 1

16
a8

� � ¼ 16

8
¼ 2: ð10:102Þ
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In summary, theory (system! control volume relation) provided a control

volume form of the balance of energy equation whereby differences in pres-

sures, gravitational “heads,” and velocities are related to unwanted thermal

losses. These losses, in turn, can be shown experimentally to be related to

major (viscous) losses and minor (geometric) losses in bends, valves, expan-

sions, and so forth; hence, we have a combined theoretical – experimental

relation. Specific parameters in this so-called pipe flow relation—the kinetic

energy coefficient α and friction factor f—can be determined from theory in

simple cases (e.g., α¼ 1 and f¼ 0 for an ideal fluid, whereas α¼ 2 and f¼ 64/Re

for a fully developed, steady, incompressible laminar flow of a Newtonian

fluid), but they must be determined experimentally in other cases (e.g.,

α ~ 1.08 in a turbulent flow).

Finally, note that in contrast to the viscous losses in a piping system, the

presence of a pump actually augments the flow. This can be thought of empir-

ically as the pump contributing a negative loss, say –hp. Hence, a complete pipe

flow equation, in the presence of a pump, is

p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
� p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �

¼
X

f Re,
e

D

� � L

D

� �
þ K

� 

v2

2
� h p: ð10:103Þ

Manufacturers of pumps list values of hp for their pumps. In the absence of such

information, however, it is easy to design experiments to find the value(s) of hp.

For example, consider the next example.

Example 10.9 Design an experiment to determine hp for a pump.

Solution: Experimentalists seek to design tests that are theoretically motivated

while easily performed and interpreted. To determine hp for a pump, for

example, one would seek to eliminate all minor losses as well as the gravita-

tional effects if possible. Consider, for example, Figure 10.16 for which the pipe

flow equation is

p1
ρ1
þ 1

2
α1v

2
1

� �
� p2

ρ2
þ 1

2
α2v

2
2

� �

¼ f Re,
e

D

� � L1

D

� �
v21
2
þ f Re,

e

D

� � L2

D

� �
v22
2
� h p

and from which hp can be solved in terms of measurable quantities. Of course,

balance of mass requires that Q1 ¼ Q2 and thus v1 ¼ v2 in a constant
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cross-section pipe. If the flow is the same at 1 and 2, either turbulent or laminar,

then our data reduction simplifies. Indeed, if we are able to measure the inlet p3
and outlet p4 pressures very near the pump, then

p3 � p4
ρ

¼ �h p ! h p ¼
p4 � p3

ρ
;

where p4> p3 due to the pump. Hence, the gain (or, a negative loss) due to a

pump is determined primarily by the pressure jump across the pump.

Example 10.10 A basic laboratory setup is shown in Fig. 10.17 for the pur-

poses of studying flow in a stenotic artery. Determine the inlet pressure for the

test section.

Solution: Here, we must use the pipe-flow equation separately for the upstream

and downstream sections relative to the test section. For the upstream section

(assuming a steady laminar flow; i.e., Re< 2,100), we have

p1
ρ
þ ghþ 1

2
2ð Þv21

� �
� p3

ρ
þ 1

2
2ð Þv23

� �

¼ 64

Re

L1 þ L2

D

� �
v2

2
þ
X

Kentrance þ Kbendð Þ v
2

2
:

If the reservoir is open to atmosphere p1¼ 0 (gauge) and if the reservoir is large,

then v1 � v3. Hence, we have

p3 ¼ ρgh� 1

2
ρv2 2þ Ke þ Kbð Þ � 32μv

D2
L1 þ L2ð Þ:

A similar downstream analysis will provide the value of p4.

FIGURE 10.16 Simple experimental setup to determine the geometric loss (actually gain)

due to a particular pump.
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Example 10.11 Just because our focus is biomechanics, this should not mean

that we cannot look at everyday problems involving continuum mechanics.

Indeed, a student should continually try to understand and explain the wide

variety of mechanical phenomena that we experience on a daily basis, for in

doing so, one is forced to practice the art of formulating and solving problems.

For example, let a hydraulic turbine be supplied with water from a mountain lake

through a supply pipe. The pipe diameter is 1 ft and the average roughness e is

0.05 in. Minor losses can be neglected. Flow leaves the pipe at atmospheric

pressure at an average velocityv¼ 27.5 ft/s. Find the height h if the length L of the

pipe is 3,000 ft. Let μ/ρ¼ 10.76� 10�6 ft2/s. Note, too, that the combination μ/ρ

is called the kinematic viscosity in contradistinction to the absolute viscosity μ.

Solution: For pipe flow,

p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
� p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �
¼ hM þ hm:

FIGURE 10.17 Possible laboratory setup to examine flow through a stenotic vessel.
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In the case where we neglect the minor losses, the pipe-flow equation becomes

p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
� p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �
¼
X

f Re,
e

D

� � L

D

� �
v2

2
:

Applying the given conditions, we have (with v1� 1 in lake)

gh� 1

2
αv22 ¼ f Re,

e

D

� � L

D

� �
v22
2
:

Before we can calculate the height h, we need to determine if the flow is laminar

or turbulent. To do this, we need to calculate the Reynolds’ number:

Re ¼ ρvD

μ
¼ vD

μ=ρ
¼ 27:5ft=sð Þ 1ftð Þ

10:76� 10�6ft2=s
¼ 2:556� 106:

Because 2.556� 106> 2,100, the flow is turbulent and we must use the Moody

diagram to find the value of the friction factor f. Also, α ~ 1.08 and

e/D¼ 0.05 in./12 in.¼ 0.004. From theMoody diagram (Fig. 10.15), the friction

factor f ~ 0.028 (which is simply best approximated by eye). Substituting these

values into the pipe-flow equation,

gh� 1

2
αv22 ¼ f Re,

e

D

� � L

D

� �
v2

2

� �
! h ¼ 1

g
f Re,

e

D

� � L

D

� �
v22
2

� �
þ αv22

2

� 

;

we obtain

h ¼ 1

32:2ft=s2
0:028

3000ft

1 ft

� �
27:5ð Þ2ft2=s2

2

 !
þ 1

2
1:08ð Þ 27:5ð Þ2 ft

2

s2

" #

¼ 999ft:

Hence, the height h is approximately 1,000 ft.

Example 10.12 Find the minor loss due to a medical stopcock.

Solution: Again, we must design an appropriate experiment. Clearly, because

the pipe-flow equation is but one scalar equation, we can solve for only one

unknown, the Ksc (stopcock) of interest. The experiment should thus enable us

to measure all other quantities and, in particular, to simplify measurement and

interpretation. Recalling the general formula
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p1
ρ1
þ gz1 þ

1

2
α1v

2
1

� �
� p2

ρ2
þ gz2 þ

1

2
α2v

2
2

� �

¼
X

f Re,
e

D

� � L

D

� �
v2

2

� �
þ
X

hm;

let us consider a setup similar to that in Fig. 10.16, except with a stopcock

in place of the pump. Hence, ensuring a laminar flow (α¼ 2), constant

cross-sectional areas and thus v1 ¼ v2 ¼ v, and a horizontal system, we are

left with

p1
ρ
� p2

ρ
¼ f Re,

e

D

� � L1

D

� �
v2

2

� �
þ f Re,

e

D

� � L2

D

� �
v2

2

� �
þ hm;

or

hm ¼
p1 � p2

ρ
� 64

Re

L1 þ L2

D

� �
v2

2

� �
;

with

Re ¼ ρvD

μ
:

Hence, to determine the loss coefficient, we must know μ and ρ for our fluid,

determine L1, L2, and D for the tubing, and measure p1 and p2. Most impor-

tantly, however, we must ensure that all assumptions are satisfied by the actual

flow, as, for example, that it is indeed steady, incompressible, and laminar.

Clearly, like Bernoulli, the pipe-flow equation is algebraic and easily solved.

The most important thing, therefore, is to understand how to use these equa-

tions, which is to say, to understand the conditions under which they apply.

Observation 10.3. Although we have used nondimensionalization to reduce

general functional dependencies in order to design more efficient experiments

(via the Buckingham Pi Theorem), nondimensionalization can also be useful in

the solution of known governing equations. For example, the governing differ-

ential equation for a mass-spring-dashpot system is (recall from physics)
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m
d2x

dt2
þ c

dx

dt
þ kx ¼ f tð Þ;

where m is mass, c is a viscous dissipation, k is a spring constant, f is a forcing

function, and t is time; x is, of course, a position. Although we do not provide a

recipe per se, let us consider the following general approach. First, let us note

the units of each variable:

m½ 	 ¼ L0T0M1,

x½ 	 ¼ L1T0M0,

t½ 	 ¼ L0T1M0,

c½ 	 ¼ forceð Þ Timeð Þ
Length

¼ L0T�1M1,

k½ 	 ¼ force

Length
¼ L0T�2M1,

f½ 	 ¼ force ¼ L1T�2M1:

If we assume that the unperturbed (vertically held) mass-spring-dashpot system

has length x0, then we could pick scales such as

Ls ¼ x0, Ts ¼
ffiffiffiffi
m

k

r
, Ms ¼ m:

Again, the timescale is the hardest one to pick, but we simply need a charac-

teristic measure having units of time.

Noting that

d2x

dt2

� 

¼ L1T�2M0,

dx

dt

� 

¼ L1T�1M0;

we see that if we let

λ� x

x0
, τ� tffiffiffiffiffiffiffiffiffi

m=k
p ;

then
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d

dt
¼ d

dτ

dτ

dt
¼ 1ffiffiffiffiffiffiffiffiffi

m=k
p d

dτ
,

d2

dt2
¼ d

dτ

1ffiffiffiffiffiffiffiffiffi
m=k

p d

dτ

 !
dτ

dt
¼ k

m

d2

dτ2
;

and, thus,

dx

dt
¼ x0ffiffiffiffiffiffiffiffiffi

m=k
p dλ

dτ
,

d2x

dt2
¼ kx0

m

d2λ

dτ2
:

Consequently, our governing equation can be written as

m
kx0

m

d2λ

dτ2

� �
þ c

x0ffiffiffiffiffiffiffiffiffi
m=k

p dλ

dτ

 !
þ kx0λ ¼ g τð Þ;

or, by dividing by kx0, we have

d2λ

dτ2
þ cffiffiffiffiffiffi

mk
p dλ

dτ
þ λ ¼ g τð Þ

kx0
:

If we define a parameter δ ¼ c=
ffiffiffiffiffiffi
mk
p

and let F� g(τ)/kx0 be a nondimensional

forcing function, we see that our original dynamical system, which depended on

the three parameters m, c, and k, now depends on only one nondimensional

parameter δ, namely

d2λ

dτ2
þ δ

dλ

dτ
þ λ ¼ F τð Þ;

which clearly admits a simpler numerical parametric study. Nondimensiona-

lization can thus be very useful in studying the behavior of many differential

equations, particularly those that model dynamical systems. This is illustrated

further in Chap. 11 in a study of the dynamic stability of aneurysms.

10.7 Conclusion

In summary, we see from the few cases considered in Chaps. 8–10 that many

different types of flows are of interest to the biomedical engineer. Quantifying

in vivo flows in the airways, circulatory system, and urinary system is partic-

ularly important for understanding normal physiology and for diagnostic and
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therapeutic purposes. Quantifying ex vivo flows is likewise important for the

purposes of designing basic and applied experiments that range from studying

the mechanobiological response of cells to shear stress to determining the minor

loss coefficient for a medical stopcock. As we stated in the beginning of

Chap. 7, the importance of biofluid mechanics is far reaching; yet, just as we

concluded in Chap. 6 for biosolid mechanics, an introductory text is simply

that—an introduction. Because of the complex geometries, initial-boundary

conditions, and fluid behaviors in biofluid mechanics, interested students are

strongly encouraged to pursue advanced courses in fluid mechanics and com-

putational mechanics. We have seen but an introduction as to how equations can

be formulated in an Eulerian sense (which gave rise to local and convective

parts of acceleration), how differential and control volume equations can each

provide the requisite information in particular cases, and how theory and

experiment must often be combined to complete an analysis. Much more

remains to be learned, however. We have not addressed the important roles of

waves (and their reflections) in the vasculature, of diffusion across the vascular

wall during flow, of the effect of taper, curves, and bifurcations on the velocity

and pressure fields, and so on.

Chapter Summary

Whereas Chaps. 7–9 each focus on understanding flow characteristics and fluid

behaviors point-wise, primarily via the solution of differential equations, one

need not always need this level of detail. That is, there are many situations

wherein it is sufficient to know the behavior of a fluid or its effects on its

surrounding environment on average. The concept of control volume analyses is

thus a very powerful tool in fluid mechanics just as it is in thermomechanics.

Section 10.1 is particularly important for it shows that the three basic

postulates (balance of mass, linear momentum, and energy) that give rise to

our general equations of motion can each be recast in an integral form for a

control volume (e.g., a fixed volume in space in which mass, momentum, and

energy can enter or leave). Sections 10.2 and 10.3 illustrate the utility of these

methods via a few simple cases that correspond to important biomedical

problems and help to build intuition. The important thing to remember is that

the associated results represent mean values, or in the case of forces, resultants.

A particularly powerful application of the control volume method is illustrated

in Sect. 10.6 for pipe flow, wherein energy balance allows one to account

simply for viscous losses (e.g., dissipation of energy, often via heat or sound)

that arise due to complex flows or geometries, neither of which are easy to

address analytically via Navier-Stokes or related solutions. Indeed, as men-

tioned in Chap. 8, this pipe flow based energy equation allows one to compute

easily the pressure drop across a complex stenosis, which is important

clinically.
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Albeit presented only briefly in Sect. 10.5, the so-called Buckingham Pi

Theorem is an extremely important and yet underused method of experimental

design. The interested reader is strongly encouraged to learn to use this method

and in particular to allow the concept of scales to influence both analysis and

design. The five-step “recipe” (SCALE) in Sect. 10.5.2 is especially important

in this regard. Note, too, that we illustrate in Sect. 11.2 the use of Buckingham

Pi to design a clever experiment involving solid-fluid-interactions. This partic-

ular example resulted from an undergraduate Senior Project, which in turn

resulted in a first-authored paper for the student. Buckingham Pi is both useful

and easily implemented.

Finally, we also introduced the idea of optimal design as envisioned in 1926

by C.D. Murray for both straight segments of arteries and bifurcations. This

simple example reminds us yet again of the important influence of mechanics on

biology and how rational analysis can reveal important hypotheses.

Appendix 10: Thermodynamics

As noted in Sect. 10.6, the first law of thermodynamics states that the rate of

change of the (total) energy E must balance the rate at which work is done on

the body plus the rate at which heat is added to the body. Here, let us derive a

differential equation for energy balance (similar to the differential equations for

mass balance and linear momentum balance in Sects. 8.1 and 8.2 of Chap. 8) for

the special case of no mechanical work (e.g., a rigid solid); once done, we then

list the more general thermomechanical energy equation.

In contrast to Sect. 10.5, let the energy per unit mass e be given by the internal

energy u alone (i.e., no kinetic or potential energy). Moreover, let the heat be

added to the body via two means: through the surface, via a heat flux vector q

defined per unit area, and volumetrically, via a heat source (scalar) qs defined

per unit mass. Note, too, that convention defines q positive outward, and being

an arbitrary vector, we need q ·n, where n is an outward unit normal vector to

the surface through which the flux occurs. Because q · n acts at each point over a

differential area and qs acts at each point over a differential volume and because

the first law requires the balance of total energy, we have

d

dt

ð
uρd�v ¼ �

ð
q � ndaþ

ð
ρqsd�v: ðA10:1Þ

The minus sign in the flux term accounts for our desire to quantify heat addition

to the body. Recall from Chap. 7 that the divergence theorem allows us to

convert a surface integral to a volume integral, namely
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�
ð
q � nda ¼ �

ð
∇ � qd�v: ðA10:2Þ

Now, if we can exchange the order of the time differentiation and the volume

integration in Eq. (A10.1), then we can collect all terms into a single integral

and thereby obtain our governing differential equation (cf. Sect. 8.1). As in

Sect. 8.1, therefore, we seek to relate d�v to d�V the original differential volume

that is independent of time.

Employing the same arguments as in Sect. 8.1, let the original and current

differential volumes both be cuboidal; hence,

d�v ¼ ∂x

∂X

∂y

∂Y

∂z

∂Z
d�V ðA10:3Þ

and

d

dt

ð
uρd�v ¼

ð
d

dt
uρ

∂x

∂X

∂y

∂Y

∂z

∂Z

� �
d�V: ðA10:4Þ

Using the product rule for the differentiation and exploiting results from

Sect. 8.1, this equation can be written as

ð
du

dt
ρþ u

dρ

dt
þ ρ∇ � v

� �� 

∂x

∂X

∂y

∂Y

∂z

∂Z
d�V ðA10:5Þ

and, consequently, using Eq. (A10.3), Eq. (A10.1) becomes

ð
du

dt
ρþ u

dρ

dt
þ ρ∇ � v

� �� 

d�v ¼

ð
�∇ � qþ ρqsð Þd�v; ðA10:6Þ

or

ð
du

dt
ρþ u

dρ

dt
þ ρ∇ � v

� �
þ∇ � q� ρqs

� 

d�v ¼ 0; ðA10:7Þ

which must hold for all arbitrary domains (volumes). This can be satisfied if the

integrand is always zero; that is,

du

dt
ρþ u

dρ

dt
þ ρ∇ � v

� �
¼ �∇ � qþ ρqs ðA10:8Þ
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where we recall from mass balance (Eq. 8.11) that the second term on the left-

hand side must be zero. Thus, our differential equation for energy balance, in

the absence of mechanical work terms, is

ρ
du

dt
¼ �∇ � qþ pqs� ðA10:9Þ

This equation is similar to the general equations of linear momentum balance in

Sect. 8.2, in that we have not specified particular material behaviors (i.e.,

constitutive relations).

The most commonly used constitutive equation for heat flux, however, is

“Fourier’s law,” which states that q is proportional to the temperature gradient,

namely

q ¼ �k∇T; ðA10:10Þ

where k is a material constant called the thermal conductivity. Typical values

for soft tissues are on the order of k¼ 4.76 mW/cm
C for normal human aorta

and k¼ 4.85 mW/cm
C for a fibrous atherosclerotic plaque, both measured at

35 
C. A commonly assumed constitutive relation for the internal energy, in the

absence of deformation, is u¼ cvT, where cv is the specific heat, at a constant

volume, and T is the absolute temperature. Hence, in this special case,

Eq. (A10.9) becomes

ρ
d

dt
cvTð Þ ¼ �∇ � �k∇Tð Þ þ ρqs ðA10:11Þ

or, for constant cv and k, the famous heat diffusion equation

ρcv
dT

dt
¼ k∇2T þ ρqs !

dT

dt
¼ α∇2T þ qs

cv
; ðA10:12Þ

where α¼ k/ρcv is the so-called thermal diffusivity (a material property). This

equation is widely studied in applied mathematics and allows one to determine

temperature fields T(x, y, z, t) in terms of the material parameters (ρ, cv, k) and

the heat supply qs. Microwave energy is a prime source of qs.

Finally, note that in the case of mechanical work, Eq. (A10.9) can be shown

to become (Humphrey 2002)

ρ
du

dt
¼ σxxDxx þ σyyDyy þ σzzDzz þ σxyDxy þ � � � þ σzxDzx �∇ � qþ ρqs;

ðA10:13Þ
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which couples mass, linear momentum, and energy balance equations, thus

resulting in a formidable system of five partial differential equations. The solution

of such coupled problems is important in biomechanics, but this is the topic of

advanced courses. We merely introduce a few coupled problems in Chap. 11.

Exercises

10.1 A water jet “pump” has a jet area of A0 and jet speed v0 (Fig. 10.18). The

jet is within a secondary stream of water having speed 1
10
v0. The total area

of the duct is 5A0. The water is completely mixed and leaves the jet pump

in a uniform stream. The pressures of the jet and secondary stream are the

same at the pump inlet. Determine the speed at the pump exit and the

pressure drop p1 – p2. Note, of course, that a similar situation could exist

within an artery due to a high velocity flow through a needle or catheter.

10.2 Recall from Chap. 9 that the flow within a tube tends to “develop” over a

region called the entrance length Le, beyond which the flow is said to be

fully developed. This development of the flow is due to viscous effects

between the fluid and the surface of the tube and, in particular, the no-slip

condition. This slowing of the flow near the surface is called a boundary

effect, and the region of the affected flow is called a boundary layer. The

boundary effect reaches the centerline in a fully developed flow. The

easiest way to study boundary layers is to consider air that flows by a

rigid, stationary flat plate (Fig. 10.19). The velocity profile in the bound-

ary layer can be shown to be given by

vx ¼ U
3

2

y

δ

� �
� 1

2

y

δ

� �3� 

;

FIGURE 10.18
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where δ is a measure of the growing boundary layer; it is simply a

number at any position x. Find the x-direction reaction force needed

to hold the plate in place. Assume the plate is L long and W wide. In the

computational domain y 2 [0, δ], the fluid has a viscosity of μ. Hint:

Construct a cuboidal control volume from the leading edge to a down-

stream location where y¼ δ.

10.3 If there is some diffusion (radial) through the wall of a circular artery

such that the (lost) mass flux is ṁ3 and the input flow rate is Q1 ¼ v1A1,

find the mean velocity v2 of the flowing fluid that reaches the end of the

vessel.

10.4 In many tests on the biomechanical properties of a soft tissue, one must

immerse the specimen in a physiologic salt solution to keep the tissue

viable. In some cases, however, measurements must be performed with-

out the tissue immersed [e.g., to find the thermal conductivity using a

monochromatic flash system (Davis et al. 2000)]. Hence, we may be very

interested in quantifying the rate at which a test chamber is filled

(Fig. 10.20). Find dh/dt using a control volume approach.

FIGURE 10.19

FIGURE 10.20
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10.5 If you place your finger in a gentle flow of water from a faucet such that

your finger barely touches the water, you will see that the fluid “bends”

under your finger rather than deflecting away from it (Fig. 10.21). This is

called the Coanda effect. Determine if the fluid tends to pull your finger

into the flow or if it tends to push your finger away (try it). To formulate

and solve this problem, construct a control volume for the fluid, and let

the force due to the solid cylinder acting on the fluid be R.

10.6 Consider a flow through a sudden expansion (Fig. 10.22). If the flow is

incompressible and the effects of shear stress are neglected, show that the

pressure drop Δp is given by

Δp

1=2ρv21
¼ 2

d

D

� �2

1� d

D

� �2
" #

:

Why can you not use Bernoulli to solve this problem?

FIGURE 10.21

FIGURE 10.22
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10.7 Water exits a device at velocity U and lifts a flat plate of mass m to

height h (Fig. 10.23). Find the requisite value of U. Assume that there is

a (negligible) guide wire that keeps the plate centered and that the

orifice of the device is d in diameter.

10.8 Culture media enters a parallel plate device at a uniform velocityU. The

flow develops as it progresses through the plates until it becomes fully

developed. Find the requisite value ofU in terms of the maximum value

vx)max in the fully developed region.

10.9 A conical funnel of half-angle α drains through a small area A at the

vertex. The exit velocity of the fluid is v ¼ ffiffiffiffiffiffiffiffi
2gy
p

, where y is the

distance from the exit to the free surface of the fluid, which changes

over time. The funnel is initially filled to height h. Find an expression

for the time to drain the funnel in terms of the initial volume �V0 and

the initial volumetric flow rateQ0 ¼ A
ffiffiffiffiffiffiffiffi
2gh
p

. [From Fox and McDonald

(1992, p. 163).]

10.10 To calibrate an electromagnetic flowmeter, one allows the flowing fluid

to drain into a catch basin that is on a digital scale, the output of which

can be sampled via a computer. Derive an expression for the measured

weight as a function of time and the flow rate Q. Let the basin be

h�w� L in dimensions.

10.11 A hydraulic accumulator is designed to reduce pressure pulsations in a

perfusion system (Fig. 10.24). For the instant shown, determine the rate

at which the accumulator gains or loses fluid.

FIGURE 10.23
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10.12 An incompressible fluid flows steadily and uniformly into the entrance

region of a rigid circular tube of radius a (i.e., ventrance¼U0êz). If the

fully developed velocity at a downstream section is

vz ¼ vz
�
max 1� r2

a2

� �
;

find vz)max in terms of U0 and other known quantities.

10.13 Not all of pulmonary inspired/expired air is available for gas exchange.

The air contained within the conducting airways accounts for 150 mL

of the ~500 mL of air inspired/expired with each breath. If the respira-

tory rate is 15 breaths per minute, compute the total volumetric flow

rate as well as that which is available for gas exchange (so-called

alveolar ventilation).

10.14 Fick’s principle is used to compute pulmonary blood flow Qb. This

principal states that the consumption of oxygen per minute is equal to

the amount of O2 taken up by the blood in the lungs per minute. If the

concentration of O2 is Ci and Ce on inspiration and expiration, respec-

tively, then O2 consumption per minute is

_�Vo2 ¼ Qb Ce � Cið Þ:

Find the physiologic values of the quantities and compute Qb.

10.15 According to West (1979), airflow within the complex network of

conducting airways is seldom fully developed and laminar, except

possibly near the terminal bronchioles, where the Re ~1. Conversely,

the flow is unlikely to be fully turbulent either, except possibly in the

trachea, especially during exercise. In most cases, therefore, the flow is

transitional, for which semi-empirical methods are needed. For exam-

ple, West suggests that in much of the conducting airways,

FIGURE 10.24
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Δp ¼ c1Qþ c2Q
2;

where c1 and c2 are parameters. How does this relation differ from that

for a steady laminar flow?

10.16 The Mach number M is defined as the ratio of a characteristic velocity

to that of the speed of sound (e.g., Vsound ~360 m/s in air under standard

conditions). If M< 0.3, compressibility effects are negligible and the

flow can be treated as incompressible. What is the Mach number in the

human trachea in normal and extreme exercise? Can the associated

flows be considered incompressible?

10.17 In Sect. 10.4, we said that the mechanical power per unit volume was

determined via the product of stresses times their respective rates of

deformation; total power was obtained by integrating over the volume.

Show that the result of Sect. 10.4.1 can be obtained if one computes the

total power as the pressure drop Δp times the total volumetric flow rate

Q, where dp/dz ~ –Δp/L. Explain why the total power can be

calculated thus.

10.18 In Table A9.4, we see that the trachea has a diameter of ~18 mm and the

terminal bronchi (at 11 generations, counting the trachea as the 0th

generation) a diameter of ~1.09 mm. Given that bifurcations are rea-

sonably symmetrical in the airways, what would Murray’s law suggest

for the number of generations? Note, too, that Table A9.4 reports 2050

terminal bronchi. What does this suggest by way of possible shear stress

control of airway lumen?

10.19 Given the results for the bifurcation angles

cos θ1 ¼
a40 þ a41 � a42

2a20a
2
1

, cos θ2 ¼
a40 � a41 þ a42

2a20a
2
2

;

show that θ1¼ θ2 if a1¼ a2. Likewise, show that if a1> a2, then

θ1> θ2. Finally, show that if a1� a2, then a2 ~ a0 and θ1 ~ π/2.

10.20 Consistent with the previous exercise, show that

cos θ1 ¼
1þ α3ð Þ4=3 þ 1� α4

2 1þ α3ð Þ2=3
, cos θ2 ¼

1þ α3ð Þ4=3 þ α4 � 1

2α2 1þ α3ð Þ2=3
:

Hence, if a1¼ a2, α¼ 1 and θ1¼ θ2¼ 37.5
.
10.21 Repeat Example 10.6 for the relation v¼ f(m, g, h) using scales Ls¼ h,

Ts¼ h/v, and Ms¼m. Compare to prior results.
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10.22 Consider Example 10.7 for the pipe flow. Identify three possible

timescales.

10.23 Repeat Example 10.7 for the problem of flow in a pipe usingMs¼D2L.

10.24 In a classic paper, G. Stokes showed in 1851 that the drag force FD on a

sphere that settles slowly (at velocity v) in a static fluid of viscosity μ is

FD ¼ 6πaμv

where a is the radius of the sphere. Use Buckingham Pi to find

appropriate nondimensional groups by which to conduct such an exper-

iment. This solution is valid if Re ¼ ρvd=μ < 1, where d¼ 2a.

10.25 Using Stokes’ classic result for the drag force on a freely falling

spherical solid in a viscous fluid (previous exercise) and Archimedes’

classic result for the buoyant force (Observation 8.2 of Chap. 8), show

that one can use such an experiment to measure the viscosity of the

fluid, namely

μ ¼
2 ρs � ρ f

� �
ga2

9v
;

where ρs and ρf are the mass densities of the solid sphere and fluid,

respectively, g is the acceleration due to gravity (9.81 m/s2), and a and

v are the radius and the mean velocity of descent of the sphere,

respectively. Hint: Recall that Stokes’ result was obtained by ignoring

the convective acceleration.

10.26 If μ¼ 1.8 cP, ρs¼ 1.08 g/cm3, ρf¼ 1.01 g/cm3, and the volume of the

sphere is 90 μm3, use the result from Exercise 10.25 to compute v. This

“Stokes’ flow” solution is valid of course, only if Re< 1. Is it?

10.27 Fluid having a viscosity μ and a mass density ρ is placed between two

rigid concentric cylinders of radius a and b, respectively. Use

Buckingham Pi to find a nondimensional relation for the torque T, in

terms of the above parameters, that is necessary to rotate both cylinders

at a constant angular velocity ω.

10.28 The pressure variation in a partially filled container of liquid rotating

with angular velocity ω is a function of the distance r from the axis of

rotation, the local depth z from the free surface, the mass density ρ, and

g. Using Buckingham Pi, find a nondimensional relation for the pres-

sure p. [From Alexandrou (2001, p. 235).]

10.29 Use Buckingham Pi to find a relation between the meniscus height h in

a tube of diameter d for a fluid having specific weight γ¼ ρg and

surface tension σ; that is, study h¼ f(d, γ, σ). (Fig. 10.25)
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10.30 We used Buckingham Pi to transform general functional relationships

from dimensional to nondimensional form. This is particularly useful in

the design of experiments. The same ideas of identifying fundamental

units, determining the units of all variables, and assigning appropriate

scales can similarly be used to nondimensionalize governing equations

of motion. Use this method to nondimensionalize the axial Navier–

Stokes equation for a steady, laminar, fully developed, incompressible

flow in a rigid tube [cf. Eq. (9.37) of Chap. 9]. Hint: The final result

should include an appropriate Reynolds’ number Re.

10.31 Repeat the nondimensionalization in Observation 10.2 using a time-

scale of Ts¼m/c.

10.32 Repeat the nondimensionalization in Observation 10.2 using a time-

scale of Ts¼ c/k. Although any valid scale is acceptable, experience

proves sometimes that particular scales are more natural or useful. The

timescale c/k is indeed the one used most often in the dynamics

(vibration) of a mass-spring-dashpot system. In practice, therefore,

one finds it necessary to compare the use of multiple scales to identify

those that are most useful.

10.33 A drug is to be supplied via an intravenous (IV) line. If the solution has

a density of 920 kg/m3 and a viscosity of 0.9� 10�3 Ns/m2 and if the

10-mm-diameter syringe is advanced at 0.5 cm/s, find the force needed

to move the plunger. Assume a friction factor of 0.0001. (Fig. 10.26)

FIGURE 10.25

FIGURE 10.26
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10.34 An IV drip is set up to deliver medicine at a specified rate. Assume that

ρ¼ 940 kg/m3 and μ¼ 0.9� 10�3 Ns/m2. Find the number of drops per

minute if the drops are spherical with a diameter 12 % greater than the

inlet tube. Assume a friction factor of 0.0001. (Fig. 10.27)

10.35 Show that for a steady, incompressible, fully developed laminar flow of

a Newtonian fluid that the friction factor is

f ¼ 64

Re
:

Hint: Recall from the Navier–Stokes solution that [Eq. (9.49) of

Chap. 9]

Q ¼ � πa4

8μ

d p

dz

� �
! Q ¼ πD2ΔP

16 8ð ÞμL ;

where Q ¼ vA and from the pipe-flow equation,

ΔP

ρ
¼ fð Þ L

D

� �
v2

2
�

10.36 Design a simple experiment to determine the value of the minor loss

coefficient for a valve. Derive the governing equation to find the value

of K.

FIGURE 10.27
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10.37 Figure 10.28 is a schema of a standard test to study vascular response to

changes in flow and pressure. If the pressure transducers measure

upstream and downstream values, use the pipe-flow equation to show

how the pressure in the vessel can be determined/estimated.

10.38 In Sect. 10.5 we learned a 5-step recipe (SCALE) for the Buckingham

Pi theorem, which helps to reduce the number of experiments that are

needed to determine functional relationships directly from data. Fun-

damental to this approach is the assignment of appropriate “scales” for

the fundamental units, typically length, time, and mass. One of the key

things to remember in this regard is that any combination of length,

time, and mass scales is acceptable, though certain combinations may

prove more judicious. Toward this end, recall problem 10.24 and use

Buckingham Pi with the two following combinations of scales to find

the drag force f (ρ,v,d,μ) on a sphere in a laminar flow: (1) d, d/v, μd2/v

versus (2) d, d/v, ρd3. Once found, find the functional relationship

needed in each case to obtain the known analytical result f¼ 6πaμv.

FIGURE 10.28
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Part IV
Closure



11
Coupled Solid–Fluid Problems

We considered a variety of problems in Chaps. 2–10 that fall within the domain

of either biosolid mechanics or biofluid mechanics, each of which is very

important in its own right. Whether in the body (in vivo) or in the laboratory

(in vitro), however, many “real-life” problems simultaneously involve solid–

fluid interactions. For example, although we may seek to determine the stresses

in the limbs of a pilot who has ejected from an aircraft, for purposes of

identifying safety measures, it is the wind that induces the applied loads

of importance; most intracranial aneurysms may be considered as thin-walled,

nearly spherical membranes that exhibit a solidlike character, but the applied

loads are due to the internal flowing blood and the surrounding cerebrospinal

fluid; mechanotransduction in bone, which exhibits a strong solidlike behavior,

appears to be influenced directly by loads due to weight bearing and those due to

the flow of blood and bone fluid within the many different canals within the

bone; and an atomic force microscopic examination of the mechanics of a cell

may primarily reveal the properties of the cortical membrane and underlying

solidlike cytoskeleton, but flow of the cytosol likely plays a key role as well.

Hence, from these simple examples, and many more like them, we see that

solid–fluid interactions are important at the organism, organ, tissue, cellular, and

molecular levels. Indeed, although it tends to be convenient to introduce students

to a field by focusing only on one subject, most research and clinical problems

require interdisciplinary and multidisciplinary approaches (i.e., analysis and

design of coupled problems). Such problems are typically complex and require

advanced approaches, but here we consider a few introductory examples.
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11.1 Vein Mechanobiology

11.1.1 Biological Motivation

The saphenous vein used in a coronary artery bypass surgical procedure

(cf. Fig. 3.8 of Chap. 3) will grow and remodel in response to its altered environ-

ment, which includes marked changes in pressure and flow. To understand the

associated mechanobiology, we must compute the blood-pressure-induced

stresses in the wall (i.e., the solid mechanics problem; Sect. 3.4 of Chap. 3) as

well as the flow-induced wall shear stresses (i.e., the fluid mechanics problem;

Sect. 9.2 of Chap. 9). Here, let us consider a simple problem for whichwe examine

possible morphological changes due to the altered pressure and flow experienced

by the vein graft. Consistent with prior analyses, consider as a first approximation

the mean circumferential wall stress σθθ due to a quasistatic pressurization and the

mean wall shear stress τw due to a steady flow.

11.1.2 Theoretical Framework

Let the normal venous pressure and flow be denoted by P (~5 mmHg) and

Q (~20 mL/s, where the mean velocity v � 0:01� 0:04m=s). Moreover, let the

arterial values be given by Pa¼ εPP and Qa¼ εQQ, where scaling factors

εP¼ 120/5� 24 and εQ¼ 40/20� 2. Hence, in the normal physiologic state,

we have [from Eqs. (3.41) and (9.55)]

σθθ ¼
Pa

b� a
, τw ¼

4μQ

πa3
; ð11:1Þ

where a is the homeostatic pressurized inner radius and b� a is the associated

thickness. In the altered (bypass) state, we have

σθθ ¼
εPPð Þri
h

, τw ¼
4μ εQQ
� �

πr3i
; ð11:2Þ

where ri and h are the new (altered) inner radius and wall thickness, respec-

tively. If the vein grows and remodels over time such that it restores the wall

shear and circumferential stresses to the basal levels, then

4μ εQQ
� �

πr3i
¼ 4μQ

πa3
,

εPPð Þri
h

¼ Pa

b� a
; ð11:3Þ

or

ri ¼ εQ
� �1=3

a, h ¼ εP εQ
� �1=3

b� að Þ: ð11:4Þ
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Hence, by comparing morphologically measured values of a versus ri and b� a

versus h in terms of the alterations εp and εQ, we can test the simple hypotheses

that the vascular wall grows and remodels in such a way that it restores both σθθ
and τw to the basal values. Such a hypothesis is teleologically attractive because

we expect endothelial cells to function best at a particular value of τw and the

medial smooth muscle cells to likewise function best at a particular value of σθθ.

We also expect, of course, that such growth and remodeling will occur over

days to weeks or months. For a more complete understanding, therefore, we

need to augment Eqs. (11.1) and (11.2), which come from equilibrium and

boundary conditions, with constitutive equations that account for the growth

and remodeling. As noted in Humphrey (2002), it appears that growth and

remodeling is a result of imbalances in the production and removal of constit-

uents at altered configurations. In the case of the vein graft, its configuration

will be altered initially by the increased pressure (due to elastic distension and

possibly damage-induced weakening) and the increased flow (due to endothelial

production of vasodilators to enlarge the lumen and thereby reduce the wall

shear stress). Accounting for the altered production and removal of cells and

matrix requires kinetic relations in addition to constitutive relations for stress.

As noted in Chap. 12, formulation of appropriate kinetic relations for

mechanosensitive changes in tissue constituents is one of the most important

needs today in biomechanics. In this simple example, therefore, we see how a

biomechanical analysis can be used to investigate the mechanobiology, indeed

to identify what needs to be measured and why, and that solid and fluid

mechanics must be considered simultaneously in certain problems. It should

also be noted, however, that whereas Eqs. (11.4) appear to describe well the

long-term adaptation of arteries to modest increases or decreases in hemody-

namics, vein grafts often do not adapt optimally to arterial conditions. There is a

further need, therefore, to understand the limits on biological growth and

remodeling that may be imposed by the original genetic programming that led

to near optimal behavior of arteries under arterial conditions and veins under

venous conditions.

11.2 Diffusion Through a Membrane

11.2.1 Biological Motivation

There are many different types of membranes in the body: plasma membranes

which surround/define a cell, the pericardium which surrounds the heart, the

pleura which surrounds the lungs, the meninges (i.e., dura mater, pia mater, and

arachnoid) which surround the brain, the sheaths that cover tendons, and so

on. These membranes serve a variety of biological and mechanical functions.

For example, the pericardium appears to restrict gross motions of the heart,
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which is otherwise suspended freely within the thorax via its connections to

major blood vessels at its base. It is also thought that the pericardium, which

exhibits a compliant behavior at low strains but a stiff behavior at high strains

(cf. Fig. 2.23 of Chap. 2) tends to limit any acute overdistension of the heart

(we emphasize acute, for growth and remodeling of the pericardium allows

chronic dilatations of the heart, as in congestive heart failure). Finally, the

pericardium encloses the pericardial space, which is filled with a small amount

of lubricating fluid that reduces frictional forces between the beating heart and

the protective pericardial sac, and it allows for selective transmural diffusion of

molecules, particularly water and water-bound substances. There is often a

need, therefore, to understand the permeability of biological membranes and

how the permeability changes with disease, injury, repair, clinical treatment,

functional adaptation, and even normal development. Toward this end, let us

design a simple experiment to quantify the permeability of a nonlinear biolog-

ical membrane.

11.2.2 Theoretical Basis

To induce a fluid to flow across a solid membrane, there must be a “driving

force” such as a mechanical or a chemical gradient. For simplicity, let us

consider the former. Experience reveals that the net flow of a fluid across a

thin permeable membrane depends not only on the pressure gradient across the

membrane but also on the properties of the fluid, the properties of themembrane,

and the thickness of the membrane. In particular, biological membranes typi-

cally consist of amonolayer of cells that is attached to a basementmembrane that

covers an underlying 2-D plexus of structural proteins, which, in turn, are

embedded in a proteoglycan-dominated matrix. Hence, the effective porosity

of the network of fibers plays a key role in defining the overall permeability.

This network may change with finite deformations, of course; hence, we also

expect the permeability to vary with strain.

Recalling from Chap. 6 that the deformation gradient [F] is the fundamental

measure of motion and thus deformation, we ultimately desire to know how

changes in [F] affect the permeability. Because [F] may vary from point to point

in general (i.e., it can describe nonhomogeneous deformations) and it is defined

by nine independent components, it would be prudent to investigate a possible

deformation-dependent permeability first in terms of a simple motion. Consider,

therefore, a homogenous deformation of a circular membrane that is defined by

the mapping of a generic material particle originally at (R, Θ, Z) to (r, θ, z) in a

current configuration whereby

r ¼ βR, θ ¼ Θ, z ¼ λZ; ð11:5Þ
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and β and λ are stretch ratios (i.e., just numbers for each equilibrium state). This

mapping reveals that a material particle will not change its circumferential

location; it will merely move along a radial line and move up and down as

the stretched or unstretched membrane thins and thickens. From Eq. (6.81) of

Chap. 6, therefore, the components of [F] are

F½ 	 ¼
β 0 0

0 β 0

0 0 λ

2
4

3
5; ð11:6Þ

which we see are independent of position (R,Θ, Z) as desired; that is, associated

measurements of permeability will reveal the influence of a single stretch, not

the average effect of different stretches at different points. Note, too, that the

deformation is equibiaxial in-plane; that is, the stretch β is the same in the radial

and circumferential directions in each equilibrium state. Question: How is this

the case if particles move in the radial direction, but not in the circumferential

direction? The answer, of course, is that as particles move radially outward, the

circumference 2πr increases and β¼ 2πr/2πR¼ r/R (a ratio of lengths) in this

homogeneous deformation.

If we further assume that the membrane is mechanically incompressible, then

det[F]¼ 1 and, therefore, β2λ¼ 1 or β ¼ 1=
ffiffiffi
λ
p

. Hence, by simply measuring

either the out-of-plane stretch λ or the in-plane equibiaxial stretch β at any point,

we can completely quantify the deformation at every point. This clearly sim-

plifies the experimental challenge of quantifying a deformation-dependent

permeability and again reveals that theory should guide experiment.

Let us now seek a functional relationship among the net volumetric flow rate

Q and the pressure drop Δp, the properties of the fluid (say ρ and μ if

Newtonian), the geometry of the membrane (say, initial radius A and thickness

H), and the deformation (say, λ); that is, we seek to identify experimentally the

specific functional form (recall the acrostic DEICE from Chap. 1) of the relation

Q ¼ f Δp, ρ, μ, A, H, λð Þ: ð11:7Þ

With six independent variables, such a determination could be very difficult and

require many experiments if one tries to hold five of the six variables constant

while varying one alone; repeating this process to isolate the effect of each

variable could thus result in many, many experiments, each of which would

have to be repeated to identify further effects of experimental noise or

specimen-to-specimen variation. Thus, let us appeal to the Buckingham Pi

(Sect. 10.5 of Chap. 10) approach to address this.
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Recalling the five-step recipe for this approach (SCALE), note (Step 2) that

fundamental units/dimensions for this isothermal problem are length L, time T,

and mass M. Moreover, the units of each variable are as follows:

Q½ 	 ¼ Volume

Time
¼ L3T�1M0,

Δp½ 	 ¼ Force

Area
¼ L�1T�2M1,

ρ½ 	 ¼ Mass

Volume
¼ L�3T0M1,

μ½ 	 ¼ Force=Area

1=Time
¼ L�1T�1M1,

A½ 	 ¼ Length ¼ L1T0M0,

H½ 	 ¼ Length ¼ L1T0M0,

λ½ 	 ¼ Non-dimensional ¼ L0T0M0:

Next (Step 3), we must assign reasonable scales. As noted in Chap. 10, this is

the most important step, and experience often serves one well. Nevertheless, we

should find comfort in knowing that such selections are not unique and,

consequently, one often tries multiple combinations of scales and evaluates

the utility of each. Note, therefore, that possible length scales include

A, a, H, h; ð11:8Þ

where a and h are the deformed radius and thickness, respectively; that is,

a¼ βA and h¼ λH. Possible mass scales include

ρa2h, ρA2H, ρa3, ρh3, . . . ð11:9Þ

where the mass density (mass/volume) simply needs to be multiplied by a

volume term to yield a mass. As usual, the timescale is often more difficult to

select. Possible scales include (verify that each is a unit of time) the following:

ffiffiffiffiffi
h

g
,

s ffiffiffiffiffiffiffiffiffiffiffi
ρA2

Δp
,

s ffiffiffiffiffiffiffiffiffiffi
ρa2

Δp
,

s
a2h

Q
,

μ

Δp
; ð11:10Þ

that is, we can exploit any quantity having a unit of time, including velocity,

acceleration, volumetric flow rate, force (which is a mass times acceleration,

which has a unit of time), pressure, and material properties such as viscosity or

even a shear modulus.
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Rather than comparing this analysis for multiple sets of scales, as we would

do in practice, here we illustrate the procedure using scales that are revealed to

be useful in hindsight. Hence, let us select the following scales:

Ls ¼ A, Ts ¼
μ

Δ p
, Ms ¼ ρA2H: ð11:11Þ

One reason for this selection is that A and H are defined in the undeformed

configuration and thus they do not change with the stretch λ or the flow across

the membrane. The next step (Step 4) in the Buckingham Pi procedure is to

determine the Pi variables. Thus, note that

π1 ¼
Q

Að Þ3 μ=Δpð Þ�1 ρA2H
� �0 ¼

Qμ

ΔpA3
; ð11:12Þ

π2 ¼
Δp

Að Þ�1 μ=Δpð Þ�2 ρA2H
� �1 ¼

μ2

ΔpρAH
; ð11:13Þ

π3 ¼
ρ

Að Þ�3 μ=Δpð Þ0 ρA2H
� �1 ¼

A

H
; ð11:14Þ

π4 ¼
μ

Að Þ�1 μ=Δpð Þ�1 ρA2H
� �1 ¼

μ2

ΔpρAH
; ð11:15Þ

π5 ¼
A

Að Þ1 μ=Δ pð Þ0 ρA2H
� �0 ¼ 1; ð11:16Þ

π6 ¼
H

Að Þ1 μ=Δpð Þ0 ρA2H
� �0 ¼

H

A
¼ 1

A=H
; ð11:17Þ

π7 ¼ λ: ð11:18Þ

Noting that our six original independent variables have been reduced to three

independent variables, the final step (Step 5) in the Buckingham Pi procedure

yields

Q ¼ f Δp, ρ, μ, A, H, λð Þ ! π1 ¼ ef π2, π3, π7ð Þ; ð11:19Þ
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or

Qμ

ΔpA3
¼ ef μ2

ΔpρAH
;
A

H
; λ

� �
: ð11:20Þ

Experimental determination of this relation in terms of three dependent

variables certainly has greater promise than that for the original relation,

which has six dependent variables. For example, if we are interested primarily

in the flow of a particular fluid (e.g., interstitial fluid or pericardial fluid) as a

function of the pressure gradient and stretch, then we would simply need to vary

π2 and π7 for a convenient value of π3.

11.2.3 Illustration

Studies of diffusion through various materials, including biomembranes, are

often based on the so-called Darcy’s law, which was put forth by H. P. Darcy in

1856 based on the flow of water through soil. Darcy, a French civil engineer,

was given the task of providing the city of Dijon with clean water. To do this, he

created an elaborate underground aqueduct system; in 1856, he published a

paper describing his design process, which included an appendix describing

how sand can filter water. Regardless, Darcy’s law is often stated in the

following form:

Q

πa2
¼ k

μ

Δp

h

� �
; ð11:21Þ

where πa2 and h are the current surface area and the thickness, respectively, of

the material through which the fluid flows and k is a permeability coefficient

(having units of length squared). In the special case of no strain of the solid (i.e.,

a�A and h�H), therefore, Darcy’s law can be rewritten as

Qμ

ΔpA3
¼ K

A

H

� �
ð11:22Þ

where

K ¼ kπ

A2
:

Comparison of this relation with Eq. (11.20) reveals that Darcy’s law is a

special case of our general relation whereby ef ¼ Kð Þ A=Hð Þ and K is a

nondimensional permeability; that is, Darcy’s law requires that ef depend

linearly on π3 and be independent of π2, with π7� 1 for no strain. Use of the
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more general result from Buckingham Pi is preferred, however, because it does

not presuppose a specific functional form.

For a senior project at Texas A&M University, Janna Vaughn (see Vaughn

et al. 2002) used a Buckingham-Pi-based approach to guide the design of a

device to study the strain-dependent permeability of a representative

biomembrane—excised bovine epicardium (which was obtained from a abat-

toir). Figure 11.1 is an exploded view of the combined stretching-diffusion

device. Briefly, a membrane is first mounted in a stress-free configuration

between two circular fixtures (Fig. 11.2) and then placed in the device between

the upper and lower fluid-filled chambers. A nearly uniform equibiaxial stretch

β of the specimen is imposed by pushing the specimen fixture down such that

FIGURE 11.1 Exploded view of the combined stretching-diffusion device designed, in

part, by Janna Vaughn as part of a senior project at Texas A&M University. From

Vaughn et al. (2002), with permission from Elsevier Science.
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the specimen is pulled over the outer surface of the bottom chamber (this is akin

to pulling a rubber membrane over a tube to create a drum); this is accomplished

by turning a threaded aluminum lid above the upper chamber that pushes the

specimen holder down. Also above the upper chamber is an upper platform that

applies an overall compressive load to the upper and lower chambers; O-rings

ensure a good seal. Fluid flows into the upper chamber, through the membrane,

and out of the lower chamber via appropriate fittings. Finally, note that optical

windows at the bottom and top allow back-lighting and visualization of markers

that are affixed to the surface of the specimen. Tracking the motions of these

markers due to stretching of the membrane allows the displacements and their

gradients to be computed (Chap. 2).

Figures 11.3 and 11.4 show data from Janna’s experiments wherein π1 is

plotted versus π2 and π7 (¼λ), for different values of π7 and π2, respectively.

Over the range of parameters studied, π1 varied with π7 much more than it did

with π2, which is not explained by Darcy’s law. Indeed, plotting the data as the

nondimensional permeability K versus stretch λ (Fig. 11.5) reveals a strong

strain dependency. That K increased with increasing stretch may suggest that

FIGURE 11.2 Expanded view of the specimen fixture from Fig. 11.1. Note that the

specimen is placed within the fixture in a stress-free configuration (Panel a). This is

facilitated by having a waxed platform inside the restraining rings on which a fluid film

can support the specimen prior to mounting. Turning the outer lid pushes down on the

membrane holder, which, in turn, imposes a uniform radial stretch of the specimen

(Panel b). With permission from Elsevier Science.
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FIGURE 11.3 Data for two of the nondimensional parameters from Eq. (11.20): π1 versus

π2 for various values of π7 (denoted by open diamonds, closed squares, closed triangles,
open squares, and asterisks for increasing levels of stretch from 1.0 to 1.6, clearly finite

deformations). With permission from Elsevier Science.

FIGURE 11.4 Similar to Fig. 11.3 except for π1 versus π7 for various values of π2 over the

range in Fig. 11.3. Note that π7 was denoted as π4 in the original paper. With permission

from Elsevier Science.
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stretching brings the collagenous fibers closer together, compacting the tissue

and thus increasing the resistance to flow. More experiments and analyses are

needed to understand this complex solid–fluid coupling, however.

In closing, note that the Δp in this formulation represents the pressure

difference across the membrane (Fig. 11.1). Although it is difficult to measure

directly the pressure at these surfaces during flow, the pipe-flow equation

[Eq. (10.94) of Chap. 10] can be used to compute p1 and p2 based on pressures

measured elsewhere in the system (e.g., atmospheric pressure in an open

upstream reservoir), differences in height, velocities, and viscous and geometric

losses. Indeed, one would use the pipe-flow equation twice: once to get the

difference between the pressure at its source and that value at the top surface of

the membrane, and once to get the difference between the pressure at the bottom

surface of the membrane and that at the ultimate exit point. Hence, as implied in

Chap. 10, the pipe-flow equation can be very useful in the design and analysis of

important biomechanical experiments. For very slow flows, of course, the

system is nearly quasistatic and pressure differences would be due primarily

to the gravitational heads ρgh. In general, however, the full pipe-flow equation

should be checked to determine the specific values of velocity for which the

quasistatic assumption is reasonable.

Example 11.1 In Sect. 11.1, we considered a simple case of fluid-solid

coupling in the vasculature—effects of steady blood flow Q and pressure P on

wall shear stress and intramural stress in veins and associated
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FIGURE 11.5 Similar to Figs. 11.3 and 11.4 except for the nondimensional permeability

K versus the equibiaxial stretch λ. With permission from Elsevier Science.
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mechanobiological implications. Perhaps the simplest consideration of effects

of wall properties on blood flow in arteries is embodied in the Moens-Korteweg

equation (derived by T. Young in 1808); it relates the speed of propagation of a

pressure wave in an inviscid fluid that is contained within a long, uniform

thickness and diameter circular tube that exhibits a linearly elastic response.

Albeit now known to be theoretically inappropriate in vascular mechanics, this

simple equation helps one to build some intuition nonetheless. Following Ethier

and Simmons (2007), use dimensional analysis to find this famous result.

Solution: Assume that the speed c of an arterial pressure wave depends on the

gross mechanical properties of both the artery, via its distensibility D, and the

blood, via its mass density ρ. That is, let c¼ f(D, ρ) where D¼ (dsys� ddias)/

(Psys�Pdias)ddias, with d the diameter and P the pressure at either sys(tole) or

dias(tole). Following methods introduced in Sect. 10.5, note that the dimensions

of our primary variables are:

c½ 	 ¼ L1T�1 M0, D½ 	 ¼ L1T2M�1, ρ½ 	 ¼ L�3T0M1:

Now, if we assign length, time, and mass scales as

Ls ¼ d, Ts ¼ d=c, Ms ¼ ρd3;

then our Pi groups become,

πc ¼ c=c ¼ 1, πD ¼ D= ρc2
� ��1 ¼ ρc2D, πρ ¼ ρ=ρ ¼ 1:

Hence, our final result is 1¼ f (ρc2D,1), which implies that ρc2D¼ constant.

Simple experiments using a long, constant diameter and thickness, circular, stiff

tube containing a low viscosity fluid suggest that this constant is ~½. The final

result, therefore, is

ρc2D ¼ ½ or c2 ¼ 1=2ρD:

Early investigators sought, however, to rewrite this result in terms of the

material stiffness (e.g., Young’s modulus E of linearized elasticity) instead of

the gross structural stiffness (distensibility D). Recalling from Eq. (3.41) that

the circumferential stress in a thin-walled pressurized cylindrical tube of

diameter d and thickness h is σ¼Pd/2h and that for a simple 1-D linearly

elastic behavior σ¼Eε [cf. Eq. (2.69)], it was then assumed that an increment in

stress Δσ¼ΔPd/2h (from diastole to systole, relative to diastole) was related to

an increment in strain Δε¼ (dsys� ddias)/ddias (relative to diastole), whereby

Δε¼Δσ/E¼ΔPd/2Eh as well as (from above) Δε¼DΔP. Hence, using our

non-dimensional result, we have DΔP¼ΔP/2ρc2 and using our equilibrium
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result we have ΔPd/2Eh, which when combined yields c2¼Eh/ρd¼Eh/2ρa,

where a is the radius of the tube. Hence, the Moens-Korteweg prediction of the

speed of the pressure wave can be written

c ¼
ffiffiffiffiffiffiffiffi
Eh

2ρa

s

In other words, the speed of propagation of a pressure wave in an inviscid fluid

contained within a linearly elastic thin-walled tube is expected to increase with

an increase in either the material stiffness (e.g., E) or the structural stiffness

(Eh) of the tube, but to decrease with an increase in either the fluid density (ρ) or

the luminal caliber (a). Indeed, in the limit as the stiffness becomes infinite

(i.e. the tube becomes rigid), the wave speed also becomes infinite. An infinite

wave speed implies that changes in pressure are transmitted instantly to every

point within the tube, which essentially suggests a “bulk motion” whereby the

entire fluid moves in unison. See Zamir (2000) for a more detailed discussion of

the effects of wall elasticity on fluid-solid interactions in unsteady flows, which

in the vasculature includes the effects of waves reflecting from sites of geomet-

ric (e.g., bifurcations) or material (e.g., synthetic grafts) discontinuities. For

example, it is the elasticity of the wall that sustains wave motions in tubes,

hence wave reflections do not exist in rigid tubes. Moreover, the viscosity of the

fluid (which is neglected in the Moens-Korteweg derivation) tends to attenuate

both the speed and amplitude of a traveling wave and thus must be included in

vascular mechanics.

Observation 11.1. A commonly studied ordinary differential equation in

nonlinear dynamics is the so-called Duffing equation. It can be written

η2€xþ cxþ αx3 þ 2ηζ _x ¼ F tð Þ;

where η is the ratio of the forcing and fundamental frequencies, c is a stiffness

parameter, α is a nonlinear stiffness parameter, and ζ is the ratio of the actual to

the critical damping in the system; x, of course, is the displacement and F(t) is

the time-varying forcing function. An overdot implies differentiation with

respect to time and a double overdot implies twice differentiation with time.

To solve this second-order equation numerically (e.g., via Runge–Kutta), it is

useful to rewrite it as a system of first-order equations. Toward this end,

consider a change of variables whereby

y0 � x and y1 � _x
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and, consequently,

_y0 � _x and _y1 � €x:

We see, therefore, that our system of first-order equations is

_y0 ¼ _x,

_y1 ¼ €x � F tð Þ � cx� αx3 � 2ηζ _x

η2
;

or in terms of (y0, y1) alone,

_y0 ¼ y1,

_y1 ¼
F tð Þ � cy0 � αy30 � 2ηζy1

η2
:

Hence, we have differential equations of the form

_y0 ¼ G y0, y1ð Þ and _y1 ¼ H y0, y1ð Þ

where G and H are known functions. This system of equations is nonlinear in y0
if α 6¼ 0.

Whereas we consider a few numerical solutions below for the full nonlinear

system, it is useful to note that qualitative information on the stability of the

nonlinear system can sometimes be gained by linearizing the system about various

equilibria; that is, as in Chap. 5 on the stability of beam columns, we can ask

whether the structure would return to its prior equilibrium position if perturbed

slightly. It is useful to note, therefore, the following (cf. Figs. 5.21 and 5.22):

If the linearized system is asymptotically stable, then the associated nonlinear

system is stable about the chosen equilibrium (or fixed) point.

If the linearized system is neutrally stable, then the linearized solution does not

provide any useful information about the nonlinear system.

If the linearized system is unstable about a fixed point, then the associated

nonlinear system is likewise unstable about that fixed point although it could

stabilize about another equilibrium position.

For the Duffing equation, let an equilibrium position (i.e., fixed point) be

denoted by a position λ and a zero velocity; that is, x, _xð Þ ¼ λ, 0ð Þ ¼ y0, y1ð Þ at
a constant force F(t)¼Fλ. Hence, linearizing the system of first-order equations

about the fixed point can be accomplished using a Taylor series, namely
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_y0 ¼ G λ; 0ð Þ þ ∂G
∂y0

���
λ;0ð Þ

y0 � λð Þ þ ∂G
∂y1

���
λ;0ð Þ

y1 � 0ð Þ þ H:O:T:,

_y1 ¼ H λ; 0ð Þ þ ∂H
∂y0

���
λ;0ð Þ

y0 � λð Þ þ ∂H
∂y1

���
λ;0ð Þ

y1 � 0ð Þ þ H:O:T:;

where H.O.T. stands for higher-order terms, which are neglected in the process

of linearization. For our specific system,

∂G

∂y0
¼ 0,

∂G

∂y1
¼ 1,

∂H

∂y0
¼ �c� 3αy20

η2
,

∂H

∂y1
¼ �2ζ

η
;

thus, with G(λ, 0)¼ 0 and H(λ, 0)¼ 0, the latter because Fλ¼ cλ + αλ3 at

equilibrium, we have

_y0 ¼ 0 y0 � λð Þ þ 1 y1 � 0ð Þ,

_y1 ¼
�c� 3αλ2

η2
y0 � λð Þ � 2ζ

η
y1 � 0ð Þ;

which can be written in matrix form as

_y0

_y1

( )
¼

0 1

�c� 3αλ2

η2
�2ζ
η

2
64

3
75

y0 � λ

y1

( )
:

It can be shown (Strang 1986) that asymptotic stability in the small requires that

tr[ ]< 0 and det[ ]> 0; alternatively, neutral stability is given by tr[ ]¼ 0 and

det[ ]> 0 or by tr[ ]< 0 and det[ ]¼ 0; finally, an instability about a fixed point

is thus given by tr[ ]> 0 or det[ ]< 0. Here, of course, tr[ ] and det[ ] denote the

trace and determinant, respectively, of the 2� 2 matrix [ ] as noted in Appendix

6 of Chap. 6. Clearly, for our system, the trace (i.e., sum of the diagonals) and

determinant are

tr½ 	 ¼ �2ζ
η

, det½ 	 ¼ cþ 3αλ2

η2
8λ;

respectively. We see, for example, that stability requires that ζ be nonzero and

that ζ and η be of the same sign. If, on the other hand, ζ¼ 0, the system will be

only neutrally stable and the linearization will provide no useful information on

the nonlinear system. Let us now consider a few numerical examples of the full

nonlinear system, which can be interpreted with this backdrop.
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Example 11.2 Examine the dynamic behavior of a Duffing system with the

following values of the numerical parameters: η¼ 0.0625, c¼ 1.0, α¼ 0, and

ζ¼ 0.1, with F(t)¼ 1.0 sin t. Note that this is a linear system because α¼ 0.

Solution: The behavior is best studied graphically in terms of the computed

displacement and velocity histories x(t) and ẋ(t) as well as the phase-plane plot,

ẋ(t) versus x(t). This is the so-called geometric method of Poincaré. We use a

standard Runge–Kutta numerical method to obtain the solution, which requires

that we specify the initial conditions. Here, let the initial conditions be

perturbed slightly from equilibrium: x(0)¼ 0 and _x 0ð Þ ¼ 0:01. Figure 11.6

reveals the periodic response (i.e., position) given the sinusoidal forcing func-

tion. Note, too, that the system recovers quickly from the initial disturbance as

expected based on the linearized analysis.

FIGURE 11.6 Results for the Duffing equation (α¼ 0). The upper left panel shows
position versus time and the lower left panel shows velocity versus time, both in

response to the forcing function shown in the bottom right panel. Finally, the panel in
the upper right shows the so-called phase-plane diagram, velocity versus position. It is

seen that the response, starting at x, _xð Þ ¼ 0, 0:01ð Þ quickly finds the so-called periodic

solution, revealed by the circular path in the phase plane.
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Example 11.3 Repeat the previous example except for a nonlinear case

whereby α¼ 0.5. Given that such solutions depend strongly on the initial

conditions, also let x(0)¼ 0.0 and _x 0ð Þ ¼ 1:0.

Solution: Figure 11.7 shows the results for α¼ 0.5, x(0)¼ 0, and _x 0ð Þ ¼ 0:01.
Note the differences with respect to Figure 11.6, but the qualitative similarity.

Figure 11.8 shows the dramatic effect of the initial condition, now with x(0)¼
1.0 and _x 0ð Þ ¼ 1:0. In both cases, the response is stable, returning to the

periodic solution again consistent with the linearization.

FIGURE 11.7 Similar to Fig. 11.6 except that α¼ 0.5, which induces a nonlinearity.
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11.3 Dynamics of a Saccular Aneurysm

11.3.1 Biological Motivation

Recall from Sect. 3.5.1 of Chap. 3 that intracranial saccular aneurysms are

thin-walled, balloonlike dilatations of the arterial wall that occur in or near

bifurcations in the circle ofWillis (Fig. 1.1 of Chap. 1). Based on quasistatic stress

analyses, it appears that the intramural wall stress is often on the order of 1MPa or

more, with the rupture strength on the order of 10 MPa. Slight changes in wall

thickness or protease degradation of structural proteins within the wall can thereby

render these lesions susceptible to rupture. There is a need, therefore, to under-

stand better the solid mechanics of the wall of an aneurysm.

It has been suggested that aneurysms may enlarge or rupture due to a dynamic

instability called resonance. In particular, some investigators have suggested

that the pulsatility of the blood pressure may excite a lesion at its natural

frequency and thus induce violent vibrations (i.e., resonance). Whereas the

heart-induced blood pressure serves as the forcing function for the lesion, the

surrounding cerebrospinal fluid (CSF) may affect the dynamic response of

FIGURE 11.8 Similar to Fig. 11.6 except that α¼ 0.5 as well as perturbed initial

conditions given by x(0)¼ 1.0 and _x 0ð Þ ¼ 1:0.
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the lesion as well; that is, as the aneurysm displaces within the CSF due to the

distending blood pressure, by Newton’s third law the CSF “pushes back.”

Toward a better understanding of the solid–fluid coupling related to aneurysm

dynamics, let us now consider an idealized case: the pressure-induced disten-

sion of a spherical lesion that is surrounded by an external CSF.

11.3.2 Mathematical Framework

It can be shown that the equation of motion (i.e., F¼ma) for a spherical

membrane can be written as (Humphrey 2002)

σrr bð Þ � σrr að Þ � 2Tκ ¼ ρsh
d2ur

dt2
; ð11:23Þ

where σrr(b) and σrr(a) are the stress boundary conditions on the outer and inner

surfaces of the membrane, respectively, T is the membrane tension

(T¼ hσθθ¼ hσϕϕ, where h is the deformed thickness), κ is the curvature

(κ¼ 1/a, where a is the deformed radius of the sphere), ρs is the mass density

of the solid (i.e., the membrane), and ur(t)¼ a(t)�A is the radial displacement

of any point on the aneurysm (with A the undeformed radius). Note that in the

absence of dynamic effects, with σrr(b)¼�Po and σrr(a)¼�Pi the static

pressures, Eq. (11.23) recovers the equilibrium solution [Eq. (6.62) of

Chap. 6], namely

2Tκ ¼ σrr bð Þ � σrr að Þ ! 2hσθθ 1=að Þ ¼ Pi � Po; ð11:24Þ

or

σθθ ¼
Pi � Poð Þa

2h
$ T ¼ Pa

2
; ð11:25Þ

where P¼Pi�Po is the transmural pressure. Note, too, that the wall tension

T depends on the deformation of the membrane through its constitutive relation.

Here, we let the deformation be tracked via the stretch ratio λ(t)¼ a(t)/A, a ratio

of deformed to undeformed radii [actually, the ratio of deformed to undeformed

circumferences, 2πa(t)/2πA(t) for both the θ and ϕ directions]. If the membrane

conserves its volume during deformations, then

4πa2
� �

h ¼ 4πA2H ! h

H
¼ 1

a=Að Þ2
¼ 1

λ2
; ð11:26Þ

where H is the undeformed wall thickness. Show that this is consistent with det

[F]¼ 1, where [F]¼ diag[λ, λ, h/H].

We will assume that the boundary condition on stress at the inner wall is

given by the time-varying blood pressure, namely
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σrr a; tð Þ ¼ �Pi tð Þ, Pi tð Þ ¼ Pm þ
XN

n¼1
An cos nωtð Þ þ Bn sin nωtð Þ½ 	; ð11:27Þ

consistent with the formulation in Sect. 9.5 of Chap. 9 whereby we recall that

Pm is the mean blood pressure, An and Bn are Fourier coefficients, and ω is the

fundamental circular frequency of the beating heart. To find the outer

stress boundary condition, however, we will assume that the CSF is an incom-

pressible, Newtonian fluid. Hence, we need to determine the radial stress in the

fluid {recall the Navier–Poisson relation [Eq. (7.65)]},

σrr r; tð Þ ¼ � p r; tð Þ þ 2μDrr r; tð Þ; ð11:28Þ

which for spherical coordinates is [see Eq. (7.60)]

σrr r; tð Þ ¼ � p r; tð Þ þ 2μ
∂vr

∂r
r 2



a,1

�
; ð11:29Þ

where r is a coordinate in the fluid domain (Fig. 11.9; note, too, that because we

are modeling the aneurysm as a membrane, we assume that b¼ a+ h, where

h� 1, and thus a ~ b). By finding the fluid pressure and velocity fields at all

r and time t, we can evaluate the stress exerted by the CSF on the membrane and

then solve the solid mechanics problem as desired. To solve the CSF problem,

therefore, let us assume the following:

1. Incompressible flow (∇ · v¼ 0)

2. Newtonian fluid (μ¼ constant)

3. Radial unsteady flow only [vθ¼ 0, vϕ¼ 0, vr¼ vr(r,t)]

4. Axisymmetric flow (∂/∂θ¼ 0, ∂/∂ϕ¼ 0)

5. Negligible body forces (g¼ 0)

FIGURE 11.9 Simple geometry of a spherical saccular aneurysm surrounded by a fluid

that also occupies a spherical domain.
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Mass balance in spherical coordinates is [Eq. (8.16)]

1

r2
∂ r2vrð Þ
∂r

þ 1

r sin θ

∂ vθ sin θð Þ
∂θ

þ 1

r sin θ

∂vϕ

∂ϕ
¼ 0: ð11:30Þ

In spherical coordinates, the appropriate linear momentum balance equation (i.e.,

the Navier–Stokes equation, �∇p+ μ∇2v+ ρg¼ ρa) requires the following:

ê r : � ∂ p

∂r
þ μ ∇

2vr �
2vr

r2
� 2

r2
∂vθ

∂θ
� 2vθ cot θ

r2
� 2

r2 sin θ

∂vϕ

∂ϕ

� �
þ ρgr

¼ ρ
∂vr

∂t
þ vr

∂vr

∂r
þ vθ

r

∂vr

∂θ
þ vϕ

r sin θ

∂vr

∂ϕ
�
v2θ þ v2ϕ

r

 !
;

ð11:31Þ

ê θ : � 1

r

∂ p

∂θ
þ μ ∇

2vθ þ
2

r2
∂vr

∂θ
� vθ

r2 sin 2θ
� 2 cot θ

r2 sin θ

∂vϕ

∂ϕ

� �
þ ρgθ

¼ ρ
∂vθ

∂t
þ vr

∂vθ

∂r
þ vθ

r

∂vθ

∂θ
þ vϕ

r sin θ

∂vθ

∂ϕ
þ vrvθ

r
�
v2ϕ cot θ

r

 !
;

ð11:32Þ

ê ϕ : � 1

r sin θ

∂p

∂ϕ
þ μ ∇

2vϕ �
vϕ

r2 sin 2θ
þ 2

r2 sin 2θ

∂vr

∂ϕ
þ 2 cot θ

r2 sin θ

∂vθ

∂ϕ

� �
þ ρgϕ

¼ ρ
∂vϕ

∂t
þ vr

∂vϕ

∂r
þ vθ

r

∂vϕ

∂θ
þ vϕ

r sin θ

∂vϕ

∂ϕ
þ vϕvr

r
þ vϕvθ

r
cot θ

� �
;

ð11:33Þ

where

∇
2 ¼ 1

r2
∂

∂r
r2

∂

∂r

� �
þ 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ

� �
þ 1

r2 sin 2θ

∂
2

∂ϕ2
: ð11:34Þ

After canceling out terms using the above assumptions (do it), we are left with

1

r2
∂

∂r
r2vr
� �

¼ 0! vr r; tð Þ ¼ g tð Þ
r2

ð11:35Þ

from mass balance, where g(t) is an arbitrary function due to integration (Note:

we have an integration function rather than an integration constant because the

velocity can depend on both position and time) and

�1
ρ

∂p

∂r
þ μ

ρ
∇

2vr �
2vr

r2

� �
¼ ∂vr

∂t
þ vr

∂vr

∂r
; ð11:36Þ
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from linear momentum balance, with

∇
2 ¼ 1

r2
∂

∂r
r2

∂

∂r

� �
: ð11:37Þ

Expanding the linear momentum balance equation, we have

�1
ρ

∂ p

∂r
þ μ

ρ

∂
2
vr

∂r2
þ 2

r

∂vr

∂r
� 2vr

r2

 !
¼ ∂vr

∂t
þ vr

∂vr

∂r
: ð11:38Þ

If we now substitute the expression for vr from mass balance into the term in the

parentheses, we see that

6
g tð Þ
r4
þ 2

r
� 2g tð Þ

r3

� �
� 2

g tð Þ
r4
¼ 0; ð11:39Þ

which is to say, linear momentum balance reduces to

�1
ρ

∂ p

∂r
¼ ∂vr

∂t
þ vr

∂vr

∂r
: ð11:40Þ

It is interesting that this equation is independent of viscosity; indeed, if r is

taken to be a streamline direction s, this is the same equation as the s-direction

Euler equation (8.58) in the absence of gravity. This aneurysm–CSF problem is

thus a special case wherein the same pressure and velocity fields satisfy both the

Navier–Stokes and the Euler equations, as discussed in Observation 8.3 of

Chap. 8. It is very important to recognize, however, that the viscosity of the

fluid will still play a role through the stress boundary condition [Eq. (11.29)].

Before exploiting this, let us solve for the pressure field in the CSF.

Although the fluid mechanicist would want to know the pressure at all values

of r and t, the solid mechanicist only needs to know values at all r¼ a, which are

felt by the solid (aneurysm). Hence, let us seek p at r¼ a and thus integrate

from a to1:

�1
ρ

ð1

a

∂ p

∂r
dr ¼

ð1

a

∂

∂t

g tð Þ
r2

� �
dr þ

ð1

a

vr
∂vr

∂r
dr; ð11:41Þ

or

�1
ρ
p

����
1

a

¼ dg tð Þ
dt

�1
r

����
1

a

� �
þ 1

2
v2r

����
1

a

; ð11:42Þ
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which yields

� 1

ρ
p1 � pað Þ ¼ dg

dt
� 1

1þ
1

a

� �
þ 1

2

g2

14
� g2

a4

� �
; ð11:43Þ

or

pa ¼ ρ
dg

dt

1

a
� g2

2a4

� �
þ p1: ð11:44Þ

Remembering that we are interested in the mechanics of an aneurysm within the

head of a human, one might quickly ask the utility of integrating to infinity.

In this case, infinity simply means far enough away from the aneurysm, which

could be only centimeters (e.g., if a¼ 1 mm and “infinity” was merely taken to

be 10 mm, then 1/1� 1/102¼ 0.99 and 1/1� 1/104¼ 0.9999, thus revealing that

it is reasonable to neglect the terms l/1n in comparison to the 1/an terms). Note,

too, that the deformed radius a and the integration function g are both functions

of time; thus, the pressure exerted by the CSF on the aneurysm will likewise

vary with time in general. Finally, the radial stress in the fluid is

σrr ¼ � pþ 2μ
∂vr

∂r
¼ � pþ 2μ � 2g tð Þ

r3

� �
8r, t: ð11:45Þ

We are interested primarily in the stress at the wall of the aneurysm, where

r¼ a. The normal stress in the fluid at this location thus becomes [using

Eq. (11.44)]

σrrjr¼a ¼ �pa � 4μ
g tð Þ
a3
¼ ρ

g2

2a4
� 1

a

dg

dt

� �
� p1 � 4μ

g

a3
; ð11:46Þ

whereby we see that the viscosity of the CSF has indeed entered the problem

through the stress boundary condition. At this point, note that we still have not

found the arbitrary integration function g(t), even though we have used a stress

boundary condition at r¼ a and the condition at infinity in the integration.

When similar situations arose in Chaps. 3–5 for solids and Chaps. 9 and 10

for fluids, we sought additional conditions to generate the requisite number of

equations for our unknowns. In particular, we often used kinematic conditions

such as the continuity of displacement for two solids (e.g., bone and metal

prosthesis in Chaps. 3 and 4) or velocities of two materials (e.g., a moving solid

plate and underlying fluid in Couette flows in Chap. 9). To find g(t), we can use

a similar “matching condition” at r¼ a; that is, by the no-slip condition, we

need to match the velocity of the aneurysm and that of the CSF at r¼ a. Given

the displacement ur in the r direction of a material point on the aneurysm, which
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is the difference between where we are, a(t), and where we were, A, the radial

velocity of the aneurysmal wall is

dur

dt
¼ d

dt
a tð Þ � Að Þ ¼ da

dt
; ð11:47Þ

where a¼ λA. Thus, matching this velocity with vr(r¼ a, t) in the fluid, we have

dur

dt
¼ A

dλ

dt
¼ g tð Þ

a2
� g tð Þ

λ2A2
! g tð Þ ¼ λ2A3 dλ

dt
: ð11:48Þ

It follows, therefore, that

dg

dt
¼ A3 λ2

d2λ

dt2
þ dλ

dt
2λ

dλ

dt

� �� 

: ð11:49Þ

Hence, the outer stress boundary condition is

σrrjr¼a ¼ �ρ
A3

λA
λ2

d2λ

dt2
þ 2λ

dλ

dt

� �2
" #

� λ4A6

2λ4A4

dλ

dt

� �2
( )

� p1

� 4μ
λ2A3

λ3A3

dλ

dt

� �� 

; ð11:50Þ

which can be simplified to

σrrjr¼a ¼ �ρ A2λ
d2λ

dt2
þ 2A2 dλ

dt

� �2

� 1

2
A2 dλ

dt

� �2
" #

� p1 �
4μ

λ

dλ

dt

� �

¼ �ρA2λ
d2λ

dt2
� 3

2
ρA2 dλ

dt

� �2

� 4μ

λ

dλ

dt

� �
� p1:

ð11:51Þ

The stress acting on the outer surface of the membrane in the positive r direction

will be equal and opposite that in the fluid at r¼ a. Hence, the governing

differential equation for the solid [Eq. (11.23), with b� a] can be written as

� p1 � ρA2λ
d2λ

dt2
� 3

2
ρA2 dλ

dt

� �2

� 4μ

λ

dλ

dt

� �" #
� �Pi tð Þ½ 	 � 2T

λA
¼ ρsHA

λ2
d2λ

dt2
;

ð11:52Þ
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or

ρsHA

λ2
þ ρA2λ

� �
d2λ

dt2
þ 3

2
ρA2 dλ

dt

� �2

þ 4μ

λ

dλ

dt

� �
þ 2T

λA
¼ Pi tð Þ � p1; ð11:53Þ

where the time-varying blood pressure Pi(t) is given by Eq. (11.27) and T¼ T(λ)

must be given by a constitutive equation for the aneurysm (recall Sect. 6.4

of Chap. 6). For example, for a Fung-type exponential behavior [cf. Eq. (6.41)],

we have

T λð Þ ¼ cΓeQ λ2 � 1
� �

with Q ¼ 1

2
Γ λ2 � 1
� �2

; ð11:54Þ

where c and Γ are material parameters. Independent of the specific constitutive

relation for the solid, however, we see how important the solid–fluid coupling

is; the governing equation of motion for the dynamic response of the solid

depends on the density ρ, viscosity μ, and far-field pressure p1 of the cerebro-

spinal fluid. This complex, nonlinear ordinary differential equation is solved

numerically in Humphrey (2002) using a Runge–Kutta method. Figures 11.10

and 11.11 show one typical result, which suggests that this class of aneurysms is

dynamically stable, contrary to the thoughts of many based on simplified linear

analyses that neglected the nonlinear stress-stretch relation T(λ) and the solid–

fluid coupling. Although closed-form solutions are not available for Eq. (11.53),

one can obtain analytical solutions for the stability of the aneurysm by linear-

izing the governing equation about multiple, different equilibrium positions—

as noted in Observation 11.1, such linearizations can provide useful information

on the nonlinear problem; that is, if one were to inflate the lesion to a particular

equilibrium configuration and then perturb it slightly, one could ask whether the

perturbed aneurysm (i.e., nonlinear system) would come back to its equilibrium

configuration (i.e., be stable) or if it would move away from this configuration

(i.e., be unstable). Recall that similar arguments were made in Chap. 5 in the

fully linear analysis of the stability of Euler columns. Indeed, by performing a

linearized stability analysis (see Humphrey 2002), it can be shown that it is the

cerebrospinal fluid viscosity μ alone that renders the aneurysm dynamically

stable in the nonlinear case given the assumptions invoked herein.

In summary, based on this analysis, it was concluded that at least one subclass

of saccular aneurysms (nearly spherical) is unlikely to be dynamically unstable

as postulated by some and supported by others based on simplified models. This

illustrates the importance of modeling well the inherent complexities such as

the nonlinear material behavior, the large deformations, and the solid–fluid

coupling. Indeed, if one considers a viscoelastic, rather than purely elastic,

behavior of the aneurysm, it can be shown that there is further evidence for
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its dynamic stability. Rather than going into the details of the nonlinear visco-

elasticity of solids, which is an important but advanced topic, we consider

below an introduction to the linearized theory of viscoelasticity and some

associated directions of needed research.

FIGURE 11.10 A representative result for the elastodynamics of an idealized spherical,

isotropic saccular aneurysm. Panel A shows the internal forcing function Pi(t), as both
original human data (open circles) and their Fourier series representation (solid lines);
the bottom curve shows the far-field pressure p1. Panels B and C show the associated

time-varying stretch and stretch rate given an initial disturbance, which decreases

quickly. With permission from Elsevier Science.
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FIGURE 11.11 Further results associated with Fig. 11.10. Panel b shows the phase-plane
in the case of no initial disturbance, that is, the periodic solution. Panel c shows the

phase-time plot in the case of an initial disturbance, the effects of which are seen to

decrease quickly such that the periodic solution is recovered (i.e., the periodic solution

serves as a strong attractor), thus revealing that the system is dynamically stable.

Finally, panel a shows the pressure-stretch behavior both for quasistatic loading (open

circles) and for the dynamic case (solid line). Clearly, the inertial effects are small and

the dynamics can be treated in terms of a series of equilibria. From Shah and Humphrey

(1999), with permission from Elsevier Science.
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Example 11.4 In Exercise 11.3, we ask that Eq. (11.53) be nondimensionalized

to a simpler form. Here, we further neglect the fluid (nondimensional parame-

ters b¼ 0 and m¼ 0) and assume a Fung-type behavior; thus our governing

equation reduces to (Humphrey 2002)

1

x2
€xþ 2

x
ΓeQ x2 � 1

� �
¼ F τð Þ;

where

Q ¼ 1

2
Γ x2 � 1
� �2

:

Show that such a dynamic system is dynamically unstable in the small (i.e., in

the absence of an external fluid and given small perturbations from an equilib-

rium position).

Solution: Let the nondimensional distending pressure at equilibrium be F0 and

the associated equilibrium stretch be x¼ α. Moreover, let us consider a change

in variables whereby

y0 � x� α and y1 � dx=dτ ¼ _x:

Hence, our single second-order equation can be written in terms of two first-

order equations, namely

_y0 ¼ _x ¼ y1,

_y1 ¼ €x ¼ F0 � 2ΓeQ x� 1

x

� �� 

x2;

or in terms of the fixed point x¼ α,

_y0 ¼ y1,

_y1 ¼ F0 � 2ΓeQ y0 þ α� 1

y0 þ α

� �� 

y0 þ αð Þ2;

which we can write symbolically as

_y0 ¼ G y0; y1; αð Þ,
_y1 ¼ H y0; y1; αð Þ
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where G and H are general functions. Expanding in a Taylor series about the

fixed point x¼ α, or y0¼ 0 and y1¼ 0, we have

_y0 ¼ G 0; 0ð Þ þ ∂G

∂y0

����
0;0ð Þ

y0 � 0ð Þ þ ∂G

∂y1

����
0;0ð Þ

y1 � 0ð Þ þ . . . ,

_y1 ¼ H 0; 0ð Þ þ ∂H

∂y0

����
0;0ð Þ

y0 � 0ð Þ þ ∂H

∂y1

����
0;0ð Þ

y1 � 0ð Þ þ . . . ;

where

G 0; 0ð Þ ¼ 0,
∂G

∂y0
¼ 0,

∂G

∂y1
¼ 1,

H 0; 0ð Þ ¼ 0,
∂H

∂y0
6¼ 0,

∂H

∂y1
¼ 0:

Hence, our resulting system of linearized equations can be written in matrix

form as

_y0
_y1

� �
¼

0 1
∂H
∂y0

���
0;0ð Þ

0

" #
y0 � 0

y1 � 0

� �
:

As noted earlier, we know that dynamic stability in the small implies a dynamic

stability of the associated nonlinear system. Such (asymptotic) stability requires

that the trace of this matrix be negative and its determinant be positive. Note

that the trace (i.e., the sum of the diagonal entries) is identically zero, however;

thus, an elastic aneurysm cannot be asymptotically stable in the absence of a

viscous CSF, which is consistent with results from the numerical solution.

In this case, therefore, we see that knowing some results from the theory of

systems of first-order, linear, ordinary differential equations provides significant

insight without the need to perform complex numerical computations. Indeed,

one should always pursue analytical results when possible.

11.4 Viscoelasticity: QLV and Beyond

Whereas the two previous sections address interactions between a “solid” and a

“fluid,” we now return our attention to the behavior of a single material. Recall

from Fig. 1.4 of Chap. 1 that it is often convenient in continuum biomechanics

to study separately the solidlike (biosolid mechanics) or fluidlike (biofluid

630 11. Coupled Solid–Fluid Problems

http://dx.doi.org/10.1007/978-1-4939-2623-7_1
http://dx.doi.org/10.1007/978-1-4939-2623-7_1#Fig4_1


mechanics) behavior that is exhibited by a material under conditions of interest;

indeed, courses and textbooks are often designed along these separate lines.

Reflecting back on Chaps. 2–10, however, it should be evident that these

divisions often are simply for convenience in particular classes of problems;

they are not dictated by the physics per se. For example, our three primary

governing differential equations—balance of mass, linear momentum, and

energy—can be derived independent of the consideration of a solidlike or a

fluidlike behavior. Likewise, our development of constitutive equations can

follow a similar procedure (DEICE) regardless of the specific behavior, and it

can result in similar relations (e.g., Hooke’s law and the Navier–Poisson relation)

whereby we relate the concept of stress to displacement gradients (strains)

or velocity gradients (shear rates). Clearly, then, it should be very natural

mathematically to consider together solidlike and fluidlike behaviors. Indeed,

when we recognize that many materials—including glass over long time scales as

well as the cytoplasm in a cell, the ligament in a joint, and even bone, to name but

a few—simultaneously exhibit both a solidlike and a fluidlike behavior over

conditions of interest, we should then pursue a more unified approach.

Traditionally, there have been two primary approaches to considering

together solidlike and fluidlike behaviors. One is the so-called theory of mix-

tures, which traces its beginnings to Darcy and Fick in the mid-1800s, but

received a more modern and rational treatment by Truesdell in 1957 [see the

advanced text by Truesdell and Noll (1965, Section 130)]. Briefly, Truesdell

postulated that one could model the behaviors of mixtures of multiple constit-

uents, including solids and fluids, by requiring that (1) each constituent obey its

own balance and constitutive relations and (2) the overall mixture obey the

classical balance relations for mass, momentum, and energy. Such an approach

requires that one identify an additional class of constitutive equations, however,

which describe how the constituents exchange mass, momentum, and energy.

For example, if a fluid flows through an otherwise stationary porous solid, the

flow can induce a motion in the solid. Although we did not do so in Sect. 11.2,

such interactions can be described directly by constitutive relations. V. Mow

and colleagues were the first, in 1980, to apply the continuum theory of mixtures

to biological tissues. They focused on the mechanical behavior of articular

cartilage, which lines the contacting regions of bones in articulating joints and

which consists primarily of a type II collagen, extensive proteoglycans, and

mobile water. In fact, using the theory of mixtures, they show that the water

carries much of the compressive load early in the gait cycle (Mow et al. 1990).

Mixture theory continues to enable a much deeper understanding of cartilage

mechanics than would have been possible if the solid mechanics had been

studied alone. Since 1980, mixture theory has also been used to study the

behavior of many different tissues and cells, and it remains as an important

area of research, even in the emerging area of modeling growth and remodeling

(Humphrey 2003a). Because of the inherent mathematical complexity,

however, the theory of mixtures is beyond the scope of an introductory text.
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The second general approach that has been used to address combined

solidlike and fluidlike behaviors is the theory of viscoelasticity. As the name

implies, its goal is to describe behaviors that include both an elastic and a

viscous character. Developed in the mid-1800s by savants such as L. Boltzmann

(1844–1906), J.C. Maxwell (1831–1879), and Lord Kelvin (1824–1907), this

theory developed along two related but separate lines. Boltzmann advocated the

use of heredity integrals to describe the history of the mechanical behavior; in

contrast, Maxwell and Kelvin advocated the use of differential models to

account for the rate effects. Both approaches are useful in biomechanics and

both can be developed for linear or non-linear behaviors. Because the linear

relations are much easier to address, however, we shall focus primarily on these.

11.4.1 Linearized Viscoelasticity

Bone and teeth are among the few tissues in the body that exhibit a linear

relation between stress and strain over the range of physiologic strains.

Although discussed thus far in terms of its solidlike behavior, bone exhibits

viscoelastic characteristics. For example, the stress depends on the rate of

deformation in addition to the amount of deformation (Fig. 11.12); in general,

a viscoelastic response is stiffer at higher rates of deformation. Two other

common characteristics that suggest a viscoelastic behavior are creep and stress

relaxation. Creep is a time-dependent deformation under the action of a con-

stant load (Fig. 11.13); stress relaxation is a time-dependent decrease in load at

a constant deformation (Fig. 11.14). Toward a quantification of such behaviors,

let us first consider a linearized, rate-type approach that may be used to describe

the viscoelastic behavior of bone and other materials that exhibit a linear

material behavior under small strains.

FIGURE 11.12 Strain-rate

effects on the mechanical

behavior of bone.

632 11. Coupled Solid–Fluid Problems



Maxwell Model

Maxwell, Kelvin, and others formulated their rate-type models in terms of 1-D

mechanical analog models. Such models are only intended to simulate the

macroscopic behavior; they are not designed to provide insight into the under-

lying molecular basis and they cannot be thought to be based on a general,

rigorous mathematical foundation. Rather, analog models simply provide a

means to motivate the forms of some constitutive relations.

The Maxwell model consists of a linear spring in series with a linear dashpot

(Fig. 11.15). By linear, we mean that the force in the spring is related linearly to

its extension and the force in the dashpot is related linearly to its rate of

extension (Fig. 11.16). If we denote a scalar uniaxial force by f and the

associated extension by δ (which is the current length x minus the original

length xo), this implies that fs¼ kδ and f d ¼ c _δ where the subscripts s and

d denote spring and dashpot, respectively, k is the stiffness of the spring, c is the

viscosity of the dashpot, and the superimposed dot implies a time derivative.

Remember that if a body is in equilibrium, then each of its parts are in

equilibrium. Thus, a free-body diagram of the Maxwell element (Fig. 11.15)

reveals that fs and fd each balance the total applied force f, whereas the total

extension δ of the Maxwell element is the sum of the extensions of the spring

FIGURE 11.13 Characteristic responses to three different constant stresses during a creep

test. By definition, creep is a continuing deformation (e.g., straining) in the presence of a

constant force (or stress). In some cases, normalized creep responses reduce to a single

characteristic curve.

FIGURE 11.14 Similar to Fig. 11.13 except for stress relaxation (i.e., the continuing

decrease in stress in the presence of a constant strain).
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and the dashpot. Exploiting the latter observation, taking a time derivative, and

using the appropriate constitutive relations, we obtain

δ ¼ δs þ δd ! _δ ¼ _δs þ _δd ¼
_f

k
þ f

c
: ð11:55Þ

Because this is an analog model, it is assumed that an associated 1-D relation in

terms of the Cauchy stress σ and linearized strain ε is

FIGURE 11.15 TheMaxwell element consisting of a linear spring and dashpot in series in

unloaded and loaded configurations. A free-body diagram reveals that the force

(or stress) felt by the spring and the dashpot are the same.

FIGURE 11.16 Mechanical behavior of a linear spring, with modulus k, and a linear

dashpot, with viscosity c.
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_ε ¼ _σ

E
þ σ

μ
; ð11:56Þ

where _ε and _σ are the strain rate and stress rate, respectively, E is the Young’s

modulus, and μ is the viscosity. This is the fundamental constitutive relation for

the 1-D Maxwell model of linear viscoelasticity.

Consistent with Fig. 11.14, a stress relaxation test can be defined by ε¼ 0 for

t< 0 and ε¼ ε0, a constant, for t� 0. Hence, _ε ¼ 0 for all t� 0 and Eq. (11.56)

reduces to

0 ¼ _σ

E
þ σ

μ
! _σ þ Eσ

μ
¼ 0 8t � 0: ð11:57Þ

This homogeneous, first-order differential equation admits an exponential solution

of the form

σ tð Þ ¼ c1e
�Et=μ; ð11:58Þ

which can be verified (do it) by direct substitution. The value of the constant c1
can be determined by letting σ(t¼ 0)¼ σ0, where the assumption of an instan-

taneous (elastic) response requires that σ0¼Eε0. Hence, c1¼ σ0 and the stress

relaxation of a Maxwell model is given by either

σ tð Þ ¼ σ0e
�Et=μ or σ tð Þ ¼ σ0e

�t=tR ; ð11:59Þ

where tR� μ/E is the so-called relaxation time. The larger the value of tR, either

via a large μ or a small E, the slower the relaxation. Clearly, at t¼ 0, σ(0)¼Eε0,

the instantaneous elastic response, whereas for t!1, σ(t)! 0 with an expo-

nential decay. Because this model relaxes to zero stress, it is sometimes called a

Maxwell fluid. It is, nonetheless, a model that accounts for combined solidlike

and fluidlike behaviors in general.

In contrast, the creep test is defined by σ¼ 0 for t< 0 and σ� σ0, a constant,

for all t� 0. Hence, _σ ¼ 0 for t� 0 and _ε ¼ σ0=μ, which appears to describe a

Newtonian fluidlike behavior consistent with the above. With regard to the

associated creep, however, we see that

ð
dε

dt
dt ¼

ð
σ0

μ
dt! ε tð Þ ¼ σ0

μ
tþ c1; ð11:60Þ

where ε¼ ε0 at t¼ 0, the instantaneous response. Hence, with ε0¼ σ0/E, we

have c1¼ ε0 and

ε tð Þ ¼ σ0

μ
tþ σ0

E
: ð11:61Þ
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This suggests that the creep (i.e., lengthening over time) is linear in t. Experimental

observations reveal that most “biosolids” that exhibit a viscoelastic character do

not relax to zero stress and they do not creep linearly in time. There is clearly a

need to consider other models.

Kelvin–Voigt Model

This mechanical analog model is defined by a linearly elastic spring and a

dashpot in parallel, not in series (Fig. 11.17). A free-body diagram reveals that

f¼ fs+ fd and δ¼ δs¼ δd. Hence,

f ¼ ksδþ c _δ; ð11:62Þ

which suggests a 1-D analog model of the form

σ ¼ Eεþ μ _ε ! _ε þ E

μ
ε ¼ σ

μ
: ð11:63Þ

In contrast to theMaxwell model, therefore, a stress relaxation test (i.e., ε¼ 0 for

t< 0 and ε¼ ε0 for t> 0, with _ε ¼ 0 for t> 0) leads to the simple relation that

σ tð Þ ¼ Eε0 8t > 0; ð11:64Þ

which states that there is no relaxation for t> 0 (see Exercise 11.13 for behavior

at t¼ 0). For creep, with σ¼ σ0 for t� 0, we have a simple non-homogenous,

first-order differential equation for ε(t), namely

FIGURE 11.17 The Kelvin–Voigt element consisting of a linear spring and dashpot in

parallel.
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_ε þ E

μ
ε ¼ σ0

μ
: ð11:65Þ

The homogenous solution is thus exponential:

_ε þ E

μ
ε ¼ 0! εh tð Þ ¼ c1e

c2t ð11:66Þ

whereby c2¼�E/μ. The particular solution can be assumed to be constant,

εp(t)¼ c3 whereby c3� σ0/E. Hence, our solution is

ε tð Þ ¼ c1e
�Et=μ þ σ0

E
: ð11:67Þ

Finally, the condition at t¼ 0 that ε(0)¼ 0 requires c1¼�σ0/E, thus yielding
our creep response:

ε tð Þ ¼ σ0

E
1� e�Et=μ
� �

¼ σ0

E
1� e�t=tc
� �

; ð11:68Þ

where tc¼ μ/E is called the retardation time. Note that at t¼ 0, ε(0)¼ 0,

whereas at t!1, ε! σ0/E. Hence, the creep is nonlinear, but bounded.

In summary, neither the Maxwell nor the Kelvin–Voigt model reflects com-

monly observed behavior in tissues. In particular, the linear and unbounded

creep predicted by the Maxwell model is unrealistic, so, too, is the lack of

relaxation for the Kelvin–Voigt model. Given that the instantaneous elasticity

and relaxation of the Maxwell model and the nonlinear, bounded creep of the

Kelvin–Voigt model are realistic, at least qualitatively; thus, one might consider

combining these models with each other or perhaps combining them with other

spring or dashpot elements. We shall consider such possibilities next. First,

however, it proves useful to define two functions: G(t), the relaxation function

(during a stress relaxation test), and J(t), the creep function (during a creep test).

In particular, we let

G tð Þ ¼ σ tð Þ
ε0

, J tð Þ ¼ ε tð Þ
σ0

; ð11:69Þ

hence, for the Maxwell model,

G tð Þ ¼ Ee�Et=μ, J tð Þ ¼ 1

μ
tþ 1

E
; ð11:70Þ
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whereas for the Kelvin–Voigt model,

G tð Þ ¼ E, J tð Þ ¼ 1

E
1� e�Et=μ
� �

: ð11:71Þ

These will prove useful below.

Standard Viscoelastic Solid

It can be shown that combining a linear spring in parallel with a Maxwell

element or combining a spring in series with a Kelvin–Voigt element

(Fig. 11.18) yields the same differential equation. For example, if E0 is the

stiffness of the spring that is added in parallel to a Maxwell element, the

governing equation can be shown to be

_σ þ E

μ
σ ¼ EE0

μ
εþ Eþ E0ð Þ _ε: ð11:72Þ

For stress relaxation, it can be shown that (Wineman and Rajagopal 2000),

σ tð Þ ¼ ε0 E0 þ Ee�Et=μ
� �

; ð11:73Þ

and for creep,

ε tð Þ ¼ σ0
1

E0

þ 1

E0 þ E
� 1

E0

� �
exp

�E0E

μ Eþ E0ð Þ t
� �� 


: ð11:74Þ

FIGURE 11.18 The stan-

dard element: either a

spring in series with a

Kelvin–Voigt element or

a spring in parallel to a

Maxwell element.
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Consequently, the relaxation and creep functions can be written as

G tð Þ ¼ E0 þ Eþ E0 � E0ð Þe�t=tR � G1 þ G0 � G1ð Þe�t=tR ð11:75Þ

where G1�E0 and G0�E+E0, and

J tð Þ ¼ J1 þ J0 � J1ð Þe�t=tc ; ð11:76Þ

where J0¼ 1/G0 and J1¼ 1/G1 and the retardation time tc¼G0tR/G1.
Figures 11.19 and 11.20 compare the associated characteristic responses.

The Standard model is thus the simplest mechanical analog model that gives

physically realistic predictions for viscoelastic “solids,” including instanta-

neous elasticity, a nonlinear but bounded creep, and a stress relaxation that

tends to a nonzero equilibrium stress.

FIGURE 11.19 Characteristic stress relaxation responses of the Maxwell, Kelvin–Voigt,

and Standard element consistent with the derivations in the text.

FIGURE 11.20 Similar to Fig. 11.19 except for creep.
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Example 11.5 Derive the governing equation for a three-element viscoelastic

fluid defined by a dashpot (viscosity μ0) in series with a Kelvin–Voigt element

(viscosity μv, and modulus Ev).

Solution: Let the total stress and strain of the three-element model (draw it,

including free body diagrams) be σ and ε, respectively. By equilibrium, the

stress in the single dashpot σ0 must balance the stress in the Kelvin–Voigt

element σv, and both must equal σ. Note, therefore, that

σ0 ¼ μ0 _ε0, σv ¼ Evεv þ μv _εv:

Moreover, the total strain ε¼ ε0+ εv, where the strains in the spring and dashpot

of the Kelvin–Voigt element are the same. Hence, with σ¼ σv and εv¼ ε� ε0,

we have

σ ¼ Ev ε� ε0ð Þ þ μv _ε � _ε0ð Þ;

whereby

_σ ¼ Ev _ε � _ε0ð Þ þ μv €ε� €ε0ð Þ:

Now, note that _ε0 ¼ σ0=μ0 and thus €ε0 ¼ _σ0=μ0 � _σ=μ0. Hence, we have

_σ ¼ Ev _ε � σ0

μ0

� �
þ μv €ε� _σ0

μ0

� �

or

_σ 1þ μ0

μ0

� �
þ σ

Ev

μ0

� �
¼ Ev _ε þ μv€ε

or

σ þ _σ
μ0 þ μv

Ev

� �
¼ μ0 _ε þ

μvμ0

Ev

€ε:

Compare this to the three-element (standard) viscoelastic solid.
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Boltzmann Model

As noted earlier, Boltzmann advocated a different approach to modeling visco-

elastic behavior; he focused on heredity integrals to account for the history of

the response, and, in particular, the creep and stress relaxation.

For example, standard linear heredity integrals are

σ tð Þ ¼
ð t

�1
G t� sð Þ dε

ds
ds ð11:77Þ

and

ε tð Þ ¼
ð t

�1
J t� sð Þ dσ

ds
ds: ð11:78Þ

It proves useful to evaluate these integrals over two intervals: from –1 to 0 and

from 0 to time t, where

ð t

�1
ð Þds ¼

ð0

�1
ð Þdsþ

ð t

0

ð Þds: ð11:79Þ

Hence, our relations for stress and strain histories can be shown to be

σ tð Þ ¼ ε 0ð ÞG tð Þ þ
ð t

0

G t� sð Þ dε
ds

ds ð11:80Þ

and

ε tð Þ ¼ σ 0ð ÞJ tð Þ þ
ð t

0

J t� sð Þ dσ
ds

ds: ð11:81Þ

In many cases, we have zero stress and strain up to and at the time t¼ 0; hence,

these equations simplify further. We shall consider such cases below.

In contrast to the aforementioned stress relaxation and creep tests, which are

very useful in evaluating viscoelastic responses, let us consider here a class of

sinusoidal straining tests. Such tests are particularly useful for evaluating

“short-time” responses in contrast to the “long-time” responses in creep and

relaxation tests. Hence, consider a periodic strain history of the form

ε tð Þ ¼ εA sinωt ð11:82Þ

where ω is the fundamental (circular) frequency of the test (with 2πf¼ω) and

εA is the amplitude of the small strain. In order to use Eq. (11.80), with ε(0)¼ 0,
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it proves convenient to consider a change of variables: let t� s¼ τ whereby

s¼ t – τ at any fixed time t. Hence,

d

ds
ð Þ ¼ d

dτ
ð Þ dτ

ds
¼ � d

dτ
ð Þ, ds ¼ �dτ: ð11:83Þ

Equation (11.80), with ε(0)¼ 0 and τ2 [0,1), can thus be written as

σ tð Þ ¼
ð1

0

G τð Þ dε t� τð Þ
dτ

dτ ¼
ð1

0

G τð Þ _ε t� τð Þdτ: ð11:84Þ

Given that _ε tð Þ ¼ εAω cosωt, we have

σ tð Þ ¼
ð1

0

G τð ÞεAω cosω t� τð Þdτ; ð11:85Þ

or by using the standard trigonometric identity that cos(α� β)¼ cos α cos

β� sinα sin β, we have

σ tð Þ ¼
ð1

0

G τð ÞεAω cosωt cosωτ þ sinωt sinωτð Þdτ; ð11:86Þ

or

σ tð Þ ¼ εA cosωtð Þω
ð1

0

G τð Þ cosωτdτ

þ εA sinωtð Þω
ð1

0

G τð Þ sinωτdτ: ð11:87Þ

If we now denote

G1 ωð Þ � ω

ð1

0

G τð Þ sin ωτð Þdτ,

G2 ωð Þ � ω

ð1

0

G τð Þ cos ωτð Þdτ;
ð11:88Þ

then

σ tð Þ ¼ εA G1 ωð Þ sinωtþ G2 ωð Þ cosωt½ 	; ð11:89Þ

where G1(ω) and G2(ω) are called the storage modulus and the loss modulus,

respectively.
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At this juncture, it is instructive to note that if subjected to a strain history of

the form ε(t)¼ εA sinωt, then we expect a viscoelastic material to respond out

of phase, such as σ(t)¼ σA sin(ωt+ϕ). Conversely, if the response is purely

elastic, we expect ϕ¼ 0, whereas if the response is purely viscous, we expect

ϕ¼ π/2. Computation of the value of ϕ in general can thus be revealing. Note,

therefore, that given this expression for σ(t), we have

σ tð Þ ¼ σA sinωt cosϕþ cosωt sinϕð Þ: ð11:90Þ

Comparison of Eqs. (11.89) and (11.90) thus reveals that

εAG1 ωð Þ ¼ σA cosϕ! G1 ωð Þ ¼ σA

εA
cosϕ,

εAG2 ωð Þ ¼ σA sinϕ! G2 ωð Þ ¼ σA

εA
sinϕ,

tanϕ ¼ G2 ωð Þ=G1 ωð Þ:

ð11:91Þ

Finally, note that it can be useful to use a complex variable (z*¼Ax + iy,

with i ¼
ffiffiffiffiffiffiffi
�1
p

) representation for these sines and cosines. It can be shown that if

ε*(t)¼ εAe
iωt and σ*(t)¼ σAe

iω(t+ϕ), then a complex modulus

G* ¼ σ*

ε*
¼ G1 þ iG2: ð11:92Þ

In this case, it is evident that G1 is the ratio of that part of the stress that is

in-phase with the strain to the strain itself, whereas G2 is the ratio of that part of

the stress that is π/2 out-of-phase with the strain to the strain itself.

For a purely elastic (i.e., Hookean) response, therefore, G1¼ 1 and G2¼ 0,

with ϕ¼ 0, and for a purely viscous (i.e., Newtonian) response, G1¼ 0 and

G2¼ 1, with ϕ¼ π/2. Computation of these moduli can thereby enable one to

assess the “degree” of the viscoelastic response [i.e., its deviation from a purely

elastic or a purely viscous response (cf. Fig. 11.21)].

Example 11.6 Demonstrate why G2 is called the loss modulus.

Solution: Consider the energy dissipated during a simple cycle of loading:

ξ ¼
ð
σdε �

ð2π=ω

0

σ
dε

dt
dt:

If we let, consistent with Exercise 11.16,

ε tð Þ ¼ εA sinωt, σ tð Þ ¼ σA sin ωtþ ϕð Þ;
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then

ξ ¼
ð2π=ω

0

σA sinωt cosϕþ cosωt sinϕð ÞεAω cosωt dt

¼ σA cosϕð ÞεAω
ð2π=ω

0

sinωt cosωt dtþ σA sinϕð ÞεAω
ð2π=ω

0

cos 2ωt dt;

which, from integral tables, yields

ξ ¼ σA cosϕ

εA

� �
ε2Aω

1

2ω
sin 2ωt

����
2π=ω

0

 !

þ σA sinϕ

εA

� �
ε2Aω

1

2
tþ 1

4ω
sin 2ωt

����
2π=ω

0

 !

or, from Exercise 11.16,

ξ ¼ G1ε
2
A

1

2

� �
0ð Þ þ G2ε

2
Aω

1

2

� �
2π

ω

� �� 

¼ πG2ε

2
A;

thereby revealing that the dissipation (i.e., loss) in this linear model is given

entirely by the “loss modulus” G2.

In summary, this has been but a brief introduction to a few aspects of linear

viscoelasticity. For more on this topic, the reader is encouraged to consult Ferry

(1980) or Wineman and Rajagopal (2000).

FIGURE 11.21 Characteristic complex moduli for viscoelastic behaviors in rubbery and

glassy regimes.
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11.4.2 Quasilinear Viscoelasticity

Because of the nonlinear material behavior exhibited by most soft tissues,

linearized relations for viscoelasticity do not apply. In an attempt to account

for the nonlinear “elastic” behavior while preserving the mathematical machin-

ery of linear viscoelasticity, Fung proposed a so-called quasilinear theory of

viscoelasticity, often referred to as QLV.

Briefly, following Boltzmann’s approach, Fung suggested that, in one dimen-

sion, one should consider the following relationship for the first Piola–Kirchhoff

stress Σ11 and stretch λ (Fung 1990):

Σ11 tð Þ ¼
ð t

�1
G t� τð Þ∂Σ

e
11

∂λ

dλ

dτ
dτ; ð11:93Þ

where G is a reduced relaxation function, with G(0)¼ 1, Σe
11(λ) is a nonlinearly

elastic response function (in terms of the first Piola–Kirchhoff stress), and λ is

an axial stretch ratio. Fung noted that it is common to express the relaxation

function in terms of a finite sum of exponential decay functions. Noting

problems common to such approaches, including finding G(1), Fung

further noted that the observed relative insensitivity of the hysteresis during

cyclic loading of many soft tissues suggests the need for a continuous

relaxation spectrum. The literature reveals many subsequent applications of

Fung’s QLV theory. We will leave it as an exercise to explore such applications,

however.

11.4.3 Need for Nonlinear Theories

This subsection could simply be entitled “Beyond QLV.” Despite the success of

QLV in fitting data from various experiments, numerous investigators have

shown that QLV is not sufficiently general to describe many of the complicated

behaviors exhibited by soft tissues, including a strain-dependent relaxation and

fundamentally different short-term and long-term viscoelastic responses. Build-

ing upon the many fundamental advances in nonlinear viscoelasticity since

World War II [by G. Green, R. Rivlin, A.C. Pipkin, and B. Bernstein et al.,

among others; see Ferry (1980)], various approaches have been proposed. These

include the single integral finite strain model of Johnson et al. (1996), the

combined differential–integral model of Pioletti and Rakotomanana (2000),

the generalized elastic-Maxwell model of Holzapfel and Gasser (2001) and

Holzapfel et al. (2002), and the modified superposition model of Provenzano

et al. (2002), to name but a few. Like mixture theory, however, nonlinear

viscoelasticity is not an introductory topic; thus, the reader is simply encour-

aged to seek advanced courses on this topic. When doing so, remember that

science is but relative truth; thus, each theory and approach is limited. Noting
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any restrictions or limitations, particularly those in small strain theories, is of

paramount importance as we seek to use biomedical engineering design and

analysis to improve health care.

11.5 Lubrication of Articulating Joints

11.5.1 Biological Motivation

Human diarthroidal joints can function well for seven or more decades despite

the relatively high loads and at times low speeds of relative motion that they

experience. For example, tissue stresses can reach 18 MPa in the knee during

just normal walking. Recall from Chap. 7 that synovial fluid serves as a

tremendous lubricant that reduces wear of cartilage in articulating joints such

as the knee and hip; the coefficient of friction in joints is an amazing 0.003–

0.03, much less than values attained by man-made lubricants. The mechanics of

lubrication is a well-developed area of study in mechanical engineering, called

tribology, and one may be tempted to apply results from tribology directly to the

analysis of knee or hip mechanics. Indeed, as early as the 1930s, it was

suggested that the efficiency of healthy diarthroidal joints could be explained

via the theory of hydrodynamic lubrication; that is, it was thought that loads are

transferred between articulating surfaces via a thin, pressurized layer of fluid

lubricant. Let us briefly consider a simple example of such a theory of

lubrication.

11.5.2 Hydrodynamic Lubrication

Consider the “hydrodynamic slider bearing” shown in Fig. 11.22. Let us assume

that the fluid behavior is Newtonian and that the flow is incompressible, steady,

and laminar. It would seem reasonable, therefore, to assume the velocity field of

the fluid to be of the form v ¼ vx x, yð Þî þ vy x, yð Þ ĵ in the absence of gravity.

If we assume further that the Reynolds’ number is small (Re< 1), then viscous

bearing

slider

nho
ho

h(x)y

x

U

FIGURE 11.22 The slider

bearing, which supports

a compressive load

W due to hydrodynamic

lubrication. Let the

length of the slider be L.
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effects dominate inertial effects. Moreover, if we assume that the gap distance

h(x)�L, then the x-direction momentum equation is most important and

changes in vx with respect to y may be considered to be less than those with

respect to x. Hence, the Navier–Stokes equation in x [Eq. (8.34)] reduces to

dp

dx
¼ μ

d2vx

dy2
ð11:94Þ

and our problem is similar to that in Chap. 9 for flow between parallel flat plates.

In particular, our general solution is

vx yð Þ ¼ 1

μ

dp

dx

� �
y2

2
þ c1yþ c2: ð11:95Þ

Now, for boundary conditions. Here, let us consider the simplified case of a

step-slider (Fig. 11.23). Hence, we have

vx 0ð Þ ¼ �U, vx hð Þ ¼ 0, 0 
 x < L� bL; ð11:96Þ

vx 0ð Þ ¼ �U, vx nhð Þ ¼ 0, L� bL < x 
 L; ð11:97Þ

and Eq. (11.95) becomes

vx yð Þ ¼ 1

2μ

dp

dx

� �
y2 � nhy
� �

þ U
y

nh
� 1

� �
ð11:98Þ

for n¼ 1 or n, in general. Hence, the volumetric flow rate is

Q ¼
ð w

0

ð h

0

vx yð Þdydz ¼ � n3h3w

12μ

dp

dx

� �
� Unhw

2
ð11:99Þ

motion

fluid

load W

bearing

w

U

y

x

h
nh

slider

bL
L

FIGURE 11.23 A step-slider bearing showing important loads and dimensions.
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for n¼ 1 or n. Because Q must be a constant

Q1 ¼ �
h3w

12μ

dp

dx

� �

1

� Uhw

2
¼ � n3h3w

12μ

dp

dx

� �

2

� Unhw

2
¼ Q2; ð11:100Þ

which is to say, (dp/dx) must be a constant over 0
 x< L� bL and also over

L� bL< x
 L; that is, p must be linear in each of these two domains

(Fig. 11.24). We let

dp

dx

� �

1

¼ pm � po
L 1� bð Þ ,

dp

dx

� �

2

¼ po � pm
bL

ð11:101Þ

where pm is the value of the pressure at x¼L(1� b) and po is the uniform

pressure outside the slider on both the right and the left ends. Let us now solve

for pm� po using the constraint that Q1¼Q2. We find that

� h3w

12μ

pm � po
L 1� bð Þ

� �
� Uhw

2
¼ � n3h3w

12μ

po � pm
bL

� �
� Unhw

2
; ð11:102Þ

or

pm � poð Þ h3w

12μL

� �
1

1� b
þ n3

b

� �
¼ Uhw

2
n� 1ð Þ: ð11:103Þ

p

x

L

bL

po

pm

FIGURE 11.24 Computed

pressure distribution for

the step-slider bearing

shown in Fig. 11.23.
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Hence,

pm � po ¼
6μULwb

h2
n� 1ð Þ 1� bð Þ
bþ n3 1� bð Þ

� �
: ð11:104Þ

The associated total vertical load W that the slider can support is

W ¼ po LWð Þ þ 1

2
L� bLð Þ pm � poð Þwþ 1

2
bLð Þ pm � poð Þw

¼ po LWð Þ þ 1

2
Lw pm � poð Þ ¼ Wstatic þWdyn:

ð11:105Þ

Defining the dynamic load-carrying capability as Wdyn, we can define a

nondimensional load coefficient Cw as

Cw ¼ Wdyn

h2

UμL2w2

� �
¼ 3b n� 1ð Þ 1� bð Þ

bþ n3 1� bð Þ : ð11:106Þ

This formula can be used by the design engineer to determine preferred values

of b and n to maximize Cw given any other design constraints. Note, however,

that if n¼ 1 or b¼ 0, the step disappears and the dynamic load-carrying

capacity is lost. This is the case in parallel plates, or the so-called Couette

flow. Finally, note that a frictional drag coefficient Cf can also be defined as the

total drag force FD divided by the total vertical load-bearing capacity W. It can

be shown that

C f ¼
FD

W
¼ h n� 1ð Þ

L
þ h n 1� bð Þ þ b½ 	 bþ n3 1� bð Þ½ 	

3Lbn n� 1ð Þ 1� bð Þ : ð11:107Þ

Obviously, we seek to minimize Cf while maximizing Cw.

Whereas a step-slider (Fig. 11.23) allows us to begin to appreciate some

aspects of hydrodynamic lubrication, such a sharp geometric discontinuity is

clearly unrealistic in the case of an articulating joint, even a prosthetic one.

Hence, one would be more likely to consider the inclined slider (Fig. 11.22).

The solution of this problem is similar but more complex because h¼ h(x).

It can be shown, however, that if h(x) changes linearly, then

p xð Þ � po ¼
μULw

h2o

6 n� 1ð Þ 1� x=Lð Þ x=Lð Þ
nþ 1ð Þ nþ n� 1ð Þ x=Lð Þ½ 	2

 !
; ð11:108Þ

where h(x)¼ ho[1+ (n� 1)(x/L)]. For L� ho, one finds a parabolic distribution

of pressure with load and frictional load coefficients
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Cw ¼
6

n� 1ð Þ2
ln n� 2 n� 1ð Þ

nþ 1

� �
; ð11:109Þ

C f ¼
ho n� 1ð Þ

L

ln n

6lnn� 12 n� 1ð Þ=nþ 1
þ 1

2

� �
: ð11:110Þ

Despite the simplicity of this and similar analyses, mechanical engineers can

describe well and thus design many efficient bearings. Yet, this conventional

hydrodynamic lubrication theory reveals that a continuous, highspeed operation

(i.e., speed U) is needed between the two opposing solid surfaces to maintain a

sufficient pressure and thus thickness of the lubricant. High-speed relative

motion is not a characteristic of the articulating joint, however; thus, the

mechanics of diarthroidal joints is more complex. We are reminded, therefore,

that biomechanics is not just mechanics applied to biology; many times, it must

include the development or extension of mechanics to solve a biologically

important problem.

In the 1960s, attention in orthopedic biomechanics turned toward coupled

theories that included both the flow of the lubricant and the deformation of the

solid load-bearing surfaces. Such elastohydrodynamic theories were based on

the assumption that compression of the cartilage caused it to spread out and

thereby increase the surface area over which the load was applied. It was argued

that lower stresses would induce less wear. Nevertheless, such theories could

not explain many empirical findings and they still suggested the need for

relatively high speeds of relative motion between the load-bearing surfaces;

there remained a need for more appropriate analyses. One such idea was called

the squeeze-film theory. Recall from Fig. 7.14 that synovial fluid exhibits a

non-Newtonian character. Basically, it was suggested that a hydrostatic pres-

sure would be generated in the synovial fluid when the two load-bearing solid

surfaces were brought closer together and that this was due in part to the high

apparent viscosity of the synovial fluid at low shear rates and at long times of

applied stress. Nevertheless, it seemed that an important aspect of the biophys-

ics was still being neglected.

From the 1960s to the 1980s, others began to consider the “porous” nature of

the cartilage. One suggestion was that when the cartilage was loaded, interstitial

fluid would be exuded and this fluid would aid in the lubrication. Such theories

were referred to as weeping lubrication, which allowed for a load-dependent,

self-pressurizing mechanism. Conversely, others suggested a so-called boosted

lubrication whereby the water portion of the synovial fluid was forced into the

cartilage, thus leaving a higher-viscosity, strongly non-Newtonian solution

consisting primarily of hyaluronan in the joint space. Consideration of such

scenarios (i.e., cases of fluids diffusing within solids) led to the widespread use

of the aforementioned theory of mixtures in cartilage mechanics, which we

discuss briefly in the following section.
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Observation 11.2. Glycosaminoglycans, often simply referred to as GAGs,

consist of linear chains of repeating disaccharide units; they are highly nega-

tively charged and thereby tend to sequester water and contribute directly to the

compressive, rather than tensile, stiffness of a soft tissue. The four primary

classes of GAGs are hyaluronan, chondroitin sulfate/dermatan sulfate, heparan

sulfate, and keratan sulfate. Hyaluronan is unique in that it does not associate

directly with a protein core. It expands significantly when hydrated and

occupies large volumes of the extracellular space, thus allowing it to resist

compressive loads and to facilitate cell migration; it is particularly abundant in

morphogenesis and early wound healing. When GAGs associate with a protein

core, the composite molecules are called proteoglycans (PGs). In addition to

serving as space-filling, negatively charged gels within the extracellular matrix,

PGs also control the activity of many cytokines, chemokines, and proteases.

In normal heart valves, for example, the PGs biglycan and decorin tend to

exist in regions of cyclic tension whereas hyaluronan and the PG versican tend

to aggregate in regions of cyclic compression. The former is consistent with

biglycan and decorin contributing to collagen fibrillogenesis whereas the latter

is consistent with the ability of versican to bind hyaluronan and form large

multi-molecular hydrophilic complexes that support compressive loads.

In particular, the fixed negative charges associated with many of the GAGs/

PGs perturb the local balance of cations within the extracellular matrix and

induce so-called Donnan swelling pressures. Briefly, the so-called Donnan

effect explains how mechanical equilibrium and electroneutrality can both be

maintained while gradients or jumps exist in mobile ions (e.g., Na+ in an

aqueous solution) due to a region of the system containing fixed molecules

that are charged (e.g., negative charges due to SO3
� or COO� groups within

GAGs). These ionic gradients or jumps, in turn, alter the regional distribution of

interstitial water and, as in the case of GAGs, cause a localized swelling

pressure within the region containing the fixed charges. See Cowin and Doty

(2007) for more details on modeling the Donnan effect.

11.5.3 Need for a Mixture Theory

As noted earlier, in 1980, Mow and colleagues proposed the use of the theory of

mixtures to account for the combined fluid and solidlike behavior exhibited by

articular cartilage. Here is a very brief synopsis, which comes from Mow

et al. (1990). Cartilage consists of ~50–73 % type II collagen, 15–30 % proteo-

glycan, and ~5 % chondrocytes by dry weight; by wet weight, cartilage consists

of 58–78 % water. These constituents are organized in a highly complex,

nonhomogeneous fashion (Fig. 11.25). In particular, the collagen is oriented

differently in the superficial, middle, and deep “zones,” and the collagen and
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proteoglycans form a complex composite microstructure. The collagen is

packed more densely in the superficial and deep zones; thus, most of the

proteoglycans are located in the middle zone. The proteoglycans contribute

significantly to the compressive and swelling properties. Mow and colleagues

idealized this structure as a porous matrix (collagen + proteoglycans, or solid

phase) that is swollen with water (a liquid phase), both bound and unbound.

In other words, there was no attempt to model directly the complex interactions

(physical entanglements, electrostatic bonds, and excluded volume) between

proteoglycans and collagen; attention was focused on the volume-averaged

mean composite behavior of the solid portion of the tissue. Of particular

importance, however, is the ability of applied loads to cause the interstitial

fluid to redistribute within the cartilage or to flow out of or into the cartilage.

One of the key parameters describing such a behavior is thus the permeability of

the tissue, which was measured via confined compression tests wherein a

sample was placed above a rigid porous filter and loaded from above. The

permeability was found to decrease nonlinearly with applied compressive

strain, typical values being on the order of (0.5� 2)� 10–15 m4/Ns. Other

important material parameters included the moduli for the solid (Young’s

modulus and Poisson’s ratio because of the assumption of a linear elastic

behavior by the solid portion) and diffusive drag coefficient. The latter was a

measure of the ease that the fluid could diffuse through the solid and thus was

inversely related to the permeability. Indeed, rather than modeling the viscosity

of the interstitial fluid directly, the diffusive drag coefficient was used to capture

this dissipative characteristic. Viscoelastic effects can thus be modeled, in part,

FIGURE 11.25 Schema of articular cartilage showing the strong nonhomogeneity in

composition and its solid–fluid mixture constitution, which is dominated by water,

proteoglycans, and type II collagen. Recall, for example, that tendons, ligaments, and

bones (other structurally significant members of an articulating joint) consist largely of

type I collagen, not type II. Thus, cartilage possesses a unique structure consistent with

its unique function. Hyaluronic acid is also called hyaluronan.
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through solid–fluid interactions even though more recent studies suggest the

need to account for the intrinsic viscoelastic behavior of the “solid.” Although

the basic formulation is straightforward, solution of even simple initial and

boundary value problems is nontrivial; in particular, it is very difficult to

identify appropriate boundary conditions between a non-Newtonian (synovial)

fluid and a solid–fluid mixture (cartilage). Thus, the reader is referred to

advanced texts. The take-home message here is that, again, we see the impor-

tance of modeling coupled phenomena in soft tissue biomechanics.

Observation 11.3. In this chapter, we have discussed but a few of the many

biological and clinical problems wherein one must understand both the biosolid

and the biofluid mechanics, including many cases of direct fluid-solid interac-

tions. As the reader might imagine, there are many more such examples.

Albeit perhaps not typically thought of within the context of biomechanics,

it is becoming increasingly recognized that the study of cancer and cancerous

cells requires attention to the mechanics. Simply put, cancer is characterized

by uncontrolled cell division as well as the properties of invasion and metas-

tasis in the formation of tumors. Cancerous tumors typically exhibit different

material properties than those of the surrounding healthy tissue, which can be

exploited in diagnosis (e.g., detection via ultrasound, or elastography).

Because of their heightened growth, cancerous tumors require increased

oxygen and thus angiogenic development of a vascular network, which can

be considered a therapeutic target (i.e., attenuation of the angiogenic growth).

Hence, it is easy to appreciate roles of both biosolid and biofluid tissue

mechanics.

In addition, however, the excellent review by Suresh (2007) highlights the

importance of understanding cell mechanics from the perspective of cellular

migration, cytoadherence, neoplastic transformation, and so forth. For example,

Suresh asks “How could the information on structure—mechanical property—

biological function—disease state relationships guide the development of novel

tools for disease diagnostics, prophylactics and therapeutics, as well as drug

efficacy assays?” He then proceeds to review via a flowchart how structure-

property-function relations are related within the context of complex diseases

such as cancer, to review the biology of cancer cells while focusing on impor-

tant biomechanical and chemomechanical factors such as angiogenesis, cellular

invasion into blood vessels and lymph, and transport to other locations where

the cells actively extravasate (i.e., migrate across the vascular wall) and metas-

tasize. He also reviews the importance of quantifying mechanical properties of

cells (via nine different experimental approaches, including AFM and optical

tweezers) and understanding the mechanics of the cytoskeleton, particularly the
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actin, intermediate filaments, and microtubules. As noted throughout, therefore,

solid and fluid mechanics at multiple scales is fundamental to understanding

and treating diverse diseases, even cancer.

11.6 Thermomechanics, Electromechanics,
and Chemomechanics

Continuum mechanics rests upon three fundamental balance relations that yield

our equaitons ofmotion: mass, linear momentum, and energy.With the exception

of the development of the pipe-flow equation in Chap. 10, we have focused on the

balance of mass and linear momentum. One reason for this is that the energy

equation is particularly important in nonisothermal problems, but the body tends

to regulate its temperature within a narrow range (37� 2 
C). Nevertheless, there
are many cases wherein biothermomechanics is important (Humphrey 2003b). In

particular, advances in laser, microwave, radio-frequency, and other technologies

has motivated the widespread use of supraphysiologic temperatures to treat a

wide variety of diseases and injuries. Examples include the treatment of joint

laxity (e.g., severe sprains), visual problems (e.g., LASIK surgery and secondary

cataracts), skin defects (e.g., port wine stains and melanomas), chronic pain,

cardiovascular disorders (e.g., atrial fibrillation and obstructive atherosclerotic

lesions), gynecological disorders (e.g., endometriosis), prostate problems (e.g.,

benign prostatic hyperplasia as well as malignancies), and so on. Such treatments

denature proteins and kill cells thereby affecting the biomechanical properties of

the treated tissues as well as the associated mechanobiology; the latter being

particularly important with regard to the post-treatment healing response. For

example, if a thermal treatment alters the biomechanical properties, and perhaps

the geometry, of a tissue or organ, then different stresses will result due to normal

in vivo loads. An altered state of stress, in turn, will alter cellular activity via

mechanotransduction mechanisms, including possible changes in cell migration,

proliferation, apoptosis, and production and removal of the matrix. Hence, not

only is the response to the initial (thermal) injury important, so too is the

biomechanics. There is, therefore, a pressing need to study coupled thermome-

chanical problems. For example, soft tissues will often change their extensibility

and hydration in response to thermal damage. Hence, there is a need to address the

fluidlike, solidlike, and thermal behaviors together. Again, however, biothermo-

mechanics is inherently complex and nonlinear, and detailed design and analysis

are beyond the scope of an introductory text.

Nonetheless, to illustrate the importance of combining thermal and mechan-

ical analyses, let us consider a simple example. Recall from Chaps. 2–4 that

metallic implants are commonly used in joint replacements, particularly in the

hip and knee. Moreover, although there are multiple ways of securing such
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devices within the host tissue, one commonly used method is to “cement” the

device in place. Bone cements, such as poly(methyl-methacrylate) or PMMA,

are injected into the space between the bone and prosthesis and allowed to

polymerize (cf. Fig. 4.10). This process involves an exothermic reaction, which

is to say, one that gives off “heat.” A concern, therefore, is whether the transfer

of heat from the curing cement to the bone might thermally damage the bone

cells, which, in turn, would compromise the bone-implant interface. As a first

approximation of this problem, one could consider a structure consisting of

three concentric, circular layers: the inner metallic prosthesis, the layer of

PMMA, and the outer layer of cortical bone. The bioheat transfer problem

could be assumed to be axisymmetric; hence, from Eq. (A10.12) of Chap. 10,

the basic heat transfer equation could be written in terms of temperature T as

ρcv
∂T

∂t
¼ k

1

r

∂

∂r
r
∂T

∂r

� �� 

þ ρqs ð11:111Þ

for each layer, where cv and k are the specific heat and thermal conductivity,

respectively, of each material. Recall, too, that qs is a so-called volumetric heat

source or sink. One of the important realizations in biomechanics is that flowing

blood is capable of convecting away significant amounts of heat. In 1948,

H. Pennes suggested that one could model this convective loss through the qs
term (i.e., as a heat sink). Determination of a reasonable constitutive relation for

qs thus requires that we couple the analyses of heat transfer and blood flow.

Similarly, recall from Eqs. (2.69) of Chap. 2 that the strains in a solid depend on

both the state of stress and the temperature. Hence, changes in temperature

within the three materials (prosthesis, cement, and bone) will change their states

of stress and strain. Clearly, the solid mechanics should be coupled with that of

the analysis of the heat transfer. Without going into mathematical detail,

therefore, we see that even in a simple example, solid mechanics, fluid mechan-

ics, and heat transfer should be addressed in coupled fashion to design well a

common clinical procedure.

With the exception of a brief discussion in Chap. 6, we have not addressed the

mechanics of muscle. There are a number of reasons for this, not the least of

which is that our understanding of muscle mechanics remains inadequate.

Nevertheless, it should be clear that the biomechanics of athletic performance,

rehabilitation, cardiac health, the vasculature, and many other areas depends

primarily on an understanding of muscle mechanics. In particular, heart disease

remains a leading cause of morbidity and mortality, and biomechanics has great

potential to impact treatment in many ways—from the design of artificial hearts

and assist devices to understanding thermal treatments such as atrial ablation.

Cardiac function (i.e., the filling and ejecting of blood from the heart to the rest

of the body) depends on a strong electromechanical coupling; that is, the

propagation of electrical signals dictates the order of contraction of cardiac

muscle fibers, which, in turn, dictates cardiac output. There is, therefore, a
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pressing need to couple our study of the electrical activity and mechanical

performance of the heart. Being an advanced topic, however, we merely refer

the reader to the literature, including the excellent books by Glass et al. (1991)

and Panfilov and Holden (1997).

Finally, although not emphasized earlier, it should be clear from Chaps. 2–10

that the mechanics is coupled strongly with the biochemistry in many cases. For

example, with regard to biological growth and remodeling, A. Turing recog-

nized in the 1950s that one must not only quantify the effects of stress and strain

on tissue response (e.g., Wolff’s law of bone remodeling), one must also

account for the rate at which various molecules (e.g., morphogens) are produced

by the cells and the diffusion of such molecules throughout the tissue. Cellular

production and molecular diffusion are each affected directly by the mechanics

(e.g., pressure gradients); thus, such studies must address the chemomechanical

coupling. Indeed, recent data suggest that even the contractility of smooth

muscle cells in early hypertension may be governed, in part, by a pressure-

induced increase in the conversion of G-actin to F-actin in the cytoplasm (i.e., a

pressure-induced chemical reaction called polymerization).

Similarly, we mentioned earlier that there is a need to couple mechanics and

thermodynamics in studies of the use of heat to treat disease and injury. One of

the most commonly used equations in biothermomechanics is that of

S. Arrhenius, which states that the rate k of a chemical reaction (e.g., denatur-

ation of a protein) depends on the temperature given two material parameters,

the activation energy Ea and gas constant R, namely

k Tð Þ ¼ A exp �Ea

RT

� �
: ð11:112Þ

Recent data suggest, however, that the rate of thermal denaturation also depends

on the state of stress in the tissue: A higher stress tends to delay the denaturation

at a given temperature. It should be noted, therefore, that the parameter A in

Arrhenius’s relation can be shown to be related to an activation entropy. It is

well known that tissue elasticity is primarily entropic (i.e., determined primarily

by load-induced changes in the conformations of molecules), not energetic

(as in metals). It is clear, therefore, that the chemical reactions responsible for

the thermal denaturation of a protein or the thermal death of a cell depend on the

thermodynamics and the solid mechanics. See Humphrey (2003b) for more

detail on these and related issues in biothermomechanics.

In summary, most real-world problems necessitate that we address coupled

problems—solid–fluid, thermomechanical, electromechanical, chemomechani-

cal, and, indeed, thermomechanochemical and so on. Toward this end, we should

first learn well the basics in each discipline, knowing that important contributions

will come from appropriate synthesis. Interdisciplinary and multidisciplinary

research teams thus hold great promise and should be pursued vigorously.
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Chapter Summary

Whereas Chaps. 2–6 focused on the mechanics of materials that exhibit solidlike

behaviors and Chaps. 7–10 focused on materials that exhibit fluidlike behaviors,

there are many cases wherein either there exist fluid-solid-interactions or the

material simultaneously exhibits both solidlike and fluidlike characteristics.

Like Chap. 6, the goal of this chapter was simply to introduce new topics having

increased complexity—the interested reader is encouraged to seek more

advanced books on both nonlinear material behavior and coupled phenomena.

Section 11.2 is particularly important for it illustrates the use of the

Buckingham Pi theorem (cf. Sect. 10.5) in designing and interpreting a reveal-

ing experiment, in this case for the diffusion of a viscous fluid through a finitely

deformed permeable membrane. Figure 11.5 shows, for example, that perme-

ability varies nonlinearly with finite deformation.

In contrast, Sect. 11.3 illustrates an elastodynamic solution of a problem of

importance in neurosurgery, which reveals the importance of capturing relevant

solid-fluid interactions and using nonlinear rather than linear elasticity to

describe the response of this soft tissue. Indeed, note that this same problem

was addressed before by others who neglected both the surrounding cerebral

spinal fluid and the nonlinear stress-stretch behavior of the wall, which not

unexpectedly resulted in wrong conclusions regarding the possible stability of

the lesion.

Combined solidlike and fluidlike behaviors classified as viscoelastic are

especially important in biomechanics under particular conditions of interest.

Section 11.4 briefly introduces this topic, but the interested reader is referred to

other textbooks devoted to this subject. Similar to many of these text books,

Sect. 11.4.1 focuses on a 1-D linearized theory, which applies to limited

situations in biomechanics but helps one to build intuition nonetheless. In

particular, like the Bernoulli equation for an ideal fluid, linearized viscoelastic-

ity has been misused frequently in the literature because of the neglect of

limitations of the theory. Such misuse has appeared at both the cell and tissue

levels.

In addition, to the need to appreciate nonlinear viscoelasticity, the reader is

encouraged to study concepts of poroelasticity and mixture theory as applied to

biomechanics. See for example the book by Cowin and Doty (2007) and

references therein. Indeed, we conclude Chap. 11 with an illustrative example

of hydrodynamics of lubrication, a topic that is typically aligned closely to the

use of elastohydrodynamics and mixture theory to understand the mechanics of

joints in orthopedic research. The reader is referred to Mow and Hayes (1991)

for more on this and related topics.
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Appendix 11: Wave Equations

Recall that we studied the steady flow of a Newtonian fluid within a rigid

circular cylinder in Sect. 9.2. Notwithstanding the unsteadiness of flow in actual

arteries and airways, results for steady flows are often used to estimate the mean

wall shear stress within arteries and airways as well as in the more appropriate

applications of flows in veins, gravity-fed IV tubes, and so forth. Inasmuch as

the unsteadiness can be important, we also considered a special case of pulsatile

flow within a rigid circular cylinder in Sect. 9.5, which provided more insight

into potential effects of pulsatility on wall shear stress. Yet, as noted eloquently

by Zamir (2000), pulsatile flows differ fundamentally within rigid tubes versus

either elastic or viscoelastic tubes (e.g., arteries, airways, and so forth). No

matter how small the distensibility of the tube, flow propagates within a

distensible tube as a wave having a finite wave speed. Hence, in the presence

of any downstream material or geometric discontinuity (e.g., a bifurcation or a

branch), the wave(s) can reflect, which can lead to forward and backward

traveling waves that add either constructively or destructively. In the case of

constructive interference, for example, a local systolic blood pressure due to a

forward traveling wave can be augmented by a backward traveling wave, which

thereby increases the local pulse pressure. Of course, an increased pulse pres-

sure in the ascending aorta can increase the work-load on the heart whereas an

increased pulse pressure within any segment of the arterial tree can also be a

strong mechanobiological stimulus for cells within the wall of the artery.

In contrast, waves do not exist in a rigid tube. The so-called wave speed is

infinite in a rigid tube (recall the Moens-Korteweg equation in Observation 7.2),

which means that the pressure and flow are transmitted instantaneously along the

length of the tube, hence resulting in an overall bulk motion. There is,

therefore, strong motivation to study unsteady flows in distensible tubes, that is,

fluid-solid-interactions. Indeed, as we also noted in Observation 7.2, “pulse wave

velocity” (PWV) within large arteries is now recognized as an important indicator

or initiator of diverse cardiovascular diseases and it merits increased scientific

consideration. Although the complexities of analytical or computational solutions

of wave motion within a distensible vasculature are beyond the scope of an

introductory textbook, let us note some basics with regard to traveling waves.

A number of equations in mathematical physics exhibit common features and

can be classified as elliptic, parabolic, or hyperbolic (partial) differential equa-

tions. They are,

Elliptic 0 ¼ ∇
2
ϕ,

Parabolic
∂ϕ

∂t
¼ α2∇

2
ϕ,

Hyperbolic
∂
2
ϕ

∂t2
¼ c2∇2ϕ;

ðA:11:1Þ
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where α and c are parameters,∇2 � ∂
2

∂x2
þ ∂

2

∂y2
þ ∂

2

∂z2
in three spatial dimensions

(3-D) in Cartesian coordinates, and t is time. These equations are known,

respectively, as the Laplace equation, the diffusion equation, and the wave

equation; general methods of solution can be found in textbooks on partial

differential equations or applied mathematics.

Let us consider briefly the wave equation in one spatial dimension (1-D),

namely

∂
2
ϕ

∂t2
¼ c2

∂
2
ϕ

∂x2
; ðA:11:2Þ

where c is a constant and we seek solutions of the form ϕ ¼ ϕ x; tð Þ, where x is
the spatial coordinate location and t is time. It was recognized by D’Alembert

that functions of the form ϕ ¼ ϕ x� ctð Þ and ϕ ¼ ϕ xþ ctð Þ satisfy this linear

partial differential equation, hence these solutions can be superimposed to yield

the general solution, ϕ ¼ ϕ x� ctð Þ þ ϕ xþ ctð Þ, which suggests that a wave

could begin at x¼ 0 and travel simultaneously in both the positive and negative

direction at speed c. That these functions satisfy the wave equation can be

appreciated easily by noting that, if ϕ ¼ ϕ̂ uð Þ, with u ¼ x� ct, then

∂ϕ

∂t
¼ ∂ϕ̂

∂u

∂u

∂t
¼ ∂ϕ̂

∂u
�cð Þ and ∂

2
ϕ

∂t2
¼ ∂

2
ϕ̂

∂u2
�cð Þ �cð Þ

∂ϕ

∂x
¼ ∂ϕ̂

∂u

∂u

∂x
¼ ∂ϕ̂

∂u
1ð Þ and ∂

2
ϕ

∂x2
¼ ∂

2
ϕ̂

∂u2

ðA:11:3Þ

whereby

c2
∂
2
ϕ̂

∂u2
� c2

∂
2
ϕ̂

∂u2
: ðA:11:4Þ

Moreover, that the parameter c has units of speed can be seen easily via the unit

equation for A.11.2, namely

ϕ½ 	
T½ 	2
¼ c½ 	2 ϕ½ 	

L½ 	2
! c½ 	2 ¼ L½ 	2

T½ 	2
! c½ 	 ¼ L½ 	

T½ 	 : ðA:11:5Þ

Notwithstanding the interpretive advantage of D’Alembert’s solution, one often

pursues solutions to the wave equation using the method of separation of

variables. That is, we assume that the solution can be written in the form

ϕ x; tð Þ ¼ X xð ÞT tð Þ, whereby we have
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X
d2T

dt2
¼ c2T

d2X

dx2
! 1

T

d2T

dt2
¼ c2

X

d2X

dx2
: ðA:11:6Þ

Of course, the only way for a function of time (left hand side) to equal a function

of position (right hand side) for all (x,t) is for both functions to equal the same

constant, say A. Hence, we have two second order ordinary differential equa-

tions to solve, namely

d2T

dt2
¼ AT,

d2X

dx2
¼ A

c2
X: ðA:11:7Þ

Three solutions are possible depending on whether A< 0, A¼ 0, or A> 0. It can

be shown that A> 0 and A¼ 0 do not lead to periodic solutions and thus are not

realistic. If A< 0, however, one finds solutions for both X(x) and T(t). In this

case, it is convenient to let A � � λ2 λ > 0ð Þ, whereby the final solution is

(Wylie and Barrett 1982)

ϕ x; tð Þ ¼ X xð ÞT tð Þ

¼ C1 cos
λ

c
xþ C2 sin

λ

c
x

� �
C3 cos λtþ C4 sin λtð Þ ðA:11:8Þ

where C1, C2, C3, C4 are material parameters to be determined from boundary

and initial conditions. Clearly, this solution is periodic for it repeats itself every

time t increases by 2π/λ. As we close this chapter, similar to Chap. 8, we are

reminded that many fundamental approaches of applied mathematics prove

essential in solving problems in biomechanics, hence one must commit to

studying both.

Exercises

11.1 Repeat the nondimensional analysis of Sect. 11.2 using as length, time,

and mass scales:

Ls ¼ A, Ts ¼
A2H

Q
, Ms ¼ ρA2H:

Compare the results with those in Sect. 11.2.

11.2 Repeat Exercise 11.1 using

Ls ¼ A, Ts ¼

ffiffiffiffiffiffiffiffiffiffiffi
ρA2

Δp
,

s

Ms ¼ ρA2H:

660 11. Coupled Solid–Fluid Problems

http://dx.doi.org/10.1007/978-1-4939-2623-7_8


11.3 Recall from Observation 10.3 that the Buckingham Pi method can be

used to nondimensionalize known equations. Show that the governing

differential equation of motion for the aneurysm [Eq. (11.53)] can be

written in nondimensional form as

1

x2
þ bx

� �
€xþ 3

2
b _x2 þ 4m

_x

x
þ 2

f xð Þ
x
¼ F τð Þ;

where

x � λ, f ¼ T

c
,

b ¼ ρA

ρsH
, F ¼ PA

c
,

m ¼ μffiffiffiffiffiffiffiffiffiffi
ρscH
p , τ ¼ t

ffiffiffi
c
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsA

2H

q ;

and c is a material parameter having units of force/length.

11.4 If the CSF surrounding a spherical aneurysm is assumed to be ideal,

then the governing equation reduces to

1

x2
þ bx

� �
€xþ 3

2
b _x2 þ 2

f xð Þ
x
¼ F τð Þ:

If F(τ)¼F0, a constant, show that the equation can be integrated once

in time to yield

1

2
_x2 þ 1

2
b _x2x3 þ 2

ð
x f xð Þdx� 1

3
F0x

3 ¼ constant:

This form of the equation can be related to the first law of thermody-

namics (e.g., ẋ2/2 is a nondimensional kinetic energy term, and –F0x
3/3

is a work-type term related to a pressure times volume). Hint: Note that

_x€x ¼ d

dt

1

2
_x2

� �
, x2€x ¼ d

dt

1

3
x3

� �
, dx ¼ dx

dt
dt:

11.5 If F(τ)�F0, a constant, if f(x)¼ f0, a constant surface tension, and if

there is no external fluid, then the governing equation of motion of a

spherical “soap bubble” is (cf. equation in Exercise 11.3)

1

x2
€xþ 2 f 0

x
¼ F0:

Solve this equation for x(τ) and comment on its interpretation.
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11.6 In Sect. 11.3, we saw that the pressure field p(r, t) in a radial flow in a

spherical domain for an incompressible, Newtonian fluid is independent

of the viscosity; that is, we have found a special flow wherein the same

pressure field satisfies both the Navier–Stokes and the Euler equations.

Because the flow is radial, we can also define a radial streamline s� r,

where ds¼ dr. Show, therefore, that an unsteady Bernoulli equation can

be written in the form

pA þ ρgzA þ
1

2
ρv2A ¼ pB þ ρgzB þ

1

2
ρv2B þ ρ

ð B

A

∂vs

∂t
ds:

Hint: Integrate the appropriate Euler equation along a radial streamline.

11.7 Use the unsteady Bernoulli equation in Exercise 11.6, with point A at

r¼ a, point B at r¼1, and vs� vr¼ g(t)/r2 from our mass balance

relation, to show that one obtains the same pressure field p(r, t) from

Bernoulli as obtained from Navier–Stokes.

11.8 Repeat Example 11.3 for η¼ 0.0625, ζ¼�0.1, c¼ 1.0, α¼ 0.5, F(t)¼
1.0sin t, x(0)¼ 0, and _x 0ð Þ ¼ 1. What does the negative value of ζ

induce?

11.9 Repeat Exercise 11.8 with x(0)¼ 1 and _x 0ð Þ ¼ 1.

11.10 Viscoelastic characteristics include instantaneous elasticity, creep,

stress relaxation, instantaneous recovery, delayed elasticity, permanent

set, and hysteresis. Define and discuss each characteristic.

11.11 We found in Eq. (11.59) that the stress relaxation σ(t) in a Maxwell

model is given by an exponential decay. Compute the rate of change of

stress as a function of time. Observe that the relaxation is initially very

rapid; indeed, show that only 37 % of the initial stress remains at time

t¼ tR, the relaxation time.

11.12 Similar to the previous exercise, investigate the creep response of a

Kelvin–Voigt model. In particular, compute _ε tð Þ and sketch it versus

time. Show, too, that only 37 % of the asymptotic strains remains to be

realized after t¼ tc.

11.13 As we saw in Eq. (11.64), the Kelvin–Voigt model does not allow stress

relaxation. Intuitively, we realize that a step change in ε from 0 to ε0 at

time t¼ 0 can only be accomplished via an infinite stress (if that were

possible) because a viscous dashpot cannot otherwise extend instanta-

neously. Thereafter, the stress in the viscous element drops to zero, for

it requires a strain rate to produce a stress, thus the spring sustains the

constant extension with a constant stress. In a similar way, qualitatively

discuss the creep response of the Kelvin–Voigt model and, in particular,

justify why this behavior is sometimes referred to as a delayed elasticity

(cf. Findley et al. 1976, p. 56).
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11.14 Recall again the stress relaxation of a Maxwell model:

σ tð Þ ¼ σ0e
�t=tR ;

where tR is the so-called relaxation time. Because the model is linear,

superposition holds (cf. Sect. 5.5 of Chap. 5). Thus, a set of Maxwell

models in parallel (Fig. 11.26) and under a constant strain ε0 will stress

relax according to

σ tð Þ ¼ ε0
Xn

i¼1
Eie
�t=t i

R ;

where t iR ¼ μi=Ei for all elements i¼ 1, 2,. . . n. For a continuous

distribution of relaxation times, from 0 to1, we have

σ tð Þ ¼ ε0

ð1

0

R tRð Þe�t=tRdtR;

where R(tR) is called the relaxation spectrum—a distribution of relax-

ation times. Formulate a similar analysis of the creep response of a set

of Kelvin–Voigt elements in series whereby

ε tð Þ ¼ σ0
Xn

i¼1
Ci 1� e�t=t

i
c

� �
;

or

ε tð Þ ¼ σ0

ð1

0

C tcð Þ 1� e�t=tc
� �

dtc;

where C(tc) is called the retardation spectrum.

FIGURE 11.26
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11.15 A Maxwell model in series with a Kelvin–Voigt model is a four-

parameter model sometimes called a Burgers model. If the spring

stiffness and dashpot viscosity are given by (E1, μ1) and (E2, μ2) for

the Maxwell and Kelvin–Voigt components, respectively, show that the

creep function (or compliance) for the Burgers model is

J tð Þ ¼ 1

E1

þ t

μ1
þ 1

E2

1� e�E2t=μ2
� �

:

11.16 Assume that a uniaxial member is subjected to a strain of the form

ε(t)¼ εA sinωt. If the material behaves elastically, one would expect a

stress response of the form σ(t)¼ σA sinωt (i.e., in phase). For a visco-

elastic response, however, one would expect the stress response to be

out of phase with the strain. Hence, let

σ tð Þ ¼ σA sin ωtþ ϕð Þ ¼ σA sinωt cosϕþ cosωt sinϕð Þ;

where ϕ is the phase angle. This form suggests that a complex repre-

sentation may be useful, namely

ε tð Þ ¼ εAe
iωt, σ tð Þ ¼ σAe

i ωtþϕð Þ;

where i ¼
ffiffiffiffiffiffiffi
�1
p

. Show that

σ tð Þ
ε tð Þ ¼

σA

εA
eiϕ ¼ G1 þ iG2;

where G1 and G2 are called the storage modulus and the loss modulus,

respectively. Show, too, that

G1 ¼
σA

εA
cosϕ, G2 ¼

σA

εA
sinϕ, tanϕ ¼ G2

G1

:

Note that, for example, G1 ~ 10
9 Pa, G2 ~ 10

7 Pa, and ϕ~ 0.01 for a

typical polymer.

11.17 Following up on Exercise 11.16, note that G*¼G1+ iG2 is called the

complex modulus. Show that for the sinusoidal straining in Exercise

11.16, the magnitude of G*¼ σA/εA. Note, too, that tanϕ is often called

the mechanical loss.

11.18 If a Standard model consists of a spring in series with a Kelvin–Voigt

element, and the spring has a stiffness E¼ 1 GPa, whereas the Kelvin–

Voigt element has stiffness 10 kPa and viscosity 107 P (poise), plot

log J1, log J2, and log(tanϕ) versus logω2 [�8, 8], where
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J* ¼ J1 � iJ2 ¼
ε0

σ0
e�iϕ

for creep.

11.19 Show that for a Maxwell model subjected to an oscillatory motion,

G* ¼ μ2ω2=E

1þ μ2ω2=E2
þ i

μω

1þ μ2ω2=E2

� �

and

tanϕ ¼ G2

G1

¼ E

ωμ
:

11.20 Consistent with the prior exercise, plot tanϕ and |G*| versus logω2
[�4, 4] given values of E¼ l GPa and μ¼ 5� 109 P. Repeat for the

same E but with μ¼ 5� 1010 then 5� 108 P. Discuss the behavior in

terms of changes in tR. Note that these values are reasonable for a

polymer that may be used in a biomedical device.

11.21 Show that the frictional drag coefficient Cf for the step-slider in

Sect. 11.5.2 is correct as given. Hint: The total drag force FD can be

computed by integrating the shear stresses over the bearing surface;

that is,

FD ¼ w

ðL 1�bð Þ

0

τ1dx1þ
ðbL

L 1�bð Þ
τ2dx2;

where, in general,

τ � μ
∂vx

dy

����
y¼0

11.22 The so-called Reynolds’ equation governs general flows in hydro-

dynamic lubrication theory. In one dimension, show that it can be

written as

d

dx

h3 xð Þw
μ

d p

dx

� �� �
þ 6U

dh

dx
¼ 0:

Hint: Use the result for the velocity vx(y) in Sect. 11.5.2 and compute

the volumetric flow rate

Q ¼ w

ðh xð Þ

0

vx yð Þdy:
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Exploit the fact that Q is constant with respect to x even though the gap

distance is h¼ h(x).

11.23 Although the Moens-Korteweg equation is theoretically inappropriate

for use in arterial mechanics, it provides correct order of magnitude

results nonetheless. If ρ ~ 1,060 kg/m3 for blood and E ~ 1 MPa and

h/a ~ 0.1 for an artery, estimate the speed of a pressure wave and

compare to values measured clinically in a human aorta. Discuss in a

2-page report the implications of increased arterial stiffening with aging

and associated increases in the so-called pulse wave velocity (PWV).

11.24 Because of the complexity of fluid-solid interactions in the vasculature,

sophisticated computational methods must be used to study issues such

as the effects of wall stiffness on pressure waves. Discuss in a 2-page

report recent advances and associated computational findings regarding

regional pulse wave velocities in humans and changes therein due to

aging. As a start, see the paper by Xiao N. et al. (2013) Computer

simulation of blood flow, pressure, and vessel wall dynamics in a full-

body-scale three dimensional model of the human vasculature. J Comp

Phys 244: 22-40.

11.25 Discuss in a 2-page report the utility of “dynamic similarity” in the

design of medical devices that are deployed within the vasculature.
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12
Epilogue

Biomechanics is often defined as “mechanics applied to biology” (Fung, 1993).

Although this is certainly true, it is hoped that the reader now appreciates that

biomechanics can and must be much more. Because of the complexity of tissue

structure and behavior, there is a need for new, sophisticated theoretical frame-

works; because of the continuing lack of data, there is a need for new, clever

experiments; because of the geometric complexity of cells, tissues, and organs,

there is a need for robust computational methods; and because of the significant

morbidity and mortality that results from disease and injury, there is a need

for improved modalities for diagnosis and treatment. Clearly then, we must

continue to expand the scope of biomechanics, to seek new concepts, postulates,

technologies, and techniques upon which a rigorous understanding can be

based. Biomechanics is thus better defined as the development, extension, and

application of mechanics to answer problems of importance in biology

and medicine. Biomechanics is a vibrant field—one with great promise.

This book was designed to be but an introduction to biosolid and biofluid

mechanics. There are, of course, many other areas of introductory biomechanics

(e.g., studies of whole-body motions, such as gait analysis and athletic

performance) that were not covered. Reflecting on what was presented in

Chaps. 1–11, however, one of the most important things to realize is that

mechanics offers a consistent and rigorous method of approach to study the

wide variety of initial and boundary value problems that arise in biology and

medicine. Another important thing to realize is that biomechanics requires

advanced study; hence, this book is a beginning, not an end. Finally, it is

important to know that there are many ways that a young biomechanicist can

contribute to basic science and health care delivery.
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12.1 Future Needs in Biomechanics

The first author (JDH) was asked a number of years ago to review some of the

past achievements of the Continuum Mechanics of Soft Biological Tissues and

to suggest areas that are in need of further study (Humphrey, 2003a). Among the

many needs and promises, it was suggested that fundamental research is needed

in eight particular areas:

Molecular and Cell Biomechanics

Developmental Biomechanics

Biomechanics of Growth and Remodeling

Injury Biomechanics and Rehabilitation

Functional Tissue Engineering

Muscle Mechanics

Fluid-Solid Interactions

Biothermomechanics

Much progress has been made in these areas, yet much remains to be

accomplished. Moreover, many new areas of need have arisen, including

understanding the roles of mechanics in inflammation/infection and cancer.

The interested student is thus encouraged to review the current literature for

additional “future needs”. Nevertheless, note that:

Cells are the fundamental units of life; understanding their biomechanical

behavior will thus reveal may new insights into the biology and mechanics of

health, disease, injury, and clinical treatment. Cell mechanics is essential, for

example, for explaining basic processes such as cell adhesion, contraction,

division, migration, spreading, and even phagocytosis (i.e., the engulfing and

digestion of extracellular material). Likewise, it appears that cellular apoptosis

(i.e., programmed cell death), the synthesis and degradation of the matrix, and

the production of growth regulatory molecules, cytokines, and cell surface

receptors are also influenced greatly by mechanics. Cells consist of a multitude

of different types of molecules, however; thus, to understand the cell, we must

ultimately understand the mechanics of the associated proteins, phospholipids,

and even nucleotides. Of primary interest, at present, is how the three primary

cytoskeletal proteins (actin, the intermediate filaments, and microtubules)

change their organization in response to mechanical loads. Inasmuch as the

function of these three proteins is controlled in large part by a host of accessory

proteins (e.g., α-actinin, myosin, and talin), there is a similar need to understand

the contribution of the accessory proteins to the mechanics. Cells interact

mechanically, chemically, and electrically with other cells, and they likewise

interact with the extracellular matrix. There is a pressing need to understand the

mechanics of the molecules, particularly the adhesion molecules, that govern

these interactions. For example, extracellular matrix–integrin–cytoskeletal

interactions are clearly important to the mechanobiology, but much remains
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unknown. Finally, we must realize the importance of understanding better how

the mechanics directly affects the chemistry. It is generally believed that

deformations of the cells can change the conformations of the molecules,

which, in turn, can change binding energies. This, too, must be understood

better.

It is purported that Aristotle (384–322 B.C.) stated that “Here and elsewhere

we shall not obtain the best insights into things until we actually see them

growing from the beginning.” Developmental biology clearly holds many keys

to unlocking secrets of importance to clinical care. As noted by the biologist

A.K. Harris (1994), however, “without the aid of mechanicians, and others

skilled in simulation and modeling, developmental biology will remain a

prisoner of our inadequate and conflicting physical intuitions and metaphors.”

For obvious reasons—in particular the smallness of tissues and organs in the

embryo and fetus—biological development has attracted less attention in

biomechanics than many other areas. Fortunately, however, the desire to under-

stand molecular- and cellular-level phenomena has led to technological

advancements (e.g., atomic force microscope) that can also be useful in the

study of development. An interesting example of how understanding develop-

ment may increase our understanding in many other areas, not the least of which

is tissue engineering, is a comparison of aortic development versus changes

induced in maturity due to hypertension. During development, the blood

pressure increases from ~0 before the heart beats to ~120/80 mmHg in maturity.

This increase in pressure is followed by a concomitant increase in wall thick-

ness, which appears to maintain the wall stress at a “preferred” value. In

development, this thickening is accomplished by adding more and more layers

of elastin–collagen–smooth muscle, each of equal thickness. Conversely, in

hypertension in maturity, the wall also thickens in response to an increasing

pressure so as to return the wall stress toward its preferred value, but this

thickening occurs via the addition of material to extant layers, not by adding

new layers. Why? We do not yet know the answer to this simple question,

but this example should illustrate that understanding development will likely

provide important clues for those who seek to understand many issues in

biomechanics.

Murray (1926) suggested that biological “organization and adaptation are

observed facts, presumably conforming to definite laws because, statistically at

least, there is some sort of uniformity or determinism in their appearances. Let

us assume that the best quantitative statement embodying the concept of

organization is a principle which states that the cost of operation of physiolog-

ical systems tends to be a minimum.. . .” Over the years, many investigators

have used the concept of optimization to understand and predict various aspects

of biological growth and remodeling. One such case was discussed in Chap. 10.

The key question, however, is optimization of what? In 1952, Turing showed

that we must also consider the production and removal of morphogens as well as
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their possible diffusion. In 1981, Skalak showed that we must also consider the

pointwise kinematics of growth, and, soon thereafter, Fung showed that we

must address stress-mediated changes in mass. Biological growth and

remodeling is clearly complex, involving changes in morphology, reaction–

diffusion chemistry, kinematics, stress, and mass production. We are only

beginning to scratch the surface of this important area.

Tissues are susceptible to a variety of injuries: abrasion, crushing, dissection,

rupture, and tearing, to name a few. Whereas such injuries are typically thought

to be due to accidental trauma, often in athletics, falls, or vehicular crashes,

others are purposefully induced clinically. An example of damage is balloon

angioplasty, the procedure wherein a balloon-tipped catheter is inflated within a

diseased artery for the purpose of enlarging a lumen that is compromised by an

obstructive atherosclerotic plaque. Angioplasty works, in part, by weakening

(i.e., damaging) the wall, fracturing the atherosclerotic plaque, and sometimes

by creating small dissections between the plaque and wall. Although referred to

as a “controlled injury,” the actual level of control is poor because we do

not understand the details of the injury/damage process. Perhaps a greater

understanding could help reduce the 20–30% failure (i.e., restenosis) rate,

hence the increased use of stents. Understanding damage mechanics likewise

holds promise in the area of robotic-assisted surgery. Whereas a robot can

perform certain operations much more repeatedly and precisely than a human

surgeon, it lacks the tactile feedback and control that is second nature to the

skilled surgeon. To prevent robot-induced damage, we must understand the

associated strength of the tissues involved.

Related to the general topic of injury biomechanics is the process of healing.

For example, whereas it may seem natural to immobilize, and thereby protect or

reduce pain in an injured limb, findings over the last 35 years suggest that thismay

be naive. It appears that immobilized collagenous tissues undergo histological

changes that include a loss of material and, thus, strength. Indeed, it appears

that the production of new tissue (e.g., wound healing) is hastened by certain

levels of mechanical loading. To understand some aspects of healing, therefore,

we need to understand better the associated biomechanics and mechanobiology.

According to Butler et al. (2000), “the goal of ‘tissue engineering’ is to repair

or replace tissues and organs by delivering implanted cells, scaffolds, DNA,

proteins, and/or protein fragments at surgery.” Toward this end, the

U.S. National Committee on Biomechanics suggested the following needs

(Butler et al., 2000): (1) In vivo stress and/or in vivo strain histories need to

be measured in normal tissues for a variety of activities; (2) the mechanical

properties of the native tissues must be established for subfailure and failure

conditions; (3) a subset of these mechanical properties must be selected and

prioritized (i.e., we cannot expect a tissue-engineered material to mimic exactly

the native tissue; hence, we must determine which properties are most important

with regard to functionality); (4) standards must be set when evaluating the
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repairs or replacements after surgery so as to determine “how good is good

enough?;” (5) we must determine what physical regulation cells experience

in vivo as they interact with an extracellular matrix; and (6) we must determine

how physical factors influence cellular activity in bioreactors and how cell–

matrix implants can be mechanically stimulated before surgery to produce a

better outcome. Clearly, continuum biomechanics has a key role to play in

achieving most, if not all, of these objectives.

In 1983, Fung noted that without a theory of muscle mechanics, we cannot

understand human athletic performance or much of rehabilitation engineering;

we cannot develop a theory of the heart or autoregulation of the vasculature; we

cannot understand asthma or accommodation of the eye; indeed, we cannot

even understand activities of the cell such as migration. Clearly, the mechanics

of muscle and motor proteins is fundamental to understanding key activities of

life at the organism, organ, tissue, and cellular level. Fortunately, we have

learned much about muscle since the 1950s and the early work by Huxley and

others. Yet, the early idea that muscle contraction is one dimensional still

pervades the literature even though it is now clear that the force generation

due to muscle contraction can be multiaxial. A better constitutive equation for

muscle is thus imperative.

As noted briefly in Chap. 11, the division of continuum mechanics into

disciplines such as “solid mechanics” and “fluid mechanics” is artificial and

simply a natural consequence of historical developments. In the body, however,

solidlike and fluidlike behavior go hand in hand. Whether it be the removal of

wastes by the renal system, the transport of blood by the cardiovascular system,

the functioning of an articulating joint, or even the response of an individual cell

to an abrupt change in load, fluid-solid interactions are critical. In the future,

therefore, there will continue to be a pressing need for research and teaching to

address directly such couplings.

Advances in laser, microwave, radio-frequency, and similar technologies

continue to encourage the use of thermal energy (heat) to treat disease and

injury. Most clinical applications have been motivated primarily by the avail-

ability of the technology, however, not a detailed understanding of the associ-

ated biothermomechanics. There is a need, therefore, to understand better the

effects of heat on cells and tissues and, in particular, to determine optimal

dosing protocols in terms of clinically measurable and controllable parameters

such as the temperature level, state of stress during heating, and the duration of

heating. For example, until recently it was not commonly appreciated that

mechanical load can play just as important of a role in the thermal denaturation

of proteins as the temperature level; that is, whereas the effect of temperature

appears to affect the denaturation through the activation energy via an

Arrhenius-type process (Sect. 11.6), the effect of mechanical load appears to

affect the process through the activation entropy. Because tissue elasticity is due

more to changes in the configurations of the underlying proteins (i.e., changes in
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configurational entropy) rather than to changes in bond energies (i.e., energetic

elasticity), understanding better the biothermomechanics may yield new

insights into tissue mechanics as well as thermal treatments.

12.2 Need for Lifelong Learning

Much has been learned in and through biomechanics, particularly over the last

35 years, and there is now an extensive literature. We must build upon prior

understanding and achievements; thus, there is a need to appreciate that which

is in the literature. That said, we must also be careful not to be bound by past

methods or concepts. New technologies are revealing much more detail about

the fundamental building blocks of life—genes, proteins, and cells—and new

hypotheses and theories should build upon new observations. The challenges,

and likewise the promises, of biomechanics have never been greater.

An introductory course is clearly the beginning, not the end of one’s learning.

The interested student is thus encouraged to pursue intermediate and advanced

courses in biology, mathematics, and mechanics as well as specialized courses

in biomechanics. Yet, formal course work, even through the doctoral degree, is

not the end of one’s learning. Advances are being realized every day; one must

continually consult the archival literature to stay abreast of the latest develop-

ments. In biomechanics, this means that we should be especially aware of that

which is reported in the leading journals: the Journal of Biomechanics, which

was founded in 1968, the ASME Journal of Biomechanical Engineering,

founded in 1977, Computer Methods in Biomechanics and Biomedical Engi-

neering, founded in 1998, and, most recently, Biomechanics and Modeling in

Mechanobiology, founded in 2002. These journals and others such as the Annals

of Biomedical Engineering, the IEEE Transactions for Biomedical Engineering,

and the Journal of the Royal Society Interface continue to promote the growth

of biomechanics. Note, too, that new ideas are presented at national and

international meetings such as the World Congress of Biomechanics, which

began in 1990 via a meeting at San Diego and has been followed by meetings in

1994 at Amsterdam, in 1998 at Sapporo, in 2002 at Calgary, in 2006 at Munich,

in 2010 at Sinapore, and in 2014 at Boston (which included over 4000 pre-

sentations from investigators from over 50 countries). These focused meetings,

as well as symposia at many different technical meetings, promote the exchange

of ideas and thus contribute to the rapid growth of continuum biomechanics.

Students should try to attend such meetings whenever possible.

We must also remember that biomechanics is part of a larger, multidis-

ciplinary activity whose goal is to understand better the conditions of health

as well as those of disease and injury. Consequently, biomechanics has and will

continue to benefit greatly from developments in the basic life sciences, medical

sciences, mathematics, and materials science. Indeed, it would be hard to find an

archival paper on biomechanics that does not refer to research in these allied
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fields and, conversely, it would be hard to find archival journals in these allied

fields (e.g., the American Journal of Physiology, the Biophysical Journal, the

American Heart Association’s Circulation Research, the ASME Journal of

Applied Mechanics, The Journal of Orthopedic Research, and so on) that do

not contain papers on biomechanics. These sources must be consulted as well,

and we must seek to work in multidisciplinary teams consisting of experts from

the many allied areas of study.

12.3 Conclusion

Biomechanics is intellectually stimulating and challenging. More importantly,

however, it is vitally important. Whereas physicians see human pain and

suffering on a daily basis, few engineers do. Nonetheless, we must continually

remind ourselves that the ultimate goal of biomechanics is to contribute to the

improvement of health care delivery, a goal that deserves our very best effort.
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Osteoporosis, 175

Papillary muscle, 88, 117, 118, 199–203,

209, 349

Parallel axis theorem, 273–288

Parallel-plate flow, 517, 521

Pascal,
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Pathline, 419, 443

Pericardium, 96, 213, 305, 603, 604

Permeability, 604, 605, 608–610, 612, 652

Phase plane, 617

Pitot tube, 441, 442

Plasma, 14, 19, 20, 24, 380, 383–385, 387,

403, 511, 515, 523, 535, 603

Plasticity, 11, 86

Platelets, 16, 21, 380, 383–385, 387

Poise, 381, 665

Poiseuille flow, 458, 480, 511, 519

Poisson’s ratio, 90, 91, 93, 94, 105, 197, 210,

241, 652

Poly methylmethacrylate, 197, 655

Power, 123, 206, 320, 505, 506, 520–522,

549, 550, 553, 593

Power-law fluid, 506, 520, 522

Preconditioning, 296, 297, 312, 313

Pressure

absolute, 418, 472, 483

drop, 404, 447, 517, 555, 561, 563, 565,

571, 573, 584, 588, 590, 593, 605

dynamic, 481

gauge, 418, 440, 472, 541

hydrostatic, 86, 104, 324, 355, 377, 378,

410, 417

stagnation, 441

Principal values

strain, 77

stress, 64, 65, 100, 272

Prosthesis (hip), 175, 260

Proteoglycans, 17, 21, 22, 85, 88, 116, 295,

305, 322, 323, 604, 631, 651, 652

Pseudoelasticity, 296

Pseudoplastic, 379–381, 384, 386, 400, 403,

404, 504, 505, 508, 520

Pulley, 35, 36, 38, 43

Pulsatile flow, 333, 474, 496–504, 658

Pulse wave velocity, 382, 383, 666

Rate-of-deformation, 295, 368–373, 392,

393, 409

Receptors (cell surface), 294, 668

Relaxation

function, 637, 645

spectrum, 645, 663

stress, 632, 633, 635, 636, 638, 639, 641,

662, 663

Residual stress, 129, 150, 321–333, 336, 340

Resultants, 215, 220, 310, 313, 315, 345,

346, 584

Retardation spectrum, 663

Reynolds’ number, 465, 467, 477, 482, 515,

562, 564, 571, 572, 580, 595, 646

Rheology, 385, 387, 393, 505

Rheopectic, 382

Right-hand rule, 55, 120, 181, 182

Rigid-bodymotion, 75, 76, 102, 290, 292, 293

Rod, 106, 142, 146, 150, 169, 170, 173, 181,

203, 212, 213, 224, 255, 264, 306

Rotation(s), 31, 32, 35, 38, 71, 72, 74–76,

87, 103, 104, 195, 198, 200, 202, 203,

242, 243, 272, 292, 293, 295, 338,

356, 357, 365–368, 378, 397, 425, 594

Rouleaux, 379, 380, 384, 386

Rubber, 83–85, 121, 125, 157, 312, 313,

316, 318, 340, 349, 453, 610, 644

Scales for nondimensionalization, 557,

563, 595

Serum, 383, 465

Shaft, 164, 165, 179, 181, 182, 190, 192,

194, 196, 197, 203, 208, 209, 213, 224

Shear force, 7, 55, 214–224, 229, 231, 235,

272, 284, 539

Shear modulus, 90, 93, 184, 188, 190, 192,

198, 202, 203, 205, 208–210, 212,

375, 606

Shear-rates, 354, 369, 373, 375, 376,

379–382, 384, 386–390, 392, 393,

400, 403, 404, 455, 456, 504, 505,

515, 520, 521, 631, 650

Sheet flow in lungs, 563, 565

Sickle cell, 387

Sign convention, 32, 38, 40, 51, 52, 181,

182, 214, 229, 230, 464, 477, 481, 490

Skin friction, 481, 515

Smooth muscle cells, 15, 17, 21–23, 158,

322, 323, 333, 334, 383, 474, 475, 603

constitutive behavior, 94

Specific

gravity, 165, 383, 430, 452

weight, 430, 594

Spherical coordinates

acceleration, 362, 401, 415

divergence, 401, 408
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Spherical coordinates (cont.)

equilibrium, 112, 113

Navier–Stokes, 415, 622

shear-rates, 376, 384

strain, 56, 57, 71, 73, 95, 115, 138

stress components, 53

vorticity, 367

Stability

beams, 615

dynamic, 264, 583, 627, 630

general, 262, 340

inflated membranes, 313

Statically indeterminate, 39, 176, 178,

194–198, 258

Statics, 10, 28–44, 47, 51, 146, 174, 176,

194, 195, 214, 216, 219, 221, 230,

258, 260, 262, 264, 272, 282, 354,

378, 412, 417, 418, 440–442, 451,

464–467, 537, 594, 620

Steady flow, 127, 359, 363, 400–402, 419,

424, 425, 429, 443, 444, 456, 458,

469, 471, 474–483, 492–496, 499,

500, 502, 505, 512, 514, 519, 520,

535, 537, 546, 547, 568, 570, 575,

602, 658

Stenosis, 126, 334, 361, 365, 432, 433, 447,

474, 535, 573, 575, 584

Stent, 126, 240

Stiffness, 20, 49, 88, 90, 91, 97–99,

105, 117, 137, 197, 240, 251,

252, 255, 267, 268, 271, 293,

297–299, 307, 308, 320, 337,

382, 383, 392, 456, 613, 614,

633, 638, 651, 664–666

Strain

gauges, 79, 81, 191, 201, 204, 280,

282, 307, 440

green, 71, 72, 79, 80, 102, 163, 184,

289, 302, 316, 328, 342, 345

infinitesimal/small, 72, 75, 80, 81,

84–86, 88, 89, 91, 93, 94, 97, 100,

114, 143, 149, 163, 178, 179, 181,

185, 190, 191, 199, 200, 203, 213,

223, 228, 272, 291, 294, 349, 350,

367, 392, 632, 641, 646

microstrain, 91, 210

plane, 95, 96, 114

principal, 103, 104, 210, 328

shear, 103, 184, 190

transformations, 100, 276, 304

Strain energy, 105, 167, 302–304,

309, 345

Streamline, 419–431, 434, 437–438, 441,

443, 451, 575, 623, 662

Stress

Cauchy, 53, 58, 122, 130, 157, 161,

200, 206, 298, 301, 302, 313,

315, 329, 340, 354, 355, 392,

405, 410, 634

concentration, 118, 239, 240, 306, 350

first Piola-Kirchhoff, 161, 298,

300–302, 340, 354, 645

hydrostatic, 67, 68, 102, 104, 378,

379, 420

plane, 96, 114, 309

principal, 63–68, 102, 104, 107,

186–191, 236

relaxation, 632, 633, 635, 636, 638,

639, 641, 662, 663

residual, 129, 150, 321–334, 336, 340

second Piola-Kirchhoff, 302, 340

States of, 62, 76, 115, 117, 212,

262, 344

transformations, 58–63

yield, 107, 197, 212, 260, 381, 386

St. Venant’s Principle, 118

Superposition, 134, 181, 204, 228, 255–262,

280, 282, 333, 645, 663

Surface

force, 410

tension, 123, 305, 374, 527, 594, 661

Synovial fluid, 382, 387, 388, 393,

646, 650

System, 1, 50, 111, 186, 214, 302, 334, 405,

457, 525, 608, 669

Taylor series, 109, 420, 615, 630

Temperature, 9, 83, 86, 90, 100, 255, 261,

334, 363, 375, 379, 386, 439, 441,

452, 468, 488, 511, 520, 534, 556,

557, 587, 654–656, 671
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first law of thermodynamics, 405, 533,

568, 585

Tension, 4, 14, 17, 35, 36, 38–40, 43, 44,

50, 106, 107, 123, 162, 166, 191,

197, 198, 212, 261, 305, 311,

315, 320, 335, 374, 527, 594,

620, 651, 661

Theory, 4, 11, 24–26, 28, 81–83, 92, 142,

144, 199, 212, 239, 250, 253, 255,

273, 282, 292, 294, 296, 300, 308,

336, 350, 372, 439, 441, 442, 465,

476, 523, 559, 577, 584, 605, 627,

630–632, 645–646, 650–654, 657,

665, 671, 672

Thixotropic, 382

Time, scales, 100, 631

Tissue engineering, 42, 443, 474, 536,

668–670

Torsion, 92, 106, 149, 163–212, 224,

225, 242, 260, 272, 349, 389

Trace, 344, 616, 630, 631

Transducer design

AFM, 250–255

load cells, 203

torque cells, 202, 203

Transformations. See Strain; Stress

Transpose, 290, 342

Transverse isotropy, 93, 97, 138, 303, 304

Tribology, 646

Trigonometric identies, 60, 61, 64, 642

Truss, 38–41, 44, 378

Turbulent flow, 462, 482, 575, 577

Uniform

flow, 400

stress, 121, 142, 157

Universal solutions, 109–162, 204,

205, 256

Vasospasm, 311, 361

Vectors

curl, 359, 367, 396, 397

divergence, 359, 395, 396

scalar product, 395

vector product, 343, 348, 394–396

Vein grafts, 157, 158, 474–476, 602, 603

Velocity, 10, 68, 354, 409, 455, 527, 604

Velocity gradients, 358, 363, 372, 428,

503, 527, 631

Ventricular-assist device, 7, 353,

433, 456

Vinculin, 466

Viscoelasticity

Boltzmann model, 641–644

burger model, 664

characteristic behaviors, 261,

295–296, 632, 644

Kelvin-Voigt model, 636–638

Maxwell model, 633–636

quasilinear model, 645

standard model, 639, 665

Viscometer

concentric cylinder, 389, 488–491, 515

cone-and-plate, 388–393, 403, 404,

488, 489, 516

descent of a sphere, 488

parallel plate, 392, 404

Viscosity

absolute, 375, 579

apparent, 381, 382, 386, 387, 392,

403, 505, 520, 565, 650

of blood, 386, 387, 489, 523

dependence on, 11, 608

kinematic, 579

of plasma, 383

of water, 383

Volume, 9, 92, 112, 168, 301, 369, 405,

461, 527, 607

Volumetric flow, 404, 427, 429, 436,

442, 453, 461, 465, 468–470,

480, 503, 507, 511, 515–518,

521, 522, 533, 534, 542, 551,

555, 591–593, 605, 606,

647, 666

Vorticity

cartesian, 367, 397, 400

cylindrical, 367

spherical, 368
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Wall shear stress, 391, 456, 457, 462–464,

467, 470, 475, 481, 482, 489, 490,

502, 503, 515, 518, 519, 521, 527,

537, 541, 551, 602, 612, 658

Womersley’s number, 496, 503, 517, 564

Work, 12, 41, 42, 97, 99, 136, 302, 308, 444,

467, 529, 533, 534, 550, 555, 567,

568, 585, 587, 658, 661, 670–673

Working, 199, 568

Worksheets, 445, 446

Yield

criterion, 212

stress, 107, 197, 212, 260, 381, 386

Young’s modulus, 90, 98, 103, 104,

107, 170, 197, 210, 227, 252,

254, 280, 281, 297, 311, 613

Zero-stress state, 635, 636, 641
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